
1 対称群

X を集合とする．X からX 自身への全単射をX 上の置換という．

定理 1.1. X 上の置換の全体 S(X)は写像の合成を積として群をなす．

証明. σ, τ を S(X)の元とする．σ, τ は単射であるから，X の二つの元 x, yに対して，

x �= y =⇒ τ(x) �= τ(y) =⇒ σ(τ(x)) �= σ(τ(y))．

ゆえに σ ◦ τ(x) �= σ ◦ τ(y)となる．よって合成写像 σ ◦ τ は単射である．次に，X の元 zをとれば，

σは全射であるから，σ(y) = z となる y ∈ X が存在する．τ も全射であるから，τ(x) = yとなる

x ∈ X が存在する．よって

z = σ(y) = σ(τ(x)) = σ ◦ τ(x)

となって，合成写像 σ ◦ τ は全射になる．したがって，σ ◦ τ ∈ S(X)である．
σ, τ , ρを S(X)の元とする．X の任意の元 xに対して，

(σ ◦ (τ ◦ ρ))(x) = σ((τ ◦ ρ)(x)) = σ(τ(ρ(x))),

((σ ◦ τ) ◦ ρ)(x) = (σ ◦ τ)(ρ(x)) = σ(τ(ρ(x))).

したがって，結合法則 σ ◦ (τ ◦ ρ) = (σ ◦ τ) ◦ ρが成り立つ．

X 上の恒等写像 idX は S(X)の元である．S(X)の任意の元 σとX の任意の元 xに対して，

(idX ◦ σ)(x) = idX(σ(x)) = σ(x),

(σ ◦ idX)(x) = σ(idX(x)) = σ(x)．

すなわち，idX ◦ σ = σ ◦ idX = σとなる．よって idX は S(X)の単位元である．
S(X)の元 σは全単射であるから，逆写像 σ−1が存在する．逆写像も全単射なので，σ−1 ∈ S(X)

である．このとき，

σ ◦ σ−1 = idX , σ−1 ◦ σ = idX

であるから，σ−1 は σの逆元である．

以上により，S(X)が群であることが示された．

群 S(X)を X 上の対称群という．対称群の部分群を置換群という．とくに Ωn = {1, 2, . . . , n}
の上の対称群 S(Ωn)を n次対称群といい，Sn で表す．

以後，S(X)が群であることを意識して，合成写像 σ ◦ τ を στ と書く．また，S(X)の単位元，
すなわちX 上の恒等写像 idX を 1と書き，これを恒等置換という．さらに，置換 σの逆写像 σ−1

を σの逆置換という．

例 1.2. σ ∈ Sn がすべての k ∈ Ωn に対して σ(k) ≤ kを満たすとき，σ = 1である．
実際，σ �= 1とすると，σ(k) �= kとなる k ∈ Ωnが存在する．このような kの中で最小のものを

k0 とする．このとき σ(k0) > k0である．なぜなら，もし σ(k0) < k0 ならば，

σ(σ(k0)) = σ(k0) =⇒ σ(k0) = k0

となり，矛盾が生じるからである．
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定理 1.3. X, Y を集合とする．このとき

|X | = |Y | =⇒ S(X) ∼= S(Y )

が成り立つ．

証明. |X | = |Y |のとき，X から Y への全単射 f が存在する．

φ : S(X) −→ S(Y ), σ �−→ f ◦ σ ◦ f−1

と定義すれば，φは群の同型写像である．実際，

φ(σ1) = φ(σ2) =⇒ f ◦ σ1 ◦ f−1 = f ◦ σ2 ◦ f−1 =⇒ σ1 = σ2

より φは単射．S(Y )の元 τ に対して，σ = f−1 ◦ τ ◦ f とおくと，

φ(σ) = f ◦ (f−1 ◦ τ ◦ f) ◦ f−1 = τ.

よって φは全射．さらに

φ(σ1σ2) = f ◦ σ1σ2 ◦ f−1 = f ◦ σ1 ◦ f−1 ◦ f ◦ σ2 ◦ f−1 = φ(σ1)φ(σ2)

より φは準同型写像である．したがって S(X) ∼= S(Y )．

n個の元からなる集合 X の上の対称群 S(X)は同型を除いて一意的に定まる．とくに S(X)は
n次対称群 Sn と同一視できる．

Sn の元 σと Ωn = {1, 2, . . . , n}の元 a1, . . ., an について，σ(ai) = biであるとき，σを

σ =

(
a1 a2 · · · an

b1 b2 · · · bn

)

のように表す．

例 1.4. σ =

(
a1 a2 · · · an

b1 b2 · · · bn

)
, τ =

(
b1 b2 · · · bn

c1 c2 · · · cn

)
のとき，

τσ =

(
a1 a2 · · · an

c1 c2 · · · cn

)
, σ−1 =

(
b1 b2 · · · bn

a1 a2 · · · an

)

である．

例 1.5. σ =

(
a1 a2 · · · an

b1 b2 · · · bn

)
のとき，Sn に属する任意の元 τ に対して，

τστ−1 =

(
τ(a1) τ(a2) · · · τ(an)
τ(b1) τ(b2) · · · τ(bn)

)

となる．なぜなら，

(τστ−1)(τ(ai)) = τ(σ(ai)) = τ(bi) (1 ≤ i ≤ n)

だからである．
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m ≤ nのとき，Sm を Sn の部分群とみなすことができる．実際，Sm の元 σに対して，

σ(i) =

{
σ(i), 1 ≤ i ≤ m

i, m < i ≤ n

によって Sn の元 σを定めると，写像

Sm −→ Sn, σ �−→ σ

は単射準同型になる．

例 1.6. n ≥ 3のとき，n次対称群 Sn は Abel群ではない．実際，S3において，(
1 2 3
2 1 3

)(
1 2 3
3 2 1

)
=

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)(
1 2 3
2 1 3

)
=

(
1 2 3
2 3 1

)
.

ゆえに， (
1 2 3
2 1 3

)(
1 2 3
3 2 1

)
�=
(

1 2 3
3 2 1

)(
1 2 3
2 1 3

)
.

よって S3は Abel群ではない．
n ≥ 4のとき，Sn は S3に同型な部分群をもつから，可換でない二つの元をもつ．

定理 1.7. n次対称群 Sn の位数は n!である．

証明. S(X)の元 σ, τ に対して，関係≡を

σ ≡ τ ⇐⇒ σ(n) = τ(n)

によって定めると，≡は Sn 上の同値関係になる．1 ≤ i ≤ nである各整数 iに対して，ρi を

ρi(n) = i, ρi(i) = n, ρi(j) = j (j �= i, j �= n)

であるような Sn の元とする．このとき，関係 ≡の定義から明らかに

i �= j =⇒ ρi �≡ ρj

である．他方，Sn の任意の元 σに対して，

σ(n) = i =⇒ σ ≡ ρi

である．すなわち，σ は ρ1, ρ2, . . ., ρn のいずれか一つに同値である．ρi が属する ≡による同値
類を Cρi とすると，

Sn = Cρ1 ∪ · · · ∪ Cρn (直和).

いま，

H = {σ ∈ Sn | σ(n) = n}
とする．H は Sn の部分群であり，H ∼= Sn−1である．

σ ∈ Cρi ⇐⇒ σ ≡ ρi ⇐⇒ σ(n) = ρi(n)

⇐⇒ (ρ−1
i σ)(n) = n ⇐⇒ ρ−1

i σ ∈ H

⇐⇒ σ ∈ ρiH = {ρiη | η ∈ H}.
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よって Cρi = ρiH である．したがって，

Sn = ρ1H ∪ · · · ∪ ρnH (直和).

