
1 共役集合の個数

G を群とする. G の部分集合 S と G の元 g に対して, G の部分集合

gSg−1 = {gxg−1 | x ∈ S}

を S の g による共役集合という. 特に, S が G の部分群であるとき, gSg−1 もまた G の部分群

であり, S と同型である. このとき, gSg−1 を S の g による共役部分群という.

G の部分集合 S, S′ について, S′ が G において S と共役 (conjugate) であるとは, ある g ∈ G

が存在して S′ = gSg−1 となるときにいう. またこのとき, S′ は G における S の共役集合である

という. S, S′ が G の部分群であるとき1)は, S′ は G における S の共役部分群であるという.

［定理 1.1］G を群, S を G の部分集合とし, G の NG(S) による左剰余類の全体を G/NG(S) と

書く. ただし, NG(S) は S の正規化群 (normalizer) である:

NG(S) = {g ∈ G | gSg−1 = S}.

また, S の共役集合の全体からなる集合をM とおく:

M = {gSg−1 | g ∈ G}.

このとき, 全単射

f : G/NG(S) → M, gNG(S) 7→ gSg−1

が存在する.

［証明］P(G) を G の部分集合全体からなる集合とする.

G × P(G) → P(G), (g, S) 7→ g ◦ S = gSg−1

は G の P(G) への作用である. S ∈ P(G) に対し, S の軌道は

OrbG(S) = {g ◦ S | g ∈ G} = M

であり, S の固定群は

StabG(S) = {g ∈ G | gSg−1 = S} = NG(S)

である. このとき, 全単射

G/StabG(S) → OrbG(S), g StabG(S) 7→ g ◦ S

が存在する.

1)S′ が G において S と共役であるとき, S, S′ の一方が G の部分群ならばもう一方も G の部分群である.
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［系 1.2］G を有限群, S を G を部分集合とする. このとき, G における S の共役集合の個数は

(G : NG(S)) である.

群 G の元 x, g に対して, G の元 gxg−1 を x の g による共役元という. gxg−1 の位数は x の位

数と一致する.

G の元 x, x′ について, x′ が G において x と共役 (conjugate) であるとは, ある g ∈ G が存在

して x′ = gxg−1 となるときにいう. またこのとき, x′ は G における x の共役元であるという.

G における x の共役元全体からなる G の部分集合 {gxg−1 | g ∈ G} を, x を含む G の共役類

(conjugacy class) という.

［系 1.3］G を有限群, x を G の元とする. このとき, x を含む G の共役類の元の個数2)は

(G : NG(x)) である.

［証明］x を含む G の共役類と, 1 元集合 {x} の G における共役集合の全体との間には自明な 1

対 1 対応があることに注意して, S = {x} として系 1.2を適用せよ.

［定理 1.4（類等式）］G を有限群とする. 2 つ以上の元を含む G の共役類のすべてを C1, C2,

. . ., Cs とする. このとき, 等式

|G| = |Z(G)| +
s∑

i=1

|Ci|

が成り立つ. これを類等式 (class equation or class formula) という. ただし, Z(G) は G の中心

(center) である:

Z(G) = {x ∈ G | xg = gx (∀g ∈ G)}.

［証明］G の 2 つの元が共役であるという関係は G 上の同値関係である. この同値関係による同

値類が G の共役類である. よって, G は各共役類の集合としての直和で表される. ゆえに, |G| は

各共役類の元の個数の和に等しい. すなわち,

|G| =
∑
|C|=1

|C| +
s∑

i=1

|Ci|.

ここで, C は元の個数が 1 つしかない G の共役類全体をわたる.

さて, x ∈ G に対し, x が属する共役類を C(x) と書く. 全単射

{x ∈ G | |C(x)| = 1} → {C | |C| = 1}, x 7→ {x}

2)すなわち, G における x の共役元の個数.
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が存在するから, ∑
|C|=1

|C| =
∑

C∈{C||C|=1}

|C| =
∑

C∈{C||C|=1}

1

= #{C | |C| = 1}

= #{x ∈ G | |C(x)| = 1}.

