
1 樹形結合の確率空間と条件付確率

1.1 2段階の樹形結合

(Ω0, P0)を確率空間とする. Ω0 の各点 aに対して確率空間 (Ωa, Pa)が定まっているとき,

Ω = {(x, y) | x ∈ Ω0, y ∈ Ωx},

P ({(x, y)}) = P0({x})Px({y})

とおくと, 確率空間 (Ω, P )が定まる. これを樹形結合の確率空間という.

(Ωa, Pa)

(Ω0, P0)

a

99ssssssssss
b //

c
%%KKKKKKKKKK

(Ωb, Pb)

(Ωc, Pc)

［命題 1］s ∈ Ω0, t ∈
∪

x∈Ω0
Ωx とし, P0({s}) 6= 0と仮定する.

As = {s} × Ωs = {(s, y) ∈ Ω | y ∈ Ωs},

H = {(x, t) ∈ Ω | x ∈ Ω0}

とおくと,

Ω = A1 + A2 + · · · + As,

P (As) = P0({s}),

P (H | As) =

Ps({t}), t ∈ Ωs のとき,

0, t 6∈ Ωs のとき

が成り立つ.

［証明］Ωが A1, A2, . . ., As の直和で表されることは, それぞれの定義から明らかである.
P (As)を計算すると,

P (As) =
∑

y∈Ωs

P ({(s, y)}) =
∑

y∈Ωs

P0({s})Ps({y})

= P0({s})
∑

y∈Ωs

Ps({y}) = P0({s})Ps(Ωs)

= P0({s}).

次に, t ∈ Ωs のとき,
As ∩ H = {(s, t)}.

よって,
P (As ∩ H) = P ({(s, t)}) = P0({s})Ps({t}) = P (As)Ps({t}).
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ゆえに,

P (H | As) =
P (As ∩ H)

P (As)
= Ps({t}).

t 6∈ Ωsのとき, As∩H = ∅だから, P (As∩H) = 0である. P0({s}) 6= 0と仮定したので, P (As) 6= 0.
したがって, P (H | As) = 0である.

1.2 3段階の樹形結合

3段階の樹形結合の確率空間も同様に定義できる.
(Ω0, P0)を確率空間とする. Ω0の各点 aに対して確率空間 (Ωa, Pa)が定まり, さらに Ωaの各点

bに対して確率空間 (Ωab, Pab)が定まっているとき,

Ω = {(x, y, z) | x ∈ Ω0, y ∈ Ωx, z ∈ Ωxy},

P ({(x, y, z)}) = P0({x})Px({y})Pxy({z})

とおくと, 確率空間 (Ω, P )が定まる.

(Ωa′ , Pa′)

(Ωa, Pa)

a′
88rrrrrrrrrr

b′ //

c′ &&LLLLLLLLLL
(Ωb′ , Pb′)

(Ω0, P0)

a

99ssssssssss
b //

c
%%KKKKKKKKKK

(Ωb, Pb) (Ωc′ , Pc′)

(Ωc, Pc)

［命題 2］s ∈ Ω0, t ∈ Ωs, u ∈
∪

x∈Ω0, y∈Ωs
Ωxy とし, P0({s})Ps({t}) 6= 0と仮定する.

As = {(s, y, z) ∈ Ω | y ∈ Ωs, z ∈ Ωst},

Bt = {(x, t, z) ∈ Ω | x ∈ Ω0, z ∈ Ωtx},

H = {(x, y, u) ∈ Ω | x ∈ Ω0, y ∈ Ωs}

とおくと,

Ω = A1 + A2 + · · · + As,

P (As) = P0({s}),

P (Bt | As) = Ps({t}),

P (H | As ∩ Bt) =

Pst({u}), u ∈ Ωst のとき,

0, u 6∈ Ωst のとき

が成り立つ.
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［証明］Ωが A1, A2, . . ., As の直和で表されることは, それぞれの定義から明らかである.
P (As)を計算すると,

P (As) =
∑

y∈Ωs

∑
z∈Ωsy

P ({(s, y, z)})

=
∑

y∈Ωs

∑
z∈Ωst

P0({s})Ps({y})Pst({z})

= P0({s})
∑

y∈Ωs

Ps({y})
∑

z∈Ωst

Pst({z})

= P0({s})
∑

y∈Ωs

Ps({y})Pst(Ωst)

= P0({s})
∑

y∈Ωs

Ps({y})

= P0({s})
∑

y∈Ωs

Ps(Ωs)

= P0({s}).

