
1 テンソル積の計算例

［定理 1］任意の左 R加群M に対して, R ⊗R M ∼= M が成り立つ.

［証明］スカラー倍の写像

R × M → M, (r, x) 7→ rx

は R上双線型だから, テンソル積の普遍性により, R準同型

f : R ⊗R M → M, r ⊗ x 7→ rx

が存在する. 一方, 写像

g : M → R ⊗R M, x 7→ 1 ⊗ x

は R準同型であり, 任意の r ∈ R, x ∈ M に対して,

f ◦ g(x) = f(1 ⊗ x) = x,

g ◦ f(r ⊗ x) = g(rx) = 1 ⊗ rx = r ⊗ x.

ゆえに, g ◦ f , f ◦ gはともに恒等写像である. よって, f は全単射である.

したがって, f は R上の同型写像である.

［例 2］任意の環 Rに対して, R ⊗R R ∼= R.

nを 2以上の整数とするとき, Z ⊗Z Z/nZ ∼= Z/nZ ⊗Z Z ∼= Z/nZ.

［定理 3］mを正の整数とするとき, 任意の Z加群M に対して, mZ ⊗Z M ∼= M .

［証明］写像

mZ × M → M, (mr, x) 7→ rx

は Z上双線型だから, テンソル積の普遍性により, Z準同型

f : mZ ⊗Z M → M, mr ⊗ x 7→ rx

が存在する. 一方, 写像

g : M → mZ ⊗Z M, x 7→ m ⊗ x

は Z準同型であり, 任意の r ∈ Z, x ∈ M に対して,

f ◦ g(x) = f(m ⊗ x) = x,

g ◦ f(mr ⊗ x) = g(rx) = m ⊗ rx = mr ⊗ x.
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ゆえに, g ◦ f , f ◦ gはともに恒等写像である. よって, f は全単射である.

したがって, f は Z上の同型写像である.

［例 4］m, nを 2以上の整数とするとき, mZ ⊗Z Z/nZ ∼= Z ⊗Z Z/nZ ∼= Z/nZ.

［定理 5］Rを整域, K をその商体とするとき, K ⊗R K ∼= K.

［証明］写像

K × K → K, (x, y) 7→ xy

は R上双線型だから, テンソル積の普遍性より, R準同型

f : K ⊗ K → K, x ⊗ y 7→ xy

が存在する. 一方, 写像

g : K → K ⊗R K, x 7→ 1 ⊗ x

は R準同型であり, 任意の x ∈ K に対して,

f ◦ g(x) = f(1 ⊗ x) = x.

また, 任意の x, y ∈ K に対して,

x =
a

b
, y =

c

d
(a, b, c, d ∈ R, b 6= 0, d 6= 0)

とおくと,

1 ⊗ xy = 1 ⊗ ac

bd
= a ⊗ c

bd
=

ab

b
⊗ c

bd
=

a

b
⊗ bc

bd
=

a

b
⊗ c

d
= x ⊗ y.

よって,

g ◦ f(x ⊗ y) = g(xy) = 1 ⊗ xy = x ⊗ y.

ゆえに, g ◦ f , f ◦ gはともに恒等写像である. よって, f は全単射である.

したがって, f は R上の同型写像である.

［例 6］Q ⊗Z Q ∼= Q.

［定理 7］M を可除 Z加群1), mを 2以上の整数とする. このとき, Z/mZ ⊗Z M = 0.

1)すなわち, 任意の x ∈ M , r ∈ Z に対して, ある y ∈ M が存在して, x = ry が成り立つものとする.
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［証明］x ∈ Z, y ∈ M を任意にとる. M は可除 Z加群なので, ある y′ ∈ M が存在して, y = my′

が成り立つ. よって,

(x + mZ) ⊗ y = (x + mZ) ⊗ my′ = (mx + mZ) ⊗ y′ = (0 + mZ) ⊗ y′ = 0.

［例 8］Qは可除 Z加群である. 実際, 任意の x ∈ Q, r ∈ Zに対して, y = x/rとおけば, x = ry,

y ∈ Qとなる. したがって, Z/mZ ⊗Z Q = 0.

［例 9］Q/Zは可除 Z加群である. 実際, 任意の x ∈ Q, r ∈ Zに対して, y = x/rとおけば,

x + Z = ry + Z = r · (y + Z)

となる. したがって, Z/mZ ⊗Z Q/Z = 0.

［定理 10］m, nを 2以上の整数とし, d = gcd(m,n)とするとき, Z/mZ ⊗Z Z/nZ ∼= Z/dZ.