さらに, x ∈ G について,

|C(x)| = 1 ⇐⇒ C(x) = {x}

⇐⇒ gxg−1 = x (∀g ∈ G)

⇐⇒ gx = xg (∀g ∈ G)

であるから,

{x ∈ G | |C(x)| = 1} = Z(G).

したがって, 求める等式が得られる.

2 群論における Cauchy の定理

［補題 2.1］G, G′ を群, f : G → G′ を準同型写像, a を G の有限位数の元とする. このとき,

f(a) の位数は a の位数の約数である.

［証明］G, G′ の単位元をそれぞれ e, e′ とおく. a の位数を n とすると, an = e であるから,

f(a)n = f(an) = f(e) = e′.

よって, f(a) の位数は n の約数である.

［補題 2.2］G を有限 Abel 群, p を素数とし, G の位数 |G| は p で割れるものとする. このとき,

G は位数 p の元を含む.

［証明］|G| = pm とおく. m に関する数学的帰納法により証明する.

m = 1 のとき, |G| = p > 1 より G の単位元以外の元 a が存在する. a の位数は, |G| = p の約

数であるから, 1 または p である. ところが, 位数が 1 の元は単位元しかない. よって, a の位数は

p である.

m− 1 まで補題の主張が正しいと仮定する. x ∈ G を単位元以外の元とし, x の位数を n とおく.

x は単位元でないから, n > 1 である.
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n が p の倍数のとき, xn/p の位数は p である.

n が p の倍数でないとき, G は Abel 群なので, 剰余群 G/〈x〉 もまた Abel 群であって,

|G/〈x〉| =
|G|
|〈x〉|

=
pm

n
.

|G/〈x〉| は整数なので n は pm を割るが, n は p の倍数でないという仮定から, n は m を割る. す

なわち, m/n は整数である. ゆえに, |G/〈x〉| は p の倍数である. しかも, m/n < m である. 帰納

法の仮定より, G/〈x〉 は位数 p の元をもつ. したがって, π : G → G/〈x〉 を自然な全射準同型とす

ると, ある y ∈ G が存在して π(y) は G/〈x〉 の位数 p の元である. y の位数を n′ とおくと, 補題

2.1 より n′ は p の倍数である. そして, yn′/p の位数は p である.

以上より, すべての m に関して, 補題の主張は正しい.

［補題 2.3］G を有限群, p を素数とし, G の任意の固有の部分群3) H に対して

(G : H) ≡ 0 (mod p)

が成り立つとする. このとき, G の中心 Z(G) の位数は p の倍数である.

［証明］2 つ以上の元を含む G の共役類のすべてを C1, C2, . . ., Cs とすると, 定理 1.4 より, 類

等式

|G| = |Z(G)| +
s∑

i=1

|Ci|

が成り立つ. また, 各番号 i に対して, xi を Ci の代表元, NG(xi) を xi の正規化群とすると, 系

1.3 より,

(G : NG(xi)) = |Ci| > 1.

よって, NG(xi) 6= G である. 仮定より,

|Ci| = (G : NG(xi)) ≡ 0 (mod p).

一方, 仮定より,

|G| = (G : {e}) ≡ 0 (mod p).

したがって, |Z(G)| ≡ 0 (mod p) が成り立つ.

［系 2.4］G を有限群, p を素数とし, G の位数は p の冪であるとする. このとき, G の中心 Z(G)

の位数は p の倍数である.

3)群 G の部分群 H で H 6= G なるものを固有の部分群 (proper subgroup) という.
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［証明］G の任意の部分群 H に対して, H 6= G ならば,

|G| = (G : H) · |H|, (G : H) > 1

が成り立つ. すなわち, (G : H) は |G| の 1 より大きい約数である. |G| は p の冪だから, (G : H)

は p の倍数である.