また,
As ∩ Bt = {(s, t, z) ∈ Ω | z ∈ Ωst}.

P (As ∩ Bt)を計算すると,

P (As ∩ Bt) =
∑

z∈Ωst

P ({(s, t, z)}) =
∑

z∈Ωst

P0({s})Ps({t})Pst({z})

= P0({s})Ps({t})
∑

z∈Ωst

Pst({z}) = P0({s})Ps({t})Pst(Ωst)

= P0({s})Ps({t}).

ゆえに,

P (Bt | As) =
P (As ∩ Bt)

P (As)
= Ps({t}).

次に, u ∈ Ωst のとき,
As ∩ Bt ∩ H = {(s, t, u)}.

よって,

P (As ∩ Bt ∩ H) = P ({(s, t, u)})

= P0({s})Ps({t})Pst({u})

= P (As)P (Bt | As)Pst({u}).

ゆえに,

P (H | As ∩ Bt) =
P (As ∩ Bt ∩ H)

P (As ∩ Bt)
= Pst({u}).

u 6∈ Ωstのとき, As ∩Bt ∩H = ∅だから, P (As ∩Bt ∩H) = 0である. P0({s})Ps({t}) 6= 0と仮定
したので, P (As ∩ Bt) 6= 0. したがって, P (H | As ∩ Bt) = 0である.
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2 例題

例題として, 目隠し抽選会問題1)を解いてみる.

［問題 1（目隠し抽選会問題）］部屋の中には, 司会者を除き 100人の人がいて, 中村さんもその 1
人です. クジは 101本あって, その中の 1本だけが当たりです. 中村さんには, いまから目隠しをし
てもらいます.
渡辺さんだけが 2本, 他の人たちは 1本ずつ引いてもらうことに決めました. いま, みんながク
ジを引き終わりましたが, まだだれも中を見ていません. みんなで自分のクジを開いてみます. 中
村さんは目隠しをしているので見えません.
さて, はずれた人は１人ずつ部屋から出てもらいます. 中村さんはこのまま待ちます.

(i) 98人がランダム順に出て行ったところで, 司会者がストップをかけ, 「いま 98人出たところ
です」と言いました. このとき, 中村さんのくじが当たりである (条件付)確率はいくらでしょ
うか.

(ii) 司会者はさらに, 「残った人は, クジを２本引いた渡辺さんです」と言いました. このとき,
中村さんのくじが当たりである (条件付)確率はいくらでしょうか.

(iii) 司会者はさらに, 渡辺さんの 2本のくじのうちはずれのほうを回収しました. このとき, 中村
さんのくじが当たりである (条件付)確率はいくらでしょうか.

以下で述べる解答は, 冗長に見えるかもしれないが, それは問題文の内容を忠実に定式化してい
るためである.

(i)の解答

中村さんらがくじを引く試行の確率空間 (Ω0, P0)は,

Ω0 = {a1, a2, . . . a100},

P0({a1}) = P0({a3}) = · · · = P0({a100}) =
1

101
, P0({a2}) =

2
101

によって定まる. ここで, 中村さんが当選する場合を a1 ∈ Ω0, 渡辺さんが当選する場合を a2 ∈ Ω0,
それ以外の人が当選する場合をそれぞれ a3 ∈ Ω0, . . ., a100 ∈ Ω0 とする.
また, 98人がランダムに出て行く試行の確率空間については, 中村さんが当選であるときの確率
空間 (Ω1, P1)は,

Ω1 = {(ai1 , ai2 , . . . ai98) | i1, . . ., i98 は 2から 100の数から 98個を取り出す順列 },

P1({(ai1 , ai2 , . . . ai98)}) =
1
99

· 1
98

· · · 2
3
· 1
2

=
1

99!

によって定まり, それ以外の各人が当選であるときの確率空間 (Ωj , Pj) (j = 2, 3, . . ., 100)はそれ
ぞれ,

Ωj = {(ai1 , ai2 , . . . ai98) | i1, . . ., i98 は j を除く 2から 100の数から 98個を取り出す順列 },

Pj({(ai1 , ai2 , . . . ai98)}) =
1
98

· 1
97

· · · 2
3
· 1
2

=
1

98!
1)[2], p.106 を参照.
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によって定まる. ここで, 例えば (a3, a4, . . . a100) ∈ Ω2は, 番号 2に対応する人 (渡辺さん)が当選
するとき, 番号 3に対応する人, 番号 4に対応する人, . . ., 番号 100に対応する人がこの順番で出て
行く場合を表している.
中村さんらがくじを引く試行と 98人がランダムに出て行く試行との樹形結合の確率空間を (Ω, P )
とおく.
中村さんが当選しているという事象を A1, 渡辺さんが当選しているという事象を A2, それ以外
の人が当選している事象をそれぞれ A3, . . ., A100 とすると, j = 1, 2, . . ., 100に対して,

Aj = {(ai, (ai1 , ai2 , . . . ai98)) ∈ Ω | (ai1 , ai2 , . . . ai98) ∈ Ωj}.