［証明］Z準同型

f : Z → Z/mZ ⊗Z Z/nZ, x 7→ (1 + mZ) ⊗ (x + nZ)

を考える. 任意の z ∈ Z/mZ ⊗Z Z/nZに対して,

z =
r∑

i=1

ci((xi + mZ) ⊗ (yi + nZ)), ci, xi, yi ∈ Z

とおくと,

z =
r∑

i=1

ci((1 + mZ) ⊗ (xiyi + nZ))

=
r∑

i=1

(1 + mZ) ⊗ (cixiyi + nZ)

= (1 + mZ) ⊗ (w + nZ), w =
r∑

i=1

cixiyi ∈ Z

より, f(w) = zとなる. よって, f は全射である.

d = gcd(m,n)より, ある s, t ∈ Zが存在して, d = ms + ntと表せる. このとき, 任意の y ∈ Z

に対して,

f(dy) = (1 + mZ) ⊗ (dy + nZ)

= (1 + mZ) ⊗ ((msy + nty) + nZ)

= (1 + mZ) ⊗ (msy + nZ) + (1 + mZ) ⊗ (nty + nZ)

= (msy + mZ) ⊗ (1 + nZ) + (1 + mZ) ⊗ (nty + nZ)

= 0.
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よって, dZ ⊆ Ker(f).

写像

Z/mZ × Z/nZ → Z/dZ, (x + mZ, y + nZ) 7→ xy + dZ

は Z上双線型なので, テンソル積の普遍性により, Z準同型

g : Z/mZ ⊗Z Z/nZ → Z/dZ, (x + mZ) ⊗ (y + nZ) 7→ xy + dZ

が存在する. x ∈ Ker(f)とすると, f(x) = 0なので,

x + dZ = g((1 + mZ) ⊗ (x + nZ)) = g ◦ f(x) = 0.

すなわち, x ∈ dZ. ゆえに, Ker(f) ⊆ dZとなる. したがって, Ker(f) = dZ. 準同型定理により, Z

上の同型

Z/dZ ∼= Z/mZ ⊗Z Z/nZ, x + dZ 7→ (1 + mZ) ⊗ (x + nZ)

が得られ, gがその逆写像になる.

［別証］短完全系列

0 → Z [m]→ Z π→ Z/mZ → 0.

に対して, テンソル積の右完全性より

Z ⊗Z Z/nZ [m]⊗Z/nZ−→ Z ⊗Z Z/nZ π⊗Z/nZ−→ Z/mZ ⊗Z Z/nZ → 0

も完全系列である. ここで, [m]はm倍写像, πは自然な準同型である. また, Z準同型 f : M → N

と Z加群W に対して, f ⊗ W を

f ⊗ W : M ⊗Z W → N ⊗Z W, x ⊗ y 7→ f(x) ⊗ y

によって定まる Z準同型とする. この完全系列から,

Z/mZ ⊗Z Z/nZ = Im(π ⊗ Z/nZ) ∼=
Z ⊗Z Z/nZ

Ker(π ⊗ Z/nZ)
=

Z ⊗Z Z/nZ
Im([m] ⊗ Z/nZ)

.

一方, Z加群としての同型

ϕ : Z ⊗Z Z/nZ → Z/nZ, r ⊗ x 7→ rx

より, 図式

Z ⊗Z Z/nZ

ϕ

��

[m]⊗Z/nZ // Z ⊗Z Z/nZ

ϕ

��
Z/nZ

[m] // Z/nZ

r ⊗ x_

��

� // mr ⊗ x_

��
rx � // m(rx) = (mr)x
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は可換で,

ϕ(Im([m] ⊗ Z/nZ)) = Im(ϕ ◦ ([m] ⊗ Z/nZ)) = Im([m] ◦ ϕ)

= Im([m]) = m · Z/nZ = dZ/nZ.

ゆえに,

Z/mZ ⊗Z Z/nZ =
Z ⊗Z Z/nZ

Im([m] ⊗ Z/nZ)
∼=

ϕ(Z ⊗Z Z/nZ)
ϕ(Im([m] ⊗ Z/nZ))

=
Z/nZ
dZ/nZ

∼= Z/dZ.

［定理 11］Rを可換環とするとき, R[X] ⊗R R[Y ] ∼= R[X,Y ].