［補題 2.5］G を群, Z(G) を G の中心, N を Z(G) の部分群とする. このとき, N は G の正規

部分群である.

［証明］最初に, Z(G) は G の部分群だから, N は G の部分群である. x ∈ N , g ∈ G を任意にと

る. N ⊆ Z(G) より x ∈ Z(G) であるから, gx = xg. すなわち, gxg−1 = x ∈ N . したがって, N

は G の正規部分群である.

［補題 2.6］G を群とし, N を G の正規部分群とする. G/N を G の N による剰余群とし, K を

G/N の部分群とする. このとき, G のある部分群 K が存在して, K/N ∼= K が成り立つ.

［証明］π : G → G/N を自然な全射準同型とする. K = π−1(K) は G の部分群であり, N ⊆ K

が成り立つ. 一方, π の K への制限

πK : K → G/N, x 7→ π(x)

を考えると, πK : K → π(K) = K は全射準同型であり,

ker(πK) = K ∩ N = N.

したがって, 準同型定理により, 同型

K/N ∼= K, xN 7→ π(x)

が得られる.

［定理 2.7］G を有限群, p を素数, k ≥ 0 を整数とし, G の位数は pk で割れるものとする. この

とき, G は位数 pk の部分群を含む.

［証明］G の位数 |G| に関する数学的帰納法により証明する.

|G| = 1 のとき, G は単位元のみからなる群 {e} であり, G 自身が位数 p0 = 1 の部分群である.

したがって, 定理は成り立つ.

|G| > 1 のとき, |G| より小さな位数の有限群に対しては定理が成り立つと仮定する.
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G のある固有の部分群 H が存在して (G : H) 6≡ 0 (mod p) が成り立つ場合, |G| = (G : H) · |H|

より |H| が pk で割り切れる. 帰納法の仮定より |H| は位数 pk の部分群を含む. それは G の部

分群でもある.

G のすべての固有の部分群 H に対して (G : H) 6≡ 0 (mod p) が成り立つ場合, 補題 2.3 より G

の中心 Z(G) の位数は p の倍数である. Z(G) は Abel 群だから, 補題 2.2 より Z(G) は位数 p の

元をもつ. その元で生成される Z(G) の位数 p の部分群を N とする. 補題 2.5 より N は G の正

規部分群である. よって, 剰余群 G/N が定まる. その位数について

|G/N | =
|G|
|N |

=
|G|
p

が成り立つから, |G/N | < |G| であり, かつ |G/N | は pk−1 の倍数である. 帰納法の仮定より, G/N

の部分群 K で |K| = pk−1 なるものが存在する. 補題 2.6 より, G の部分群 K が存在して, 同型

K/N ∼= K が成り立つ. このとき,

|K|
p

=
|K|
|N |

= |K/N | = |K| = pk−1.

これより, |K| = pk を得る.

以上より, すべての有限群 G に対して, 定理の主張は正しい.

［系 2.8（Cauchy の定理）］G を有限群, p を素数とし, G の位数は p で割れるものとする. こ

のとき, G は位数 p の元を含む.

［証明］定理 2.7 より, G の位数 p の部分群 K が存在する. |K| = p > 1 より, K の単位元以外

の元 a が存在する. 言うまでもなく a は G の元である. a の位数は, |K| = p の約数であるから, 1

または p である. ところが, 位数が 1 の元は単位元しかない. よって, a の位数は p である.

3 Sylow の定理

有限群 G の部分群の位数は必ず G の位数の約数である. 逆は一般には成立しないが, G の位数

を割る素数冪 pl に対しては, 位数 pl の部分群は必ず存在する. 特に, G の位数を割る素数 p の冪で

最大のものを位数とする部分群のことを Sylow p 部分群という. Sylow の定理 (Sylow theorems)

と呼ばれるいくつかの定理は, Sylow p 部分群の存在と性質について述べたもので, 有限群論にお

いて基本的である.

