
1 ねじれ加群

R を可換環とし, 0R を R の零元, 1R を R の単位元とする. また, M を R 加群とし, 0M を M

の零元とする.

M の元 x が自由元であるとは, 任意の r ∈ R に対して,

rx = 0M =⇒ r = 0R

が成り立つときにいう. M の元 x が自由元であることと, x が R 上 1 次独立であることは同じ意

味である.

M の元 x がねじれ元であるとは, 自由元でないときにいう. すなわち, ある r ∈ R が存在して

rx = 0M , r 6= 0R

が成り立つとき, xはねじれ元であるという. M の零元 0M はねじれ元である. 実際, 1R ·0M = 0M

である.

［定理 1.1］R を整域, M を R 加群とする. このとき, M のねじれ元全体からなる集合 T (M) は

M の部分 R 加群である. T (M) を M のねじれ部分という.

［証明］まず, 0M ∈ T (M) であるから, T (M) 6= ∅.

x, y ∈ T (M), r ∈ R を任意にとる. xはねじれ元であるから, ある r1 ∈ R が存在して, r1x = 0M

かつ r1 6= 0R. 同様に, y はねじれ元であるから, ある r2 ∈ R が存在して, r2y = 0M かつ r2 6= 0R.

このとき, R の可換性により,

r1r2(x + y) = r1r2x + r1r2y

= r2(r1x) + r1(r2y)

= 0M .

しかも, R は零因子をもたないから, r1r2 6= 0R. ゆえに, x + y ∈ T (M). さらに, R の可換性に

より,

r1(rx) = r(r1x) = 0M .

ゆえに, rx ∈ T (M). したがって, T (M) は M の部分 R 加群である.

［定理 1.2］R を整域, M , M ′ を R 加群, f : M → M ′ を R 準同型とする. このとき,

f
(
T (M)

)
⊆ T

(
f(M)

)
が成り立つ. さらに, f が単射ならば, 等号が成り立つ.
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［証明］x ∈ T (M) を任意にとる. ある r ∈ R が存在して,

rx = 0M , r 6= 0R.

f の準同型性より,

r · f(x) = f(rx) = f(0M ) = 0M ′ .

ゆえに, f
(
T (M)

)
⊆ T

(
f(M)

)
.

次に, f が単射であると仮定する. y ∈ f
(
T (M)

)
とすると, ある r ∈ R が存在して,

ry = 0M ′ , r 6= 0R.

y ∈ f(M) であるから, ある x ∈ M が存在して, y = f(x). よって,

f(rx) = r · f(x) = ry = 0M ′ .

f の単射性より, rx = 0M . ゆえに, x ∈ T (M). したがって, y ∈ f
(
T (M)

)
となり, 逆の包含関係

もいえる.

以下, R を整域, M を R 加群とする.

M のすべての元がねじれ元であるとき, すなわち M = T (M) であるとき, M はねじれ加群で

あるという. 特に, M のねじれ部分 T (M) は常にねじれ加群である.

M が 0M 以外にねじれ元をもたないとき, すなわち T (M) = {0M} であるとき, M はねじれが

ないという.

［定理 1.3］R を整域, M を R 加群とする. このとき, 剰余 R 加群 M/T (M) はねじれがない.

［証明］π : M → M/T (M) を自然な全射 R 準同型とする.

T (M) = M のとき. M/T (M) = {0M/T (M)} となり, 明らかにねじれがない.

T (M) ( M のとき. x ∈ M \ T (M), r ∈ R とし,

r · π(x) = 0M/T (M)

と仮定する.

r · π(x) = 0M/T (M)

=⇒ π(rx) = 0M/T (M)

=⇒ rx ∈ T (M)

であるから, ある s ∈ R が存在して,

srx = 0M , s 6= 0R.

x 6∈ T (M), すなわち x は M の自由元であるから, sr = 0R. さらに, R は零因子をもたないから,

r = 0R でなければならない. したがって, π(x) は M/T (M) の自由元である.
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［定理 1.4］整域上の自由加群はねじれがない.

［証明］R を整域, M を自由 R 加群とし, B = {ui | i ∈ I} (I は添字集合) を M の R 上の基底

とする.

x ∈ T (M) とすると, ある r ∈ R が存在して,

rx = 0M , r 6= 0R.

B は M の R 上の生成系だから,

x =
s∑

j=1

ajuj ,

aj ∈ R, uj ∈ B

と表せる. よって,
s∑

j=1

rajuj = rx = 0M .

u1, u2, . . ., us は R 上 1 次独立だから, すべての j = 1, 2, . . ., s に対して,

raj = 0R.