さらに,

Ω = A1 + A2 + · · · + A100,

P (A1) = P (A3) = · · · = P (A100) =
1

101
, P (A2) =

2
101

.

渡辺さんが残るという事象を B2, それ以外の人が残るという事象をそれぞれ B3, . . ., B100 とす

る. ここで, Aiと Biの主体となる人が同一であるように番号 iを振る. ある人が残ることと, その
人以外の 98人が出て行くことは同値であるから, i = 1, 2, . . ., 100; j = 2, 3, . . ., 100に対して,

Bj = {(x, (ai1 , ai2 , . . . ai98)) ∈ Ω | x ∈ Ω0, 各 ik の中に j は現れない },

Ai ∩ Bj = {(ai, (ai1 , ai2 , . . . ai98)) | (ai1 , ai2 , . . . ai98) ∈ Ωi, 各 ik の中に j は現れない }.

このとき,

P (A1 ∩ Bj) = P0({a1})
∑

x∈A1∩Bj

P1(x) = P0({a1}) ·
98!
99!

= P0({a1}) ·
1
99

,

P (Bj | A1) =
P (A1 ∩ Bj)

P (A1)
=

P0({a1}) ·
1
99

P0({a1})
=

1
99

,

P (Bj | Ai) =
P (Ai ∩ Bj)

P (Ai)
=


=

P0({ai})Pj(Ωj)
P0({ai})

= 1, i = j のとき

=
P (∅)

P0({ai})
= 0, i 6= j のとき

(2 ≤ i, j ≤ 100).

なお, 上の計算結果は, 問題 (i)における

• 中村さんが当選しているとき, 中村さん以外の各人が残る確率はそれぞれ
98
99

· 97
98

· · · 1
2

=
1
99

ずつ.

• 当選者は退場しないので, 中村さん以外の人が当選しているとき, その人が必ず残る.

といった状況を表している.
中村さん以外の 99人のうち 98人が出て行く (言い換えれば, 中村さん以外の誰か 1人だけが残
る)事象を B とすると,

B = B2 + B3 + · · · + B100.

よって, 各 i = 1, 2, . . ., 100に対して,

P (B | Ai) =
100∑
j=2

P (Bj | Ai) = 1,
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ゆえに, Bayesの定理により,

P (A1 | B) =
P (A1)P (B | A1)

100∑
i=1

P (Ai)P (B | Ai)

=
P (A1)

100∑
i=1

P (Ai)

=
P (A1)
P (Ω)

=
1

101
.

(ii)の解答

記号は (i)の通りとする. 問題 (ii)の状況を整理すると,

• 中村さんのくじが当たりのとき, 渡辺さんが残る確率は 1/99.
• 渡辺さんのくじが当たりのとき, 渡辺さんが残る確率は 1.
• 中村さんでも渡辺さんでもない任意の第三者のくじが当たりのとき, その人が残る確率は 1.

すなわち,

P (B2 | A1) =
1
99

, P (B2 | A2) = 1, P (B2 | A3) = · · · = P (B2 | A100) = 0.

ゆえに, Bayesの定理により,

P (A1 | B2) =
P (A1)P (B2 | A1)

100∑
i=1

P (Ai)P (B2 | Ai)

=
P (A1)P (B2 | A1)

P (A1)P (B2 | A1) + P (A2)P (B2 | A2)

=
1/101 · 1/99

1/101 · 1/99 + 2/101 · 1

=
1

199
.