G を有限群, p を素数とする.

G の部分群で, すべての元の位数が p の冪であるものを, G の p 部分群 (p-subgroup) という.

さらに, G の位数 |G| を素因数分解すると, 整数 l ≥ 0 と整数 m ≥ 1 が一意的に存在して,

|G| = plm, gcd(p, m) = 1
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と表すことができる. G の位数 pl の部分群を G の Sylow p 部分群 (Sylow p-subgroup) という4).

［定理 3.1（Sylow の定理）］G を有限群, p を素数とする. このとき, G の Sylow p 部分群が少

なくとも 1 つ存在する.

［証明］定理 2.7 より明らか.

［命題 3.2］G を有限群, p を素数とする. G の Sylow p 部分群は, G の p 部分群のうちで包含関

係について極大なものである.

［証明］P を G の Sylow p 部分群, H を G の p 部分群とし, P ⊆ H であるとすると, |P | ≤ |H|

である. また, 整数 l ≥ 0 と整数 m ≥ 1 によって

|G| = plm, gcd(p, m) = 1

と表すとき, Sylow p 部分群の定義より P の位数は pl であり, H の位数は, |G| の約数であるが,

gcd(p, m) = 1 より pl の約数になる. ゆえに, |H| ≤ |P |. したがって, |H| = |P | となり, P = H

がいえる.

［命題 3.3］G を有限群, p を素数とする. G の Sylow p 部分群の G における共役部分群もまた

G の Sylow p 部分群である.

［証明］一般に, G において共役な 2 つの部分群は同型であり, 特に位数が一致する. よって, G

の Sylow p 部分群 P の G における共役部分群 P ′ の位数は P の位数と同じである. ゆえに, P ′

もまた G の Sylow p 部分群である.

［補題 3.4］Gを群, H, K を Gの部分群とし, H ⊆ NG(K)であるとする. このとき, HK = KH

であり, かつ HK は G の部分群である.

［証明］任意の h ∈ H, k ∈ K に対して, H ⊆ NG(K) という仮定より,

hk = (hkh−1)h ∈ KH.

ゆえに, HK ⊆ KH. 逆に, 任意の h ∈ H, k ∈ K に対して, 再び H ⊆ NG(K) という仮定より,

kh = h(h−1kh) = h(h−1k(h−1)−1) ∈ HK.

ゆえに, KH ⊆ HK. したがって, HK = KH である.
4)素数 p が |G| を割らないとき, G の Sylow p 部分群は単位元のみからなる群である.
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H, K はともに単位元 e を含むので, HK もまた単位元 e を含む. よって, HK は空集合ではな

い. さらに,

(HK)(HK) = H(KH)K = HHKK = HK,

(HK)−1 = K−1H−1 = KH = HK.

ゆえに, HK は G の部分群である.

［補題 3.5］G を有限群, p を素数, P を G の Sylow p 部分群, H を G の p 部分群とする. この

とき,

H ⊆ NG(P ) ⇐⇒ H ⊆ P

が成り立つ.

［証明］(⇒) H ⊆ NG(P ) と仮定すると, 補題 3.4 より, HP は G の部分群である. また,

|HP | =
|H| · |P |
|H ∩ P |

であり, |H|, |P | はともに p の冪であるから, |HP | もまた p の冪である. よって, HP は G の p

部分群である. しかも, P ⊆ HP であり, P は G の Sylow p 部分群であるから, HP = P . これと

H ⊆ HP より, H ⊆ P .

(⇐) H ⊆ P と仮定すると, P ⊆ NG(P ) より, H ⊆ NG(P ).

［補題 3.6］G を有限群, p を素数とする. P を G の Sylow p 部分群とし, P の G における共役

部分群の全体からなる集合を Conj(P ) とおく. すなわち,

Conj(P ) = {gPg−1 | g ∈ G}.