さらに, r 6= 0R であり, かつ R は零因子をもたないから, すべての j = 1, 2, . . ., s に対して,

aj = 0R.

ゆえに, x = 0M . したがって, T (M) ⊆ {0M}. 逆の包含関係は明らかだから, T (M) = {0M}. すな

わち, M はねじれがない.

［定理 1.5］R を単項イデアル整域とする. このとき, ねじれがない有限生成 R 加群は階数有限

の自由 R 加群である.

［証明］M をねじれがない有限生成 R 加群とすると, T (M) = {0M} である. M = {0M} のとき

は定理は明らかに成り立つので, M 6= {0M} であるとする. そのとき, M は, ある有限個の 0M で

ない元 x1, x2, . . ., xn ∈ M によって R 上生成される. M はねじれがないから, x1, x2, . . ., xn の

各々は自由元である.

R は Noether 環だから, M は Noether 加群である. M の部分自由 R 加群で階数有限のものか

らなる集合をM とおく. 例えば Rx1 は M の階数有限の部分自由 R 加群であるから, M 6= ∅ で

ある. よって, M は極大元 N をもつ.

各 i = 1, 2, . . ., n に対して, ある ri ∈ R が存在して, rixi ∈ N かつ ri 6= 0R となる. なぜなら,

もし仮にそうでないとすると, ある番号 i0 が存在して, 任意の r ∈ R に対して,

rxi0 ∈ N =⇒ r = 0R

3



である. v1, v2, . . ., vk を N の生成元とすると, 任意の r1, r2, . . ., rk, r ∈ R に対して, k∑
j=1

rjvj

 + rxi0 = 0M

=⇒ rxi0 = −
k∑

j=1

rjvj ∈ N

=⇒ r = 0R,
k∑

j=1

rjvj = 0M

=⇒ r = r1 = · · · = rk = 0R.

よって, v1, v2, . . ., vk, xi0 は R 上 1 次独立である. このとき, 集合 {v1, v2, . . . , vk, xi0} は M の

部分 R 加群 N + Rxi0 の R 上の基底である. ゆえに, N + Rxi0 は M の部分自由 R 加群となり,

かつ N ( N + Rxi0 となる. これは N の極大性に反する.

さて, 写像

f : M → N,

x 7→ (r1r2 · · · rn)x

を考える. f は R 準同型である. また,

ker f ⊆ T (M) = {0M}

より, ker f = {0M} であるから, f は単射である. よって, M ∼= f(M) となる. さらに, f(M) は

N の部分 R 加群であるが, R は単項イデアル整域なので, f(M) もまた階数有限の自由 R 加群で

ある. ゆえに, M も階数有限の自由 R 加群である.

［系 1.6］R を単項イデアル整域とし, M を有限生成 R 加群, T (M) を M のねじれ部分とする.

このとき, 剰余 R 加群 M/T (M) は階数有限の自由 R 加群である.

［証明］定理 1.3, 定理 1.5 より明らかである.

［補題 1.7］R を可換環, M , N を R 加群, f : N → M , g : M → N を R 準同型とし,

g ◦ f = idN

であるとする. このとき, f は単射, g は全射であって,

M = ker g ⊕ f(N)

∼= ker g ⊕ N

が成り立つ.
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［証明］g ◦ f = idN より, f は単射, g は全射である.

x ∈ M を任意にとる.

z = x − f(g(x)) ∈ M

とおけば,

g(z) = g(x) − g(f(g(x))) = 0N .

ゆえに,

x = z + f(g(x))

∈ ker g ⊕ f(N).

また, x ∈ ker g ∩ f(N) とすると, ある y ∈ N が存在して, x = f(y). このとき,

y = g(f(y)) = g(x) = 0N .

よって,

x = g(0N ) = 0M .

ゆえに,

ker g ∩ f(N) = {0M}.

以上より,

M = ker g ⊕ f(N).

さらに, f の単射性より N ∼= f(N) だから,

ker g ⊕ f(N) ∼= ker g ⊕ N

も成り立つ.

［補題 1.8］R を可換環, M を R 加群, L を階数有限の自由 R 加群とし, g : M → L を全射 R

準同型とする. このとき, ある単射 R 準同型 f : L → M が存在して,

g ◦ f = idL

かつ

M ∼= ker g ⊕ L

が成り立つ.