［証明］写像

R[X] × R[Y ] → R[X,Y ], (f(X), g(Y )) 7→ f(X)g(X)

は R上双線型なので, テンソル積の普遍性により, R準同型

ϕ : R[X] ⊗R R[Y ] → R[X,Y ], f(X) ⊗ g(Y ) 7→ f(X)g(X)

が存在する. 一方, R準同型

ψ : R[X,Y ] → R[X] ⊗R R[Y ],
∑
i,j

aijX
iY j 7→

∑
i,j

aijX
i ⊗ Y j

を考えると, ψ ◦ ϕ, ϕ ◦ ψはともに恒等写像である. したがって, ϕは同型である.

［定理 12］p, lを素数とする. M を Z加群とし, その位数は lの冪であるとする. このとき,

Zp ⊗Z M ∼=

0, l 6= p,

M, l = p.

［証明］l 6= pのとき, |M | = ls とおくと, lsM = 0だから, 任意の α ∈ Zp, x ∈ M に対して,

α ⊗ x =
lsα

ls
⊗ x =

α

ls
⊗ lsx =

α

ls
⊗ 0 = 0.

l = pのとき, Z≥0 = {n ∈ Z | n ≥ 0}とし, 各 α = (αn | n ∈ Z≥0) ∈ lim←−
n

Z/pnZ = Zp と各

x ∈ M に対して,

αx = asx, |M | = ps, αs = as + psZ, as ∈ Z

によってスカラー倍を定めることにより, M は Zp 加群になる.

実際, まず, αs = as + psZ = a′
s + psZのとき, as − a′

s ∈ psZであり, psM = 0だから, 任意の

x ∈ M に対して,

asx − a′
sx = (as − a′

s)x = 0.
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ゆえに,

αx = asx = a′
sx

となり, スカラー倍は well-definedである. 次に, 1Zp , 1Z をそれぞれ Zp, Zの単位元とすると, 任

意の x ∈ M に対して,

1Zp · x = 1Z · x = x.

さらに, 任意の α, β ∈ lim←−
n

Z/pnZ = Zp, x, y ∈ Zに対して,

α = (an + pnZ | n ∈ Z≥0), β = (bn + pnZ | n ∈ Z≥0)

とおくと,

α + β = ((an + bn) + pnZ | n ∈ Z≥0), αβ = (anbn + pnZ | n ∈ Z≥0)

であり,

(αβ)x = asbsx = α(bsx) = α(βx),

(α + β)x = (as + bs)x = asx + bsx = αx + βx,

α(x + y) = as(x + y) = asx + asy = αx + αy.

したがって, M は Zp 加群をなす.

スカラー倍の写像

Zp × M → M, (α, x) 7→ αx

は Z上双線型なので, テンソル積の普遍性から, Z準同型

f : Zp ⊗Z M → M, α ⊗ x 7→ αx

が定まる.

一方, 写像

g : M → Zp ⊗Z M, x 7→ 1 ⊗ x

は Z準同型であり, 任意の x ∈ M に対して,

f ◦ g(x) = f(1 ⊗ x) = 1 · x = x.

逆に,

g ◦ f(α ⊗ x) = g(αx) = 1 ⊗ αx = 1 ⊗ asx = as ⊗ x.

また, α − as ∈ psZp より,

(α − as) ⊗ x =
ps(α − as)

ps
⊗ x =

α − as

ps
⊗ psx =

α − as

ps
⊗ 0 = 0
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だから,

as ⊗ x = as ⊗ x + (α − as) ⊗ x = α ⊗ x.

ゆえに, g ◦ f(α ⊗ x) = α ⊗ xとなり, g ◦ f , f ◦ gはともに恒等写像である. したがって, f は全単

射である.

以上より, f が Z上の同型であることが示された.

［定理 13］p, lを素数とする. M を Z加群とし, その位数は lの冪であるとする. このとき,

Z
[
1
p

]
⊗Z M ∼=

0, l = p,

M, l 6= p.

ただし,

Z
[
1
p

]
=

{
a

pn

∣∣∣∣ a ∈ Z, n ∈ Z≥0

}
, Z≥0 = {n ∈ Z | n ≥ 0}.

［証明］R = Z
[
1
p

]
とおく.

p = lのとき, 任意の a ∈ Z, n ∈ Z≥0, x ∈ M に対して, |M | = ps とおくと, psM = 0なので,

a

pn
⊗ x =

psa

pn+s
⊗ x =

a

pn+s
⊗ psx

=
a

pn+s
⊗ 0 = 0.

ゆえに, R ⊗Z M = 0.

p 6= lのとき, 各 n ∈ Z≥0 に対して,

[pn] : M → M, x 7→ pnx

は Z加群の同型である. よって, 逆写像 [pn]−1 が存在する.