(iii)の解答

中村さんらがくじを引く試行, 98人がランダムに出て行く試行, 司会者が渡辺さんのはずれくじ
を 1本回収する試行の (3段階の)樹形結合の確率空間を (Ω′, P ′)とおく.
中村さんが当選しているという事象を A′

0, 渡辺さんの 1本目のくじが当選しているという事象
を A′

1, 渡辺さんの 2 本目のくじが当選しているという事象を A′
2, それ以外の人が当選している

事象をそれぞれ A′
3, . . ., A′

100 とする. また, 渡辺さんが残るという事象を B′ とする. P ′(A′
i)や

P ′(B′ | A′
i)については, (i)や (ii)のときと同様にして計算できる:

Ω = A′
0 + A′

1 + A′
2 + A′

3 + · · · + A′
100,

P (A′
0) = P (A′

1) = P (A′
2) = P (A′

3) = · · · = P (A′
100) =

1
101

,

P (B′ | A′
0) =

1
99

, P (B′ | A′
1) = P (B′ | A′

2) = 1,

P (B′ | A′
3) = · · · = P (B′ | A′

100) = 0.

いま, 問題 (iii)の状況を整理すると,
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• 中村さんが当選し, 渡辺さんが残るとき, 司会者が渡辺さんの 1本目のくじを回収する確率と
2本目のくじを回収する確率は 1/2ずつ.

• 渡辺さんの 1本目のくじが当たり, 渡辺さんが残るとき, 司会者が渡辺さんの 2本目のくじを
回収する確率は 1.

• 渡辺さんの 2本目のくじが当たり, 渡辺さんが残るとき, 司会者が渡辺さんの 1本目のくじを
回収する確率は 1.

• それ以外の人が当選し, 渡辺さんが残る確率は 0.

司会者が渡辺さんの 1本目のくじを回収するという事象を C ′
1, 2本目のくじを回収するという事象

を C ′
2 とすると, 最初の 3つの項目より,

P ′(C ′
1 | A′

0 ∩ B′) = P ′(C ′
2 | A′

0 ∩ B′) =
1
2
,

P ′(C ′
1 | A′

1 ∩ B′) = 0, P ′(C ′
2 | A′

1 ∩ B′) = 1,

P ′(C ′
1 | A′

2 ∩ B′) = 1, P ′(C ′
2 | A′

2 ∩ B′) = 0.

司会者が渡辺さんのはずれくじを回収するという事象を C ′ とすれば, C ′ = C ′
1 + C ′

2 であるから,

P ′(C ′ | A′
0 ∩ B′) = P ′(C ′

1 | A′
0 ∩ B′) + P ′(C ′

2 | A′
0 ∩ B′) = 1,

P ′(C ′ | A′
1 ∩ B′) = P ′(C ′

1 | A′
1 ∩ B′) + P ′(C ′

2 | A′
1 ∩ B′) = 1,

P ′(C ′ | A′
2 ∩ B′) = P ′(C ′

1 | A′
2 ∩ B′) + P ′(C ′

2 | A′
2 ∩ B′) = 1.

よって,

P ′(A′
0 ∩ B′ ∩ C ′) = P ′(A′

0 ∩ B′)P ′(C ′ | A′
1 ∩ B′)

= P ′(A′
0)P

′(B′ | A′
0)P

′(C ′ | A′
0 ∩ B′)

=
1

101
· 1
99

· 1 =
1

9999
,

P ′(A′
i ∩ B′ ∩ C ′) = P ′(A′

i ∩ B′)P ′(C ′ | A′
2 ∩ B′)

= P ′(A′
i)P

′(B′ | A′
i)P

′(C ′ | A′
i ∩ B′)

=
1

101
· 1 · 1 =

1
101

(i = 1, 2).

4つ目の項目は, P ′(A′
3 ∩ B′) = · · · = P ′(A′

100 ∩ B′) = 0を意味する. 一般に, 任意の 2つの事象
X, Y に対して, X ⊆ Y ならば P ′(X) ≤ P ′(Y )が成り立つから,

P ′(A′
3 ∩ B′ ∩ C ′) = · · · = P ′(A′

100 ∩ B′ ∩ C ′) = 0.

ゆえに,

P ′(B′ ∩ C ′) =
100∑
i=0

P ′(A′
i ∩ B′ ∩ C ′)

= P ′(A′
0 ∩ B′ ∩ C ′) + P ′(A′

1 ∩ B′ ∩ C ′) + P ′(A′
2 ∩ B′ ∩ C ′)

=
1

9999
+

1
101

+
1

101
=

199
9999

.

したがって,

P ′(A′
0 | B′ ∩ C ′) =

P ′(A′
0 ∩ B′ ∩ C ′)

P ′(B′ ∩ C ′)
=

1
199

.

これが求める確率である.
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