［証明］{u1, u2, . . . , un} を L の R 上の基底とする. すべての y ∈ L は,

y =
n∑

i=1

riui, ri ∈ R
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の形に一意的に表される. また, g は全射だから, 各 i = 1, 2, . . ., n に対して, ある xi ∈ M が存在

して, g(xi) = ui となる. そこで, 写像 f : L → M を

f(y) =
n∑

i=1

rixi

により定める. f は R 準同型である. また, g ◦ f = idL が成り立ち, f は単射である. またこのと

き, 補題 1.7 より, R 同型 M ∼= ker g ⊕ L が得られる.

［定理 1.9］R を単項イデアル整域とし, M を有限生成 R 加群, T (M) を M のねじれ部分とす

る. このとき,

M ∼= T (M) ⊕
(
M/T (M)

)
が成り立つ.

［証明］自然な全射 R 準同型 M → M/T (M) の核は T (M) である. 系 1.6 より M/T (M) は自

由 R 加群だから, 補題 1.8 より求める同型が得られる.

2 零化域

可換環 R 上の加群 M の元 x に対して,

AnnR(x) = {r ∈ R | rx = 0M}

を x の零化域という. R 自身を R 加群とみなしたとき, AnnR(x) は, R 加群の準同型

R → M, r 7→ rx

の核である. よって, AnnR(x) は R の部分 R 加群であり, それはまさに R のイデアルである.

AnnR(x) が R の零イデアルであることと, x が M の自由元であることは同値である. また,

AnnR(x) = R であることは, x = 0M であることと同値である.

R が単項イデアル整域のとき, AnnR(x) は R の単項イデアルであり, ある 1 個の元によって生

成される.

［定理 2.1］R を単項イデアル整域, M を R 加群, x を M の元, p を R の素元とする. このと

き, 次の 2 条件は同値である.

(i) ある整数 e ≥ 0 が存在して, AnnR(x) = peR.

(ii) ある整数 e ≥ 0 が存在して, pex = 0M .
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［証明］(i)⇒(ii) AnnR(x)の生成元が pの冪と同伴であるとすると, ある整数 e ≥ 0が存在して,

AnnR(x) = peR

が成り立つ. 特に, pe ∈ AnnR(x) であるから, pex = 0M となる.

(ii)⇒(i) ある整数 e ≥ 0 が存在して, pex = 0M であると仮定する. e = 0 のとき, x = 0M で

あり, AnnR(x) の生成元は 1R である. e > 0 のとき, AnnR(x) の生成元を a とおくと,

pe ∈ AnnR(x) = aR.

すなわち, ある b ∈ R が存在して,

pe = ab.

R は素元分解整域であり, p は素元であるから, 素元分解の一意性より, a は p の冪と同伴でなけ

ればならない.

［定理 2.2］R を単項イデアル整域, M を巡回 R 加群, x を M の生成元, a を AnnR(x) の生成

元とする. このとき, R 加群としての同型

M ∼= R/aR

が成り立つ. さらに, M が自由 R 加群かつ M 6= {0M} であれば, M は R 加群として R と同型

である.

［証明］M は x を生成元とする巡回 R 加群なので, M = Rx である. このとき, R 加群としての

準同型

R → M, r 7→ rx

は全射であり, その核は AnnR(x) であるから, 準同型定理により

R/AnnR(x) ∼= M.

a は AnnR(x) の生成元だから, AnnR(x) = aR. ゆえに, R/aR ∼= M .

M が巡回自由 R 加群であるとすると, 一般に単項イデアル整域上の自由加群はねじれがない

から, M はねじれがない. また, M 6= {0M} ならば x 6= 0M である. よって, x は自由元であり,

a = 0R である. したがって, R ∼= M となる.

R を単項イデアル整域とし, M を R 加群とする. M と, R の素元 p に対して,

M(p) = {x ∈ M |ある整数 e ≥ 0 が存在して, pex = 0M}

とおく. M(p) は, ねじれ加群であり, M の部分 R 加群である.
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［定理 2.3］R を単項イデアル整域, M を R 加群, p, q を R の素元とする.

(i) p, q が互いに素のとき,

M(p) ∩ M(q) = {0M}.

(ii) p, q が同伴のとき,

M(p) = M(q).

［証明］(i) x ∈ M(p) ∩ M(q) とすると, ある整数 e ≥ 0, e′ ≥ 0 が存在して,

pex = qe′
x = 0M .

一方, R は単項イデアル整域であり, p, q は互いに素だから, ある r, s ∈ R が存在して,

per + qe′
s = 1R.

ゆえに,

x = 1R · x

= (per + qe′
s)x

= r(pex) + s(qe′
x)

= 0M

となる.

(ii) x ∈