G の p 部分群 H に対し, H ⊆ P ′ となる P ′ ∈ Conj(P ) の個数を nP (H) とおく. このとき, G の

任意の p 部分群 H に対して,

nP (H) ≡ |Conj(P )| ≡ 1 (mod p)

が成り立つ5).

［証明］H を G の p 部分群とする. H の Conj(P ) への作用

H × Conj(P ) → Conj(P ), (h, P ′) 7→ h ◦ P ′ = hP ′h−1

を考える. 各 P ′ ∈ Conj(P ) に対し, 上の作用による P の軌道を OrbH(P ′) と書く:

OrbH(P ′) = {h ◦ P ′ | h ∈ H}.
5)nP (H) が H に依存するのに対して Conj(P ) が H には無関係であることが重要である.
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Conj(P ) に属する 2 つの Sylow p 部分群が互いに共役であるという関係は, Conj(P ) 上の同値関

係である. 各々の OrbH(P ′) は, その同値関係による同値類にほかならない. U を完全代表系とす

る. このとき,

Conj(P ) =
∪

P ′∈U
OrbH(P ′) (集合の直和)

が成り立つ. したがって,

|Conj(P )| =
∑

P ′∈U

|OrbH(P ′)|.

また, 各 P ′ ∈ Conj(P ) に対し, P ′ の固定群を StabH(P ′) と書く:

StabH(P ′) = {h ∈ H | h ◦ P ′ = P ′}.

すると,

|OrbH(P ′)| =
|H|

|StabH(P ′)|
.

特に, |OrbH(P ′)| は |H| の約数である. |H| は p の冪だから, |OrbH(P ′)| もまた p の冪である.

よって, |OrbH(P ′)| = 1 または |OrbH(P ′)| ≡ 0 (mod p). 補題 3.5 より,

|OrbH(P ′)| = 1 ⇐⇒ hP ′h−1 = P ′ (∀h ∈ H)

⇐⇒ H ⊆ NG(P ′)

⇐⇒ H ⊆ P ′.

また, 完全代表系 U をどのように選んでも, 同値類が 1 元集合のとき, その元は必ず U に含まれ

る. すなわち,

|OrbH(P ′)| = 1 =⇒ OrbH(P ′) = {P ′}

=⇒ P ′ ∈ U .

ゆえに,

nP (H) = #{P ′ ∈ Conj(P ) | H ⊆ P ′}

= #{P ′ ∈ Conj(P ) | |OrbH(P ′)| = 1}

= #{P ′ ∈ U | |OrbH(P ′)| = 1}.

したがって,

|Conj(P )| =
∑

P ′∈U
|OrbH(P ′)|=1

|OrbH(P ′)| +
∑

P ′∈U
|OrbH(P ′)|>1

|OrbH(P ′)|

=
∑

P ′∈U
|OrbH(P ′)|=1

1 +
∑

P ′∈U
|OrbH(P ′)|>1

|OrbH(P ′)|

≡ nP (H) (mod p).
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いま, H として特に P を考える. P ∈ Conj(P ) かつ P ⊆ P である. また, 任意の P ′ ∈ Conj(P )

に対して, P ⊆ P ′ ならば, P が Sylow p 部分群であることから P = P ′. よって, nP (P ) = 1. ゆ

えに,

|Conj(P )| ≡ nP (P ) = 1 (mod p).

Conj(P ) は H に無関係であるから, G の任意の p 部分群 H に対して,

nP (H) ≡ |Conj(P )| ≡ 1 (mod p)

が成り立つ.

［定理 3.7（Sylow の定理）］G を有限群, p を素数とする. P を Sylow p 部分群とし, H を G

の p 部分群とする. このとき, P の G における共役部分群で H を含むものが存在する.

［証明］補題 3.6 より, 特に nP (H) 6= 0 である. すなわち, P の G における共役部分群で H を

含むものが存在する.

［系 3.8］G を有限群, p を素数とする. このとき, G の p 部分群のうちで包含関係について極大

なものは G の Sylow p 部分群である.