さらに，各 iに対して，

H −→ ρiH, η �−→ ρiη

は全単射である．ゆえに，

|ρ1H | = |ρ2H | = · · · = |ρnH | = |H |.
したがって，

|Sn| = |ρ1H | + |ρ2H | + · · · + |ρnH | = n|H | = n|Sn−1|.
S1の元は，一つの元からなる集合 {1}の上の全単射である．そのような全単射はただ一つしか

ない．よって S1 はただ一つの元からなる．すなわち |S1| = 1．
以上より，nに関する数学的帰納法によって，|Sn| = n!が得られる．

系 1.7.1. X を有限集合とし，|X | = nとする．このとき，対称群 S(X)の位数は n!である．

証明. 定理 1.3と定理 1.7によりわかる．

定理 1.8. X, Y を有限集合とする．このとき

|X | = |Y | ⇐⇒ S(X) ∼= S(Y )

が成り立つ．

証明. =⇒は定理 1.3より明らか．
逆に，|X | = nのとき S(X) = n!であるから，|X | �= |Y |ならば |S(X)| �= |S(Y )|．よって

S(X) ∼= S(Y ) =⇒ |S(X)| = |S(Y )| =⇒ |X | = |Y |

である．

定理 1.9 (Cayley). 任意の群 Gは対称群 S(G)のある部分群に同型である．

証明. Gの任意の元 gに対して

πg : G −→ G, x �−→ gx

は全単射である．そこで写像

π : G −→ S(G), g �−→ πg

を考える．πは群の単射準同型写像である．実際，Gの元 g, hに対して

πh ◦ πh(x) = πh(gx) = hgx = πhg(x) (∀x ∈ G)

ゆえ，πは準同型写像である．また

πg = idG =⇒ gx = x(∀x ∈ G) =⇒ g = e

より πは単射である．したがって群 Gは対称群 S(G)のある部分群に同型である．
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注意 1.10. 定理 1.9の証明において構成した同型写像 π : G −→ S(G)は，Gの左正則表現と呼

ばれる．

系 1.10.1. 自然数 nに対して，位数 nの有限群は同型なものを除けば有限個しかない．

証明. Gを位数 nの有限群とする．定理 1.9より Gは S(G)のある部分群に同型である．一方，
1.3によって S(G) ∼= Sn であるから，Gは Sn のある部分群に同型である．Sn は有限群であるか

ら，部分集合の全体P(Sn)は有限である．したがって同型なものを除けば位数 nの有限群は有限

個しかない．

2 巡回置換と互換

相異なる数字 i1, . . . ir ∈ X に対して，巡回的に

σ(i1) = i2, σ(i2) = i3, . . . , σ(ir) = i1

となり，i1, . . ., ir以外の数字を固定する置換を長さ rの巡回置換といい，(i1 i2 · · · ir)で表す．と
くに長さ 2の巡回置換 (i1 i2)を互換という．置換 σについて，σが長さ 1の巡回置換であること
と，恒等置換であることとは同値である．

σ = (i1 i2 · · · ir)を長さ rの巡回置換とする．明らかに σr = 1である．また，1 ≤ k < rであ

るような任意の整数 kに対しては，

σk(i1) = ik �= i1 =⇒ σk �= 1

である．したがって，長さ rの巡回置換 σの位数は rである．

また，巡回置換の定義から明らかに，i1, i2, . . ., ir をひとつずつずらした巡回置換

(i2 · · · ir i1), (i3 · · · ir i1 i2), . . . , (ir i1 · · · ir−1)

はすべて σに等しい．一方，1 < r ≤ nのとき，n個の数 1, 2, . . ., nの中から r個の数 i1, i2, . . ., ir

を選ぶ仕方は
n!

(n − r)!
通りである．したがって，Snに属する長さ rの巡回置換は全部で

1
r

n!
(n − r)!

個ある．

例 2.1. σ = (1 2 3), τ = (1 2)とする．積 στ による 1, 2, 3の像はそれぞれ，

1 τ�−→ 2 σ�−→ 3,

2 τ�−→ 1 σ�−→ 2,

3 τ�−→ 3 σ�−→ 1

であるから，στ = (1 3)．

定理 2.2. σ = (i1 i2 · · · ir)を巡回置換とするとき，σ−1 = (ir ir−1 · · · i1)である．とくに，σ

が互換ならば，σ−1 = σである．

証明. τ = (ir ir−1 · · · i1)とおくと，

στ(ik) = σ(ik−1) = ik (2 ≤ k ≤ r),

στ(i1) = σ(ir) = i1.

ゆえに στ = 1．したがって τ = σ−1．
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定理 2.3. Sn の元 σと巡回置換 (i1 i2 · · · ir)に対して，

σ(i1 i2 · · · ir)σ−1 = (σ(i1) σ(i2) · · · σ(ir))

が成り立つ．

証明. τ = (i1 i2 · · · ir)とおくと，

στσ−1(σ(ik)) = στ(ik) = σ(ik+1) (1 ≤ k ≤ r − 1),

στσ−1(σ(ir)) = στ(ir) = σ(i1)

であるから，

στσ−1 = (σ(i1) σ(i2) · · · σ(ir))

となる．

定理 2.4. 任意の巡回置換は，いくつかの互換の積で表される．

証明. まず，

(i1 i2 · · · ir) = (i1 ir)(i1 i2 · · · ir−1)

を示す．σ = (i1 ir), τ = (i1 i2 · · · ir−1)とすると，

στ(ik) = σ(ik+1) = ik+1 (1 ≤ k ≤ r − 2),

στ(ir−1) = σ(i1) = ir,

στ(ir) = σ(ir) = i1.

よって，στ = (i1 i2 · · · ir)である．
したがって，

(i1 i2 · · · in) = (i1 ir)(i1 i2 · · · ir−1)

= (i1 ir)(i1 ir−1)(i1 i2 · · · ir−2)

= · · · · · ·
= (i1 ir)(i1 ir−1) · · · (i1 i2)

となる．

注意 2.5. 巡回置換を互換の積として表す仕方は一通りではない．例えば，

(1 2 3) = (1 3)(1 2) = (1 3)(2 3)(1 2)(1 3)

となる．

巡回置換 σ = (i1 i2 · · · ir)に対して，集合 {i1, i2, . . . , ir}を σの巡回域という．σの巡回域の

中にある元の一つを iとすれば，明らかに，

σ = (i σ(i) σ2(i) · · · σr−1(i))

と書くことができる．
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例 2.6. 巡回置換 σ = (i1 i2 · · · ir)に対して，σ−1 = (ir ir−1 · · · i1)なので，σの巡回域と σ−1

の巡回域とは一致する．

二つの巡回置換 σ, τ について，それらの巡回域が共通部分をもたないとき，σ, τ は互いに素で

あるという．

例 2.7. 二つの巡回置換 σ, τ が互いに素ならば，任意の置換 ρに対して，ρσρ−1, ρτρ−1 は互い

に素な二つの巡回置換である．

定理 2.8. 互いに素な二つの巡回置換は可換である．

証明. Ωn = {1, 2, . . . , n}とし，σ, τ を Ωn 上の巡回置換，Aσ, Aτ を σ, τ の巡回域とする．Aσ,
Aτ は Ωn の部分集合であって，Aσ ∩ Aτ = φである．したがって，Ωn の元 iについて，

(i) i ∈ Aσ (ii) i ∈ Aτ (iii) i �∈ Aσ かつ i �∈ Aτ

の 3通りが考えられる．
(i)の場合，

i ∈ Aσ =⇒ i �∈ Aτ , σ(i) �∈ Aτ

=⇒ τ(i) = i, σ(τ(i)) = σ(i), τ(σ(i)) = σ(i)

=⇒ στ(i) = τσ(i).