各 a ∈ Z, n ∈ Z≥0 に対して,
a

pn
· x = a · [pn]−1(x)

によってスカラー倍を定義することにより, M は R加群になる.

実際, まず, 任意の a, a′ ∈ Z, n, n′ ∈ Z≥0, x ∈ M に対して,
a

pn
=

a′

pn′ のとき, apn′ − a′pn = 0

であり,

pn+n′
·
(

a

pn
· x − a′

pn′ · x
)

= pn+n′
·
(
a · [pn]−1(x) − a′ · [pn′

]−1(x)
)

= apn′
pn · [pn]−1(x) − a′pnpn′

· [pn′
]−1(x)

= apn′
x − a′pnx = (apn′

− a′pn)x = 0 · x = 0.

|M | は p と互いに素なので, M のすべての元に対して, その位数は p と互いに素である. ゆえ

に,
a

pn
· x − a′

pn′ x = 0でなければならない. よって,
a

pn
· x =

a′

pn′ x. したがって, スカラー倍は

well-definedである.
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次に, 任意の a, b ∈ Z, n, m ∈ Z≥0, x, y ∈ M に対して, n ≤ mのとき,(
a

pn
+

b

pm

)
· x =

a + pm−nb

pn
· x = (a + pm−nb) · [pn]−1(x)

= a · [pn]−1(x) + pm−nb · [pn]−1(x)

=
a

pn
· x +

pm−nb

pn
· x

=
a

pn
· x +

b

pm
· x.

m > nのときも同様である. また, [pn+m]−1 = ([pm] ◦ [pn])−1 = [pn]−1 ◦ [pm]−1 であるから,(
a

pn
· b

pm

)
· x =

ab

pn+m
· x = ab · [pn+m]−1(x)

= ab · [pn]−1
(
[pm]−1(x)

)
= a · [pn]−1

(
b · [pm]−1(x)

)
=

a

pn
·
(

b

pm
· x

)
.

さらに,

a

pn
· (x + y) = a · [pn]−1(x + y)

= a ·
(
[pn]−1(x) + [pn]−1(y)

)
= a · [pn]−1(x) + a · [pn]−1(y)

=
a

pn
· x +

a

pn
· y.

[p0]は恒等写像なので, 1R, 1Z をそれぞれ R, Zの単位元とすると,

1R · x =
1R

p0
· x = 1Z · [p0]−1(x) = x.

したがって, M は R加群をなす.

スカラー倍の写像

R × M → M, (r, x) 7→ rx

は Z上双線型なので, テンソル積の普遍性により, Z準同型

f : R ⊗Z M → M, r ⊗ x 7→ rx

が存在する.

一方, 写像

g : M → R ⊗Z M, x 7→ 1 ⊗ x

は Z準同型であり, 任意の x ∈ M に対して,

f ◦ g(x) = f(1 ⊗ x) = 1 · x = x.
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逆に, 任意の a ∈ Z, n ∈ Z≥0, x ∈ M に対して,

g ◦ f

(
a

pn
⊗ x

)
= g

(
a

pn
· x

)
= 1 ⊗ a

pn
· x

= 1 ⊗ a · [pn]−1(x) = a ⊗ [pn]−1(x)

=
pna

pn
⊗ [pn]−1(x) =

a

pn
⊗ pn · [pn]−1(x)

=
a

pn
⊗ x.

よって, f ◦ g, g ◦ f はともに恒等写像である. ゆえに, f は全単射である.

以上より, f が Z同型であることが示された.

［例 14］Aを有限 Abel群とする. Z加群として,

A ∼=
⊕

l

Syll(A)

と直和分解される. ただし, l は素数全体を動く. また, Syll(A) は A の l-Sylow 部分群である.

Syll(A)は, 位数が lの冪であるようなAの部分群のうちで最大のものである. このとき, テンソル

積と直和との可換性から,

Zp ⊗Z A ∼= Zp ⊗Z

(⊕
l

Syll(A)

)
∼=

⊕
l

(Zp ⊗Z Syll(A))

∼= Sylp(A).

Z
[
1
p

]
⊗Z A ∼= Z

[
1
p

]
⊗Z

(⊕
l

Syll(A)

)
∼=

⊕
l

(
Z

[
1
p

]
⊗Z Syll(A)

)
∼=

⊕
l 6=p

Syll(A) ∼= A/Sylp(A).

参考文献

[1] 岩永恭雄, 佐藤眞: 環と加群のホモロジー代数的理論, 日本評論社, 2002.

9