［証明］H を Gの p部分群のうちで包含関係について極大なものする. 定理 3.1より, Gの Sylow

p 部分群 G が存在する. 定理 3.7 より, P の G における共役部分群 P ′ で H を含むものが存在す

る. P ′ もまた G の Sylow p 部分群である. H の極大性により, P ′ = H となる.

［定理 3.9（Sylow の定理）］G を有限群, p を素数とする. このとき, G の Sylow p 部分群はす

べて互いに共役である.

［証明］G の 2 つの Sylow p 部分群 P , P ′ を任意にとる. 定理 3.7 において H として P ′ を考

えると, P の G における共役部分群 P ′′ で P ′ を含むものが存在することがいえる. P ′, P ′′ はと

もに G の Sylow p 部分群だから, P ′ = P ′′. したがって, P ′ は, P の G における共役部分群であ

る.

［系 3.10］G を有限群, p を素数, P を G の Sylow p 部分群とする. このとき, P が G の正規部

分群であるための必要十分条件は, G のすべての Sylow p 部分群が P に一致することである. し

たがって, G の Sylow p 部分群が一意的に存在するならば, その Sylow p 部分群は正規部分群で

ある.
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［証明］定理 3.7 より, G のすべての Sylow p 部分群は P の共役部分群である. したがって,

P が G の正規部分群

⇐⇒ G における P の共役部分群はすべて P に一致する

⇐⇒ G のすべての Sylow p 部分群が P に一致する

が成り立つ.

［系 3.11］G を有限群, p を素数とする. G の Sylow p 部分群の全体からなる集合を Syl(p) とお

く. このとき, G の Syl(p) への作用

G × Syl(p) → Syl(p), (g, P ) 7→ g ◦ P = gPg−1

は推移的である.

［証明］定理 3.9 より, 任意の P , P ′ ∈ Syl(p) に対して, ある g ∈ G が存在して P ′ = g ◦ P が成

り立つ. よって, 作用は推移的である.

［系 3.12］G を有限群, p を素数とする. G の Sylow p 部分群の全体からなる集合を Syl(p) と

おく. また, P を G の Sylow p 部分群とし, P の G における共役部分群の全体からなる集合を

Conj(P ) とおく. このとき, Conj(P ) = Syl(p) が成り立つ.

［証明］P ′ ∈ Syl(p) を任意にとる. すると, 定理 3.9 より P と P ′ は互いに共役である. よって,

P ′ ∈ Conj(P ). ゆえに, Syl(p) ⊆ Conj(P ). 逆の包含関係は明らか.

［定理 3.13（Sylow の定理）］G を有限群, p を素数とする. また, G の Sylow p 部分群の個数

を np とおく. このとき, np ≡ 1 (mod p) が成り立つ. また, np は |G| の約数である.

［証明］定理 3.1 より, G の Sylow p 部分群 P が存在する. 系 3.12 より, np = |Conj(P )|. 補題

3.6 より, |Conj(P )| ≡ 1 (mod p). また, 系 1.2 より, |Conj(P )| = (G : NG(P )). これは |G| の約

数である.

［例 3.14］G を有限群, p を素数とし, G の位数は p の冪であるとする. このとき, G の Sylow p

部分群は G 自身である.
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［例 3.15］G を有限 Abel 群, p を素数とする. Abel 群の部分群はすべて正規部分群なので, G

の Sylow p 部分群は一意的に存在する. そして,

G(p) = {x ∈ G |ある整数 n ≥ 0 が存在して pnx = 0}

が G のただ 1 つの Sylow p 部分群である. 有限 Abel 群の基本定理によって, G は

G ∼=
s⊕

i=1

 ti⊕
j=1

Z/p
eij

i Z


と直和分解される. ただし, p1, p2, . . ., ps は相異なる素数である. このとき,

G(pi) ∼=
ti⊕

j=1

Z/p
eij

i Z

となる.
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