(ii)の場合，

i ∈ Aτ =⇒ i �∈ Aσ, τ(i) �∈ Aσ

=⇒ σ(i) = i, τ(σ(i)) = τ(i), σ(τ(i)) = τ(i)

=⇒ στ(i) = τσ(i).

(iii)の場合，

i �∈ Aσ かつ i �∈ Aτ =⇒ σ(i) = τ(i) = i

=⇒ στ(i) = τσ(i) = i.

以上より，Ωn のすべての iについて，στ(i) = τσ(i)がいえた．よって στ = τσ．

Ωn = {1, 2, . . . , n}とし，σを Ωn 上の置換とする．Ωn の元 x, yに対して，関係 ∼を

x ∼ y ⇐⇒ σk(x) = yとなるような整数 kが存在する

と定義すれば，∼は Ωnの上の同値関係である．ただし，σ0 = 1とする．∼による Ωnの各同値類

を，置換 σに関する推移類という．

xを Ωn の元とする．xを代表元とする置換 σの推移類を Txとするとき，

Tx = {σk(x) | k ∈ Z}

と表される．とくに，

σ(x) = x ⇐⇒ Tx = {x}
が成り立つ．
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例 2.9. Ωn 上の恒等写像 1に関する推移類はすべてただ一つの元からなる集合である．

例 2.10. 長さ 2以上の巡回置換 σ に関する推移類で，二つ以上の元をもつものはただ一つしか

ない．それは σの巡回域である．

例 2.11. σ, τ を長さ 2以上の巡回置換であるとし，σ, τ は互いに素であるとする．このとき積

στ に関する推移類で，二つ以上の元をもつものは σの巡回域と τ の巡回域しかない．

定理 2.12. 任意の置換 σ �= 1は，二つずつ互いに素な長さ 2以上の巡回置換の積として，積の
順序を除いて一意的に表される．

証明. Ωn = {1, 2, . . . , n}とし，xを Ωの元とする．Ωnは有限集合だから，σr(x) = xとなるよ

うな最小の正の整数 rが存在する．このとき，xを代表元とする σに関する推移類 Txは

Tx = {x, σ(x), σ2(x), . . . , σr−1(x)}

と表される．いま，σに関する異なる推移類の全体を T1, T2, . . ., Tl とし，それらの個数をそれぞ

れ r1, r2, . . ., rl (r1 + r2 + · · ·+ rl = n)とする．また，各推移類 Tiから代表元 xiをとって，長さ

ri の巡回置換

σi = (xi σ(xi) σ2(xi) · · · σri−1(xi))

を作る．このとき，各推移類 Tj と各 σi に対して，

x ∈ Tj =⇒ σ(x) =

{
σ(x), i = j

x, i �= j

となる．したがって各 Tj に対して，

σ1 · · ·σl(x) = σj(x) = σ(x) (∀x ∈ Tj)

がいえる．Ωn = T1 ∪ · · · ∪ Tlであるから，

σ1 · · ·σl(x) = σ(x) (∀x ∈ Ωn).

ゆえに σ = σ1 · · ·σl がいえた．

各 σi の巡回域は Ti である．各 Ti は互いに交わらないから，各 σi は二つずつ互いに素である．

σiの中に長さ 1の巡回置換，すなわち Ωn上の恒等写像が含まれているならば，それらをすべて取

り除いた積を考えればよい．

一意性を示すために，

σ = σ1σ2 · · ·σl = τ1τ2 · · · τm

のように，二つずつ互いに素な長さ 2の巡回置換の積として，二通りに表されているとする．l ≤ m

と仮定しても一般性を失わない．

σ1 の巡回域に属する元 xに対して，τ1, τ2, . . ., τm の中で，巡回域に xをもつものが必ずある．

もしそうでなければ，σi, τj がすべて長さ 2以上の巡回置換であるという仮定から，二つの積によ
る xの像は互いに異なるものとなって矛盾が生じる．

互いに素な二つの巡回置換は可換なので，適当に番号を並べかえて τ1 の巡回域に xが属すると

してよい．このとき σ1 = τ1である．なぜなら，もし σ1 �= τ1 とすると，σk
1 (x) �= τk

1 (x)なる最小
の正の整数 kが存在する．よって

σk−1
1 (x) = τk−1

1 (x) かつ σ(σk−1
1 (x)) �= σ(τk−1

1 (x))

8



となって矛盾が生じる．したがって σ1 = τ1となって，

σ2 · · ·σl = τ2 · · · τm.

同様にして，σ2 = τ2, σ3 = τ3, . . ., σl = τl がいえる．l = mならば証明が終わる．

いま，l < mと仮定する．m = l + 1のときは τl+1 = 1となって，τl+1が長さ 2以上の巡回置換
であるという仮定に矛盾する．m > l + 1のとき，

1 = τl+1 · · · τm =⇒ τ−1
m = τl+1 · · · τm−1.

τ−1
m も長さ 2以上の巡回置換だから，上と同様の議論により，τ−1

m = τl+1を得る．ところが τm と

τ−1
m の巡回域は一致する．このことは τmと τl+1が互いに素であるという仮定に反する．よって一

意性が示された．

注意 2.13. 定理 2.12の主張の中にある，因子となる巡回置換の長さが 2以上であるという条件は，

(3 4 5) = (1)(3 4 5) = (1)(2)(3 4 5)

などの場合を除外するためのものである．

置換 σ が，二つずつ互いに素であるようないくつかの巡回置換 σ1, σ2, . . ., σr によって σ =
σ1σ2 · · ·σr と表されているとき，各巡回置換 σi を σの巡回因子と呼ぶ．

例 2.14. 置換 σが，二つずつ互いに素であるようないくつかの巡回置換 σ1, σ2, . . ., σr によって

σ = σ1σ2 · · ·σr

と表されているとき，任意の置換 ρに対して，

ρσρ−1 = (ρσ1ρ
−1)(ρσ2ρ

−1) · · · (ρσrρ
−1)

となる．また，各 ρσiρ
−1 は二つずつ互いに素である (例 2.7)．したがって各 ρσiρ

−1 は ρσρ−1 の

巡回因子である．

定理 2.15. n次対称群 Snは互換の全体で生成される．すなわち，Snの任意の元は，いくつかの

互換の積で表される．

証明. Snの任意の元はいくつかの巡回置換の積で表される (定理 2.12)．また，任意の巡回置換は
いくつかの互換の積で表される (定理 2.4)．ゆえに Sn の任意の元は，いくつかの互換の積で表さ

れる．

系 2.15.1. n ≥ 2のとき，n次対称群 Sn は互換

(1 2), (1 3), . . . , (1 n)

によって生成される．

証明. i �= 1, j �= 1を満たすような異なる数 i, j に対して，

(i j) = (1 i)(1 j)(1 i)

となる．よって，すべての互換は (1 k)の形の互換の積で表される．

9



系 2.15.2. n ≥ 2のとき，n次対称群 Sn は互換

(1 2), (2 3), . . . , (n − 1 n)

によって生成される．

証明. τi = (i i + 1) (i = 1, 2, . . . , n − 1)で生成される Sn の部分群をH とする．

τ2(1 2)τ−1
2 = (1 3), τ3(1 3)τ−1

3 = (1 4), . . . , τn−1(1 n − 1)τ−1
n−1 = (1 n)

であるから，H は (1 2), (1 3), . . ., (1 n)を含む．したがってH = Sn.

系 2.15.3. n ≥ 3のとき，Sn は互換 (1 2)と長さ nの巡回置換 (1 2 . . . n)とで生成される．

証明. σ = (1 2 . . . n), τ = (1 2)とし，σ, τ で生成される Sn の部分群をH とする．

στσ−1 = (2 3), σ2τσ−2 = (3 4), . . . , σn−2τσ−(n−2) = (n − 1 n)

であるから，H は (1 2), (2 3), . . ., (n − 1 n)を含む．したがってH = Sn．

系 2.15.4. Sn は (1 2)と (2 3 · · · n)により生成される．

証明. σ = (1 2), τ = (2 3 · · · n)で生成される Sn の部分群をH とすれば，

τστ−1 = (1 3), τ2στ−2 = (1 4), . . . , ρn−2σρ−(n−2) = (1 n)

であるから，H は (1 2), (1 3), . . ., (1 n)を含む．したがってH = Sn.

定理 2.16. pを素数とする．p次対称群 Spの部分群H が一つの互換と一つの長さ pの巡回置換

を含めば，H = Spである．

証明. H に含まれる互換を (i1 i2) とし，長さ p の巡回置換を τ = (j1 j2 · · · jp) とする．
j1, j2, . . . , jp の中に i1 が必ずあるから，j1 = i1 としても一般性を失わない．p は素数だから，

τ , τ2, . . ., τp−1 の中に必ず (i1 i2 k3 · · · kp)なる形の巡回置換がある．(1 2)と (1 2 · · · p)が Sp

を生成するのと同じように，(i1 i2)と (i1 i2 k3 · · · kp)も Spを生成する．よってH = Sp．

定理 2.17. Snの元が互換の積で表されているとき，互換の個数が偶数であるか奇数であるかは，

与えられた元によって一意的に決まる．

証明. ある置換が同時に偶数個の互換の積と奇数個の互換の積で表されたとすると，単位元が奇

数個の互換の積で表される．そこで単位元が奇数個の互換の積で表されないことを証明する．単位

元を奇数個の互換の積で表す最小の奇数を kとおき

1 = (i1 j1)(i2 j2) · · · (ik jk)

が成り立っているとする．さて，互換 (i j)と他の互換との積は次のように計算することができる．
ここで i, j, a, bは相異なる数字である：

(i j)(a b) = (a b)(i j),

(i j)(i j) = 1,

(i j)(i a) = (j a)(i j),

(i j)(j a) = (j a)(i a)
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kの取り方から，(i1 j1) = (i2 j2)とはならない．もしそうならば単位元が k個より少ない奇数個

の互換で表される．したがって (i1 j1)と (i2 j2)との積は i1が右側の互換のみに含まれる互換の積

に置きかえられる．この操作を高々有限回繰り返せば，i1 を順次右側の互換に移し，最終的に i1

が一番右側の互換のみに現れるようにすることができる．このような互換の積は i1を i1に写さな

いので単位元ではない．よって矛盾．

偶数個の互換の積で表される置換を偶置換，奇数個の互換の積で表される置換を偶置換という．

定理 2.18. n ≥ 2のとき，Sn の中にある偶置換と奇置換の個数は共にそれぞれ n!/2個である．

証明. 偶置換全体の集合を A，奇置換全体の集合をB とする．σを偶置換とすれば，(1 2)σは奇
置換になる．よって，写像

A −→ B, σ �−→ (1 2)σ

が定義できる．Aの元 σ, σ′ に対して，

(1 2)σ = (1 2)σ′ =⇒ σ = σ′

であるから，上の写像は単射である．ゆえに |A| ≤ |B|である．逆に，τ を奇置換とすれば (1 2)τ
は偶置換であるから，同じ理由によって |B| ≤ |A|がいえる．したがって |A| = |B|である．定理
2.17より，

Sn = A ∪ B, A ∩ B = φ, |Sn| = n!

だから，

n! = |Sn| = |A| + |B|.
よって |A| = |B| = n!/2となる．

3 符号

n ≥ 2とする．n次対称群 Sn の元 σに対して，

sgn(σ) =
∏

1≤i<j≤n

σ(i) − σ(j)
i − j

を σの符号という．

例 3.1. 恒等置換 1の符号は

sgn(1) =
∏

1≤i<j≤n

i − j

i − j
= 1.

例 3.2. σ = (1 3)の符号は

sgn(σ) =
3 − 2
1 − 2

3 − 1
1 − 3

2 − 1
2 − 3

= −1.

例 3.3. σ = (1 4 2)の符号は

sgn(σ) =
4 − 1
1 − 2

4 − 3
1 − 3

4 − 2
1 − 4

1 − 3
2 − 3

1 − 2
2 − 4

3 − 2
3 − 4

= 1.

11



定理 3.4. n ≥ 2とする．n次対称群 Snの任意の元 σに対して，sgn(σ) = 1または sgn(σ) = −1
である．

証明. i �= j なる i, j ∈ Ωn に対して，

a(i, j) =
σ(i) − σ(j)

i − j

とおく．a(i, j) = a(j, i)であるから，

sgn(σ)2 =
∏
i<j

a(i, j)
∏
i<j

a(i, j) =
∏
i<j

a(i, j)
∏
i<j

a(j, i)

=
∏
i<j

a(i, j)
∏
j<i

a(i, j) =
∏
i�=j

a(i, j).

i �= j となる i, j ∈ Ωnの組 (i, j)の全体を Aとする．σは Ωn上の置換であるから，(i, j)が A全

体を動くとき，(σ(i), σ(j))も A全体を動く．したがって，

∏
i�=j

a(i, j) =

∏
i�=j

(σ(i) − σ(j))

∏
i�=j

(i − j)
=

∏
i�=j

(i − j)

∏
i�=j

(i − j)
= 1.

ゆえに，sgn(σ)2 = 1．よって sgn(σ) = ±1．

定理 3.5. sgnは Sn から乗法群 U2 = {±1}への準同型写像である．

証明. Sn の元 σ, τ に対して，

sgn(στ) =
∏
i<j

στ(i) − στ(j)
i − j

=
∏
i<j

στ(i) − στ(j)
τ(i) − τ(j)

· τ(i) − τ(j)
i − j

=
∏
i<j

στ(i) − στ(j)
τ(i) − τ(j)

∏
i<j

τ(i) − τ(j)
i − j

.

第一項について，τ は Ωn = {1, 2, . . . , n}上の置換なので，
∏
i<j

στ(i) − στ(j)
τ(i) − τ(j)

=
∏
i<j

τ(i)<τ(j)

στ(i) − στ(j)
τ(i) − τ(j)

∏
i<j

τ(i)>τ(j)

στ(i) − στ(j)
τ(i) − τ(j)

=
∏
i<j

τ(i)<τ(j)

στ(i) − στ(j)
τ(i) − τ(j)

∏
j>i

τ(j)<τ(i)

στ(j) − στ(i)
τ(j) − τ(i)

=
∏
i<j

τ(i)<τ(j)

στ(i) − στ(j)
τ(i) − τ(j)

∏
i>j

τ(i)<τ(j)

στ(i) − στ(j)
τ(i) − τ(j)

=
∏

τ(i)<τ(j)

στ(i) − στ(j)
τ(i) − τ(j)

=
∏
i<j

σ(i) − σ(j)
i − j

= sgn(σ).
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第二項について，符号の定義から

∏
i<j

τ(i) − τ(j)
i − j

= sgn(τ).

したがって，

sgn(στ) = sgn(σ)sgn(τ).

例 3.6. 任意の置換 σに対して，sgn(σ−1) = sgn(σ)である．実際，

1 = sgn(1) = sgn(σ−1σ) = sgn(σ−1)sgn(σ).

ゆえに，sgn(σ) = ±1より，
sgn(σ−1) = sgn(σ)−1 = sgn(σ).

定理 3.7. 任意の互換 τ に対して，sgn(τ) = −1．

証明. まず，τ0 = (1 2)について，

τ0(1) − τ0(2)
1 − 2

=
2 − 1
1 − 2

= −1 < 0,

τ0(1) − τ0(j)
1 − j

=
2 − j

1 − j
> 0 (j ≥ 3),

τ0(2) − τ0(j)
2 − j

=
1 − j

2 − j
> 0 (j ≥ 3)

であるから，

sgn(τ0) =
τ0(1) − τ0(2)

1 − 2

∏
i<j

(i, j) �=(1, 2)

τ0(i) − τ0(j)
i − j

< 0.

よって sgn(τ0) = −1である．
一般の互換 τ = (k l) �= (1 2), k < lに対しては，

σ =

{
(1 k)(2 l), k �= 1のとき
(2 l), k = 1のとき

とすると，

τ = στ0σ
−1

であるから，sgnの準同型性によって，

sgn(τ) = sgn(σ)sgn(τ0)sgn(σ−1) = −sgn(σ)2 = −1

が得られる．

置換 σ ∈ Sn の符号 sgn(σ)について，明らかに，

sgn(σ) =

{
1, σが偶置換のとき

−1, σが奇置換のとき

が成り立つ．
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注意 3.8. 定理 2.17を，符号 sgnを用いて証明すると次のようになる．
ある置換が同時に偶数個の互換の積と奇数個の互換の積で表されたとすると，Sn の単位元 1が

奇数個の互換 σ1, . . ., σl (lは奇数)の積で表される．ところが，

sgn(1) = sgn(σ1 · · ·σl) = sgn(σ1) · · · sgn(σl) = (−1)l = −1

となって矛盾が生じる．

定理 3.9. 長さ rの巡回置換 σ = (i1 i2 . . . ir)の符号は sgn(σ) = (−1)r−1である．

証明. (i1 i2 . . . ir) = (i1 ir)(i1 ir−1) · · · (i1 i2)のように，σ は r − 1個の互換の積で表される．
よって，sgn(σ) = (−1)r−1である．

Sn の元 σに対して，

i < j かつ σ(i) > σ(j)

となるような，Ωn の元の組 (i, j)の個数を σの反転数という．

注意 3.10. 置換 σの反転数が偶数であるか奇数であるかによって値±1を定めたものが符号 sgn(σ)
である．

例 3.11. 恒等置換の反転数は 0である．

例 3.12. k < lのとき，互換 (k l)の反転数は 2(l− k)− 1である．実際，σ = (k l)とおく．i < j

なる i, j ∈ Ωn に対して，σ(i) > σ(j)となるのは次の場合である：

(i) i = k, k < j < lのとき (l − k − 1通り)．

(ii) i = k, j = lのとき (1通り)．

(iii) k < i < l, j = lのとき (l − k − 1通り)．

とくに，(k k + 1)の形の互換の反転数は 1である．

定理 3.13. 反転数 lの置換 σは l個の (k k + 1)の形の互換の積として表される．

証明. nに関する数学的帰納法により証明する．

n = 2のとき，S2の元は 1と互換 (1 2)だけである．この場合に主張が正しいことは容易に確か
められる．

n − 1 のとき主張が正しいと仮定する．σ を Sn の元とし，σ(τ) = n とする．t = n ならば，

σ ∈ Sn−1とみなせるからよい．以下，t < nとし，

τ = σ(t t + 1)(t + 1 t + 2) · · · (n − 1 n)

とおく．このとき，

τ(n) = σ(t) = n

であるから，τ ∈ Sn−1とみなすことができる．したがって，

(τ の反転数) = (σの反転数) − (n − t)
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を示せばよい．そうすれば τ は l − (n − t)個の (k k + 1)の形の互換の積として表されて，

σ = τ(n − 1 n) · · · (t + 1 t + 2)(t t + 1)

より，σは l個の (k k + 1)の形の互換の積として表される．
i, j を Ωn の元とし，i < j とする．

(i) i < j < tのとき，τ の定め方から，τ(i) = σ(i), τ(j) = σ(j)であるから，

τ(i) > τ(j) ⇐⇒ σ(i) > σ(j).

(ii) i < t ≤ j < nのとき，τ(i) = σ(i), τ(j) = σ(j + 1)であるから，

τ(i) > τ(j) ⇐⇒ σ(i) > σ(j + 1).

(iii) t ≤ i < j < nのとき，τ(i) = σ(i + 1), τ(j) = σ(j + 1)であるから，

τ(i) > τ(j) ⇐⇒ σ(i + 1) > σ(j + 1).

(iv) j = nのとき，常に

τ(i) < τ(n) = n.

以上より，τ の反転数は，i = tまたは j = t以外の場合において，σ(i) > σ(j)となるような (i, j)
の個数に等しい．ところが，σ(t) = nなので，j = tのときは常に σ(i) < σ(j)であり，i = tのと

きは常に σ(i) > σ(j)である．後者の条件を満たす (i, j)の個数は t < j ≤ nなる j の個数，すな

わち n − tに等しい．

例 3.14. i < jとし，k = j − iとする．互換 (i j)について

(i j) = (i i + 1)(i + 1 i + 2) · · · (i + k − 2 i + k − 1)(i + k − 1 i + k)

(i + k − 2 i + k − 1) · · · (i + 1 i + 2)(i i + 1)

が成り立つ．右辺は 2k − 1個の積である．

例 3.15. σ = (1 3)(2 4)の反転数は 4である．また，

σ = (2 3)(1 2)(3 4)(2 3)

と表すことができる．

4 交代群

偶置換全体のなす Sn の部分群を n次交代群といい，An で表す．

定理 4.1. 交代群 An は対称群 Sn の指数 2の正規部分群である．

15



証明. U2 = {±1}を乗法群とする．準同型写像

Sn −→ U2, σ �−→ sgn(σ)

の核は An である．ゆえに An は Sn の正規部分群である．さらに準同型定理により

Sn/An
∼= U2

である．よって (Sn : An) = 2．

定理 4.2. n ≥ 3のとき，n次交代群 An は長さ 3のすべての巡回置換で生成される．

証明. 異なる互換の積は次のように計算される．ここで，i, j, a, bは相異なる数字である：

(i j)(a b) = (i b a)(i j a), (i j)(i a) = (j i a).

交代群 An の元はすべて偶数個の互換の積で表される．したがって，任意の偶置換は長さ 3の巡回
置換の積で表される．

系 4.2.1. n ≥ 3のとき，交代群 An は

(1 2 3), (1 2 4), . . . , (1 2 n)

によって生成される．

証明. An は長さ 3の巡回置換の全体で生成される．よって，長さ 3の巡回置換が (1 2 l)の形の
巡回置換の積で表されることを証明すればよい．

まず，i ≥ 3に対して，
(2 1 i) = (1 2 i)2

である．次に，i ≥ 3, j ≥ 3を満たすような異なる数 i, j に対して，

(1 i j) = (1 2 j)2(1 2 i)(1 2 j),

(2 i j) = (1 2 j)2(1 2 i)

となる．最後に，i ≥ 3, j ≥ 3, k ≥ 3を満たすような異なる i, j, kに対して，

(i j k) = (1 i j)(1 j k)

= (1 2 j)2(1 2 i)(1 2 j)(1 2 k)2(1 2 j)(1 2 k)

となる．以上より，長さ 3の巡回置換はすべて (1 2 l)の形の巡回置換の積で表される．

例 4.3. 3次の対称群 S3の元は次の 6個である：

(i) 恒等置換 (1個)

(ii) 互換 (3個)：
(1 2), (1 3), (2 3)

(iii) 長さ 3の巡回置換 (2個)：
(1 2 3), (1 3 2)
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例 4.4. 3次の対称群 S3の部分群および正規部分群H が S3の部分群ならば，H の位数 nは 6の
約数である．

(i) n = 1のとき．恒等置換 1のみからなる群．これは正規である．

(ii) n = 2のとき．< (1 2) >= {1, (1 2)}型が 3個：

< (1 2) >, < (1 3) >, < (2 3) >

これらはいずれも正規ではない．

(iii) n = 3のとき．交代群 A3 =< (1 2 3) >．これは正規である．

(iv) n = 6のとき．S3自身はもちろん正規である．

例 4.5. 4次の対称群 S4の元は次の 24個である：

(i) 恒等置換 (1個)

(ii) 互換 (6個)：
(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)

(iii) 可換な 2個の互換の積 (3個)：

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

(iv) 長さ 3の巡回置換 (8個)：

(1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3)

(v) 長さ 4の巡回置換 (6個)：

(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)

例 4.6. 4次の対称群 S4の部分群および正規部分群をすべて列挙する．H が S4 の部分群ならば，

H の位数 nは 24の約数である．

(i) n = 1のとき．恒等置換 1のみからなる群．これは正規である．

(ii) n = 2のとき．

(a) < (1 2) >= {1, (1 2)}型が 6個：

< (1 2) >, < (1 3) >, < (1 4) >, < (2 3) >, < (2 4) >, < (3 4) >

これらはいずれも正規ではない．

(b) < (1 2)(3 4) >= {1, (1 2)(3 4)}型が 3個：

< (1 2)(3 4) >, < (1 3)(2 4) >, < (1 4)(2 3) >

これらはいずれも正規ではない．
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(iii) n = 3のとき．< (1 2 3) >= {1, (1 2 3), (1 3 2)}型が 4個：

< (1 2 3) >, < (1 2 4) >, < (1 3 4) >, < (2 3 4) >

これらはいずれも正規ではない．

(iv) n = 4のとき．

(a) < (1 2), (3 4) >= {1, (1 2), (3 4), (1 2)(3 4)}型が 3個：

< (1 2), (3 4) >, < (1 3), (2 4) >, < (1 4), (2 3) >

これらはいずれも正規ではない．

(b) < (1 2 3 4) >= {1, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}型が 3個：

< (1 2 3 4) >, < (1 2 4 3) > < (1 3 2 4) >

これらはいずれも正規ではない．

(c) {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}は正規である．

(v) n = 6のとき．< (1 2), (1 3) >= {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}型が 4個：

< (1 2), (1 3) >, < (1 2), (1 4) >, < (1 3), (1 4) >, < (2 3), (2 4) >

これらはいずれも S3と同型であって，正規ではない．

(vi) n = 8のとき．

< (1 2 3 4), (1 3) >

= {1, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 3), (1 4)(2 3), (2 4), (1 2)(3 4)}

型が 3個：
< (1 2 3 4), (1 3) >, < (1 2 4 3), (1 4) >, < (1 3 2 4), (1 2) >

これらはいずれも正規ではない．

(vii) n = 12のとき．交代群 A4 =< (1 2 3), (1 2 4) >．これは正規である．

(viii) n = 24のとき．S4自身．これはもちろん正規である．

定理 4.7. Sn の正規部分群 N が互換を含めば，N = Sn である．

証明. N に含まれる互換 (i j)が存在すると仮定する．任意の互換 (k l)に対して，

(k l) = (l j)(k i)(i j)(k i)−1(l j)−1 ∈ N

となる．よってN はすべての互換を含む．

定理 4.8. n ≥ 3 のとき，Sn の正規部分群 N が長さ 3 の巡回置換を含めば，N = Sn または

N = An である．
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証明. N に含まれる長さ 3の巡回置換 (i j k)が存在したとする．

σ = (1 3 k)(1 2 j)(1 2 i)

とおくと，N は正規部分群であるから，

(1 2 3) = σ(i j k)σ−1 ∈ N

となる．また，

(1 3 2) = (1 2 3)2 ∈ N.

さらに，l > 3なる任意の整数 lに対して，

(1 2 l) = (3 2 l)(1 3 2)(3 2 l)−1 ∈ N.

よって，N は (1 2 3), (1 2 4), . . ., (1 2 n)を含む．したがって，系 4.2.1より，An ⊆ N である．

もし An � N ならば，N は奇置換 τ を含む．そこで τ を奇数個の互換 τ1, τ2, . . ., τr の積で表す：

τ = τ1τ2 · · · τr．このとき τ ′ = τ2 · · · τrは偶置換なので，N に属する．したがって τ1 = ττ ′−1 ∈ N．

τ1 は互換だから，定理 4.7より，N = Sn となる．

定理 4.9. n ≥ 5のとき，n次対称群 Sn の正規部分群は Sn 自身，交代群 An，および {1}のみ
である．

証明. N を Snの {1}以外の正規部分群とし，σを 1でないN の元の一つとする．σを互いに素

な巡回置換の積に分解し，その巡回因子について次のように場合を分けて考える．

(i) σが長さ 3以上の巡回因子をもつ場合：

σ = (1 2 · · · m)σ′, m ≥ 3

とする．ここに，σ′は (1 2 · · · m)以外の巡回因子の積を表す．N は正規部分群であるから，

(1 2)σ(1 2)−1を含む．したがってN は

σ−1(1 2)σ(1 2)−1

を含む．これを計算すると，

σ−1(1 2)σ(1 2)−1 = σ′−1(m · · · 2 1)(1 2)(1 2 · · · m)σ′(1 2)

= (m · · · 2 1)(1 2)(1 2 · · · m)(1 2)

= (1 2 m).

ここで，互いに素な二つの巡回置換は可換であることに注意する．したがって定理 4.8によっ
て，N = An または N = Sn．

(ii) σが互いに素な互換の積で書ける場合：σが互換ならば，定理 4.7によってN = Snとなる．

σが二つ以上の互換の積で書けるとする．

σ = (1 2)(3 4)σ′

とし，σ′ �= 1ならば σ′ の巡回因子もすべて互換であるとする．

σ1 = (1 2 3)σ(1 2 3)−1 ∈ N
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とおけば，

N � σσ1 = (1 2)(3 4)σ′(1 2 3)(1 2)(3 4)σ′(1 3 2)

= (1 3)(2 4).

ここで，σ′2 = 1であることに注意する．n ≥ 5であるから，Snは (1 3 5)を含む．したがって

(1 3 5)σσ1(1 3 5)−1 ∈ N.

よって，

N � σσ1(1 3 5)σσ1(1 3 5)−1

= (1 3)(2 4)(1 3 5)(1 3)(2 4)(1 5 3)

= (1 3 5).

ゆえにN は長さ 3の巡回置換を含む．したがって定理 4.8によって，N = SnまたはN = An

である．

注意 4.10. 定理 4.9の証明において，1, 2, 3, . . .のところを，一般の文字 i1, i2, i3, . . .に置き

換えて同様に議論すれば，一般の場合について証明できる．

定理 4.11. 写像 ϕ : Sn −→ {±1}が，Sn の任意の元 σ, τ に対して

ϕ(στ) = ϕ(σ)ϕ(τ)

を満たし，しかも ϕ(ρ) = −1となる Sn の元 ρが存在すれば，ϕ = sgnとなる．

証明. ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1)より ϕ(1) = 1となる．また，写像 ϕは全射だから，準同型定

理によって

Sn/ker ϕ ∼= {±1}
となる．よって ker ϕは Sn や {1}とは異なる Snの正規部分群である．ところが，そのような Sn

の正規部分群は An しかないから，ker ϕ = An でなければならない．つまり偶置換に対しては常

に ϕ(σ) = 1となる．ゆえに ϕ(ρ) = −1を満たす ρは奇置換でなければならない．任意の奇置換 τ

に対して，τρは偶置換であるから，

ϕ(τ)ϕ(ρ) = ϕ(τρ) = 1.

ゆえに ϕ(τ) = −1となる．したがって ϕ = sgnである．

例 4.12. 3次交代群A3は位数 3の巡回群である．よって，A3の部分群は A3自身と {1}しかな
い．とくに，A3 は単純群である．

例 4.13. 4次交代群 A4 の部分群および正規部分群を列挙する：

(i) 恒等置換のみからなる群 {1}．これは正規である．
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(ii) < (1 2)(3 4) >= {1, (1 2)(3 4)}型が 3個：

< (1 2)(3 4) >, < (1 3)(2 4) >, < (1 4)(2 3) >

これらはいずれも正規ではない．

(iii) < (1 2 3) >= {1, (1 2 3), (1 3 2)}型が 4個：

< (1 2 3) >, < (1 2 4) >, < (1 3 4) >, < (2 3 4) >

これらはいずれも正規ではない．

(iv) {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}は正規である．

(v) A4自身．もちろん正規である．

とくに，A4は位数 6の部分群をもたない．

定理 4.14. n ≥ 3とする．交代群 An の正規部分群 N が少なくとも一つ長さ 3の巡回置換を含
むならば，N = An である．

証明. (i j k)を N に含まれる長さ 3の巡回置換とする．

σ = (1 3 k)(1 2 j)(1 2 i) ∈ An

とおくと，

(1 2 3) = σ(i j k)σ−1 ∈ N

となる．また，

(1 3 2) = (1 2 3)2 ∈ N.

さらに，l > 3に対して，
(1 2 l) = (3 2 l)(1 3 2)(3 2 l)−1 ∈ N.

よって，N は (1 2 3), (1 2 4), . . ., (1 2 n)を含む．したがって N = An．

定理 4.15. n ≥ 5ならば，交代群 An は単純群である．すなわち，A4 自身と {1}のほかに正規
部分群をもたない．

証明. N を An の {1}以外の正規部分群とし，σを 1でないN の元の一つとする．σを互いに素

な巡回置換の積に分解し，その巡回因子について次のように場合を分けて考える．

(i) σが長さ 4以上の巡回因子をもつ場合：

σ = (1 2 · · · m)σ′, m > 3

とする．ここに，σ′は (1 2 · · · m)以外の巡回因子の積を表す．N は正規部分群であるから，

(1 2 3)σ(1 2 3)−1を含む．したがって N は

σ−1(1 2 3)σ(1 2 3)−1
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を含む．これを計算すると，

σ−1(1 2 3)σ(1 2 3)−1 = σ′−1(m · · · 2 1)(1 2 3)(1 2 · · · m)σ′(1 3 2)

= (m · · · 2 1)(1 2 3)(1 2 · · · m)(1 3 2)

= (1 3 m).

ここで，互いに素な二つの巡回置換は可換であることに注意する．したがって定理 4.14に
よって，N = An．

(ii) σが長さ 3の巡回因子を二つ以上もつ場合：

σ = (1 2 3)(4 5 6)σ′

とする．ここに，σ′は (1 2 3), (4 5 6)以外の巡回因子の積を表す．N は正規部分群であるか

ら，(2 3 4)σ(2 3 4)−1を含む．したがってN は

σ−1(2 3 4)σ(2 3 4)−1

を含む．これを計算すると，

σ−1(2 3 4)σ(2 3 4)−1 = σ′−1(4 6 5)(1 3 2)(2 3 4)(1 2 3)(4 5 6)σ′(2 4 3)

= (4 6 5)(1 3 2)(2 3 4)(1 2 3)(4 5 6)(2 4 3)

= (1 2 4 3 6).

よって N は長さ 4以上の巡回置換 (1 2 m)を含む．したがって，この場合の証明は (i)に帰
着される．

(iii) σが長さ 3の巡回因子一つだけ含み，他の巡回因子がすべて互換である場合：

σ = (1 2 3)σ′

とする．σ′ �= 1ならば，σ′は二つずつ互いに素であるような互換の積であるとする．このと
き σ′2 = 1であるから，

N � σ2 = (1 2 3)σ′2 = (1 3 2).

すなわち N は長さ 3の巡回置換を含む．

(iv) σの巡回因子がすべて互換である場合：σ は偶置換であるから，この場合 σ は少なくとも

二つの互換を含む．そこで，

σ = (1 2)(3 4)σ′

とし，σ′ �= 1ならば σ′ の巡回因子もすべて互換であるとする．

σ1 = (1 2 3)σ(1 2 3)−1 ∈ N

とおけば，

N � σσ1 = (1 2)(3 4)σ′(1 2 3)(1 2)(3 4)σ′(1 3 2)

= (1 3)(2 4).
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ここで，σ′2 = 1であることに注意する．n ≥ 5であるから，An は (1 3 5)を含む．した
がって

(1 3 5)σσ1(1 3 5)−1 ∈ N.

よって，

N � σσ1(1 3 5)σσ1(1 3 5)−1

= (1 3)(2 4)(1 3 5)(1 3)(2 4)(1 5 3)

= (1 3 5).

ゆえに N は長さ 3の巡回置換を含む．したがって定理 4.14によって，N = An である．

以上ですべての場合が証明された．

5 共役類について

Snの任意の元 σは，二つずつ互いに素な巡回置換 σ1, σ2, . . ., σkの積に分解することができる：

σ = σ1σ2 · · ·σk.

ここでは，σ1, σ2, . . ., σk の中に長さ 1の巡回置換が入っていてもよいとする．そうすると，上の
ような巡回置換からなる集合 {σ1, σ2, . . . , σk}が σに対してただ一つ定まる．

σ1, σ2, . . ., σk の長さをそれぞれ r1, r2, . . ., rk とするとき，

r1 + r2 + · · · + rk = n (1)

とすることができる．さらに，互いに素な二つの巡回置換は可換だから，

r1 ≥ r2 ≥ · · · ≥ rk (2)

となるように σ1, σ2, . . ., σk を並びかえて番号を付けなおすことができる．こうして，(1), (2)を
満たすような組 (r1, r2, . . . , rk)は σ に対してただ一つ定まる．この (r1, r2, . . . , rk)を σ の分解

型という．

定理 5.1. n次対称群 Sn の 2つの元 σ, τ が共役であるためには，σ, τ が同じ分解型をもつこと

が必要十分である．

証明. まず，巡回置換 (i1 i2 · · · ik)と Sn の元 ρについて

ρ(i1 i2 · · · ik)ρ−1 = (ρ(i1) ρ(i2) · · · ρ(ik))

が成り立つ．とくに右辺の巡回置換の長さは (i1 i2 · · · ik)と同じである．したがって，Sn の元 σ

を巡回置換の積に分解して

σ = (i1 i2 · · · ik1)(j1 j2 · · · jk2) · · ·

とすれば

ρσρ−1 = ρ(i1 i2 · · · ik1)ρ
−1ρ(j1 i2 · · · jk2)ρ

−1 · · ·
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となる．最初に述べたことから，ρσρ−1 の分解型と σ の分解型とは同じであることがいえる．し

たがって σと τ とが共役ならば，分解型が一致する．

逆に，σと τ とが同じ分解型ならば，それぞれ巡回置換の積に分解して

σ = (i1 i2 · · · ik1)(j1 j2 · · · jk2) · · ·
τ = (i′1 i′2 · · · , i′k1

)(j′1 j′2 · · · j′k2
) · · ·

とするとき，置換

ρ =

(
i1 i2 · · · ik1 j1 j2 · · · jk2 · · ·
i′1 i′2 · · · i′k1

j′1 j′2 · · · j′k2
· · ·

)

によって ρσρ−1 = τ となり，σと τ とは共役になる．

nを正の整数とする．

n = r1 + r2 + · · · + rk, r1 ≥ r2 ≥ · · · ≥ rk

となる正の整数の組 (r1, r2, . . . , rk)を nの分割という．nの分割の個数を p(n)と書き，これを n

の分割数という．

このとき，分解型の定義および定理 5.1から，Sn での共役類の個数は p(n)で与えられることが
わかる．

例 5.2. S3の共役類は次の 3つである．

(i) (1, 1, 1)型：
{1}

元の個数は 1個．

(ii) (2, 1)型：
{(1 2), (1 3), (2 3)}

元の個数は 3個．

(iii) (3)型：
{(1 2 3), (1 3 2)}

元の個数は 2個．

したがって類等式は

6 = 1 + 3 + 2

となる．

例 5.3. S4の共役類は次の 5つである．

(i) (1, 1, 1, 1)型：
{1}

元の個数は 1個．
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(ii) (2, 1, 1)型：
{(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)}

元の個数は 6個．

(iii) (3, 1)型：

{(1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)}

元の個数は 8個．

(iv) (2, 2)型：
{(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

元の個数は 3個．

(v) (4)型：
{(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)}

元の個数は 6個．

したがって類等式は

24 = 1 + 6 + 8 + 3 + 6

となる．

定理 5.4. 長さ rの巡回置換 (1 2 · · · r)と可換な Sn のすべての元は

(1 2 · · · r)kρ, k = 0, 1 . . . , r − 1

の形をしている．ただし ρは 1, 2, . . ., rをすべて固定するような Sn の任意の元である．

証明. (1 2 · · · r)kρの形の元が (1 2 · · · r)と可換であることは明らかである．このような形の元
は全部で r · (n − r)!個ある．
いま，(1 2 · · · r)と可換な Sn の元がちょうど r · (n− r)!個であることを示す．σ = (1 2 · · · r)

とおく．

N(σ) = {τ ∈ Sn | τσ = στ}
を Sn における σの正規化群とする．σと可換な Sn の元の個数は N(σ)の位数に一致する．そこ
で N(σ)の位数を求めることにする．

σの共役類に含まれる元の個数が，指数 (Sn : An)に等しいことに注意する．一方，定理 5.1に

より，σの共役類の個数は，σと同じ長さ rの巡回置換の個数に一致する．それらは
1
r

n!
(n − r)!

個

ある．したがって，

|N(σ)| =
|Sn|

1
r

n!
(n − r)!

= r · (n − r)!

となる．
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例 5.5. n ≥ 4とする．(1 2)(3 4)と共役な Sn の元は全部で
1
8

n!
(n − 4)!

個ある．また，(1 2)(3 4)

と可換な Sn の元は

ρ, (1 2)ρ, (1 2)(3 4)ρ, (1 3)(2 4)ρ, (1 4)(2 3)ρ, (1 3 2 4)ρ (1 4 2 3)ρ

なる形のものがすべてである．ただし ρは 1, 2, 3, 4を固定するような Sn の任意の元である．

例 5.6. A3における共役類は

{1}, {(1 2 3)}, {(1 3 2)}

の 3つである．類等式は
3 = 1 + 1 + 1.

A3 は Abel群なので，これらのことは自明である．

例 5.7. A4における共役類は

{1},
{(1 2 3), (1 4 2), (1 3 4), (2 4 3)},
{(1 3 2), (1 2 4), (1 4 3), (2 3 4)},
{(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

の 4つである．類等式は
12 = 1 + 4 + 4 + 3

である．

6 自己同型

群GからG自身への準同型写像であって，かつ全単射であるものをGの自己同型という．Gの

自己同型の全体 Aut Gは，対称群 S(G)の部分群である．Aut Gを Gの自己同型群という．

群 Gの元 gに対して，写像

θg : G −→ G, x �−→ gxg−1

は Gの自己同型である．この θg を g による内部自己同型という．それらの全体 Inn Gは Aut G

の部分群である．Inn GをGの内部自己同型群という．GがAbel群ならば，Inn G = {1}である．
定理 6.1. Inn Gは Aut Gの正規部分群である．

証明. σを Aut Gの元とし，θg (g ∈ G)を Inn Gの元とすると，任意の x ∈ Gに対して，

(σθgσ
−1)(x) = σ(gσ−1(x)g−1)(x) = σ(g)σ(σ−1(x))σ(g−1)

= σ(g)xσ(g−1) = σ(g)xσ(g)−1

= θσ(g)(x).

ゆえに，

σθgσ
−1 = θσ(g).

これより Inn Gが Aut Gの正規部分群であることがわかる．

26



剰余群 Aut G/Inn Gを外部自己同型類群といい，Out Gで表す．

定理 6.2. Gを群，Z(G)を Gの中心とする．このとき

Inn G ∼= G/Z(G)

が成り立つ．

証明. Gの元 gに対して，θg を gによる内部自己同型とする．写像

θ : G −→ Inn G, g �−→ θg

は全射準同型である．また，

g ∈ Ker θ ⇐⇒ θg = 1 ⇐⇒ gxg−1 = x (∀x ∈ G) ⇐⇒ g ∈ Z(G)

より，Ker θ = Z(G)．したがって準同型定理により Inn G ∼= G/Z(G)が得られる．

定理 6.3. Sn を n次対称群とし，Z(Sn)を Sn の中心とする．このとき

Z(Sn) =

{
S2, n = 2
{1}, n ≥ 3

が成り立つ．

証明. S2 = {1, (1 2)}は Abel群だから，Z(S2) = S2．n ≥ 3に対して，Sn の元で，σ �= 1なる
ものをとれば，σ(i) = j, i �= j なる二つの数字 i, j が存在する．i, jと異なる数字 kについて

(σ ◦ (j k)) (i) = σ(i) = j,

((j k) ◦ σ) (i) = (j k) (j) = k

であるから，σ ◦ (j k) �= (j k) ◦ σ．よって σ /∈ Z(Sn)．したがって Z(Sn) = {1}．

定理 6.4. Sn を n次対称群とし，Inn Sn を内部自己同型群とする．このとき

Inn Sn =

{
{1}, n = 2
Sn, n ≥ 3

が成り立つ．

証明. 定理 6.3と，同型 Inn Sn
∼= Sn/Z(Sn)からわかる．

7 可解群について

定理 7.1. 対称群 S3は可解群である．

証明. 正規部分群の列

S3 � A3 � {1}
について，剰余群

S3/A3
∼= Z/2Z

A3/{1} ∼= A3 = {1, (1 2 3), (1 2 3)2}

はそれぞれ Abel群である．
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定理 7.2. 対称群 S4は可解群である．

証明. まず，S4の部分集合

V = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

は S4における正規部分群であるから，とくに A4 の正規部分群である．

正規部分群の列

S4 � A4 � V � {1}
について，剰余群

S4/A4
∼= Z/2Z

A4/V ∼= Z/3Z

V/{1} ∼= V ∼= Z/2Z × Z/2Z

はそれぞれ Abel群である．

定理 7.3. n ≥ 5のとき，交代群 An は可解群ではない．また，対称群 Sn も可解群ではない．

証明. An の交換子群 [An, An]は An に等しい．実際，i, j, k, l, mを互いに異なる数字とすると

(i j k) = (i j l)(i k m)(l j i)(m k i)

= (i j l)(i k m)(i j l)−1(i k m)−1

= [(i j l), (i k m)]

である．よって長さ 3の巡回置換はすべて交換子になる．一方，An の任意の元は長さ 3の巡回置
換の積で表される．ゆえに An ⊆ [An, An]．逆の包含関係は明らかだから An = [An, An]．よって
An は可解群ではない．

さらに，[Sn, Sn] = An である．実際 i, j, kを互いに異なる数字とすると

(i j k) = (i k)(j k)(i k)(j k)

= (i k)(j k)(i k)−1(j k)−1

= [(i k), (j k)]

より An ⊆ [Sn, Sn]．ところが An は Sn の指数 2の部分群だから An = [Sn, Sn]でなければなら
ない．よって Sn も可解群ではない．
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