
素因数分解の一意性の直接的証明

定義 1 正の整数 p が素数であるとは, 次の 2 条件をみたすことを

いう:

(i) p ̸= 1.

(ii) 任意の正の整数 a, b に対して,

p = ab =⇒ a = 1 または a = p

が成り立つ.

例 1 2 は素数である. 実際, a, b を正の整数とし, 2 = ab であるとすると,

a ≤ 2 かつ b ≤ 2 である. よって,

(a, b) = (1, 1), (1, 2), (2, 1), (2, 2)

の 4 通りが考えられるが, そのうち

(a, b) = (1, 2), (2, 1)

のみが 2 = ab を満たす. したがって, a = 1 または a = 2 である.

定理 1 1 以外の正の整数はすべて素数の積の形で表せる.

証明 n に関する数学的帰納法により証明する.

2 は素数であるから, n = 2 のとき定理の主張は正しい.

2 ≤ k ≤ n− 1 なるすべての整数 k に対して定理の主張が正しいと仮定す

る. n が素数のとき, 定理の主張が正しいことは自明である. n が素数でな
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いとき, ある正の整数 a, b が存在して,

n = ab, 1 < a < n, 1 < b < n

が成り立つ. 帰納法の仮定により, a, b はともに素数の積の形で表せる. し

たがって, n も素数の積の形で表せる.

以上より, すべての整数 n ≥ 2 に対して定理の主張が正しいことが証明さ

れた.

定義 2 n を正の整数とする. n の約数であるような素数を n の素因

数という.

定義 3 正の整数を素数の積の形で表すことを素因数分解という.

定理 1 は「1 以外の正の整数はすべて素因数分解が可能である」と言いか

えることができる.

補題 2 p, q1, q2, . . ., qt を素数とする. このとき,

p = q1q2 · · · qt

ならば, t = 1 かつ p = q1 が成り立つ.

証明 背理法により証明する. もし仮に t > 1 とすると, q1 = 1 または

q1 = p が成り立つ. q1 ̸= 1 であるから, q1 = p. よって, q2 · · · qt = 1. こ

れは矛盾である. したがって, t = 1 でなければならない. またこのとき,
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p = q1 となる.

定理 3 素因数分解は, 素因数の積の順序を除いて一意的である.

証明 n に関する数学的帰納法により証明する.

2 は素数であるから, 補題 2 より 2 の素因数分解は一意的である. よって,

n = 2 のとき定理の主張は正しい.

2 ≤ k ≤ n − 1 なるすべての整数 k について素因数分解の一意性が成り

立つと仮定する. n が素数の場合, 補題 2 より n の素因数分解は一意的であ

る. n が素数でない場合, n の素因数分解が

n = p1p2 · · · ps = q1q2 · · · qt

のように 2 通りあるとする. 今は n が素数でない場合を考えているので,

s ≥ 2 かつ t ≥ 2 であることを注意しておく.

番号を適当に付けかえて,

p1 ≤ p2 ≤ · · · ≤ ps, q1 ≤ q2 ≤ . . . ≤ qt (1)

としておく.

まず, p1 = q1 が成り立つことを背理法により証明する. q1 < p1 が成り立

つと仮定して矛盾を導く1). 背理法の仮定と (1) より

q1 < pi (i = 1, 2, . . . , s) (2)

が成り立つ.
m = (p1 − q1)p2 · · · ps (3)

1) p1 < q1 のときも同様にして矛盾が導かれる.
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とおくと, 0 < p1 − q1 < p1 であるから, m は n より小さい正の整数であ

る. 帰納法の仮定により, m の素因数分解は一意的である. さらに,

m = (p1 − q1)p2 · · · ps
= n− q1p2 · · · ps
= q1(q2 · · · qt − p2 · · · ps). (4)

Case 1 q2 · · · qt − p2 · · · ps > 1 の場合, 定理 1 より

q2 · · · qt − p2 · · · ps = v1v2 · · · vr

のように素因数分解することができる. これを (4) に代入すると

m = q1v1v2 · · · vr (5)

が得られる.

(Case 1-1) p1 − q1 > 1 の場合, 定理 1 より, p1 − q1 を

p1 − q1 = u1u2 · · ·ul

のように素因数分解することができる. これを (3) に代入すると,

m = u1u2 · · ·ulp2 · · · ps.

これと (5) と m の素因数分解の一意性より, q1 は u1, . . ., ul, p2, . . ., ps の

どれかと一致する. もし仮に p2, . . ., ps のどれかと一致すると (2) に反する

から, q1 は u1, . . ., ul のどれかと一致する. 例えば q1 = u1 とすると,

p1 − q1 = q1u2 · · ·ul.

両辺に q1 を加えると,

p1 = q1(u2 · · ·ul + 1).

p1 は素数だから, q1 = 1 または q1 = p1. 前者は q1 が素数であることに反

し, 後者は (2) に反する.
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(Case 1-2) p1 − q1 = 1 の場合, (3) より

m = p2 · · · ps.

これと (5) と m の素因数分解の一意性より, q1 は p2, . . ., ps のどれかと一

致する. これは (2) に反する.

Case 2 q2 · · · qt − p2 · · · ps = 1 の場合, (4) より m = q1 が得られる. さ

らに (3) より,
q1 = (p1 − q1)p2 · · · ps.

q1 は素数だから, p1 − q1 = 1 または p1 − q1 = q1. 前者の場合,

q1 = p2 · · · ps.

これと補題 2 より q1 = p2 となり, (2) と矛盾する. 後者の場合, p1 = 2q1

となるが, 2, p1, q1 はすべて素数だから, これは不可能である.

ゆえに, p1 = q1 でなければならない. またこのとき, n/p1 = n/q1, すな

わち
n

p1
= p2 · · · ps = q2 · · · qt.

帰納法の仮定により n/p1 について素因数分解の一意性が成り立つから, (1)

と合わせれば r = s かつ pi = qi (i = 2, . . ., r) である. したがって, n に

ついても素因数分解の一意性が成り立つ.

以上より, すべての整数 n ≥ 2 に対して定理の主張が正しいことが証明さ

れた.
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補足説明

初等整数論の教科書では通常, 素因数分解の一意性を次の 2 つのステップ

で証明する:

Step 1 整数環 Z においては「既約元」がすべて「素元」になる (逆は一

般に整域において成り立つ).

Step 2 1 以外の正の整数が「素元」の積の形で表されるならば, その表し

方は一意的である.

今回紹介した証明では, Step 1 を飛ばして「既約元」の積の形での表し方

が一意的であることを直接証明している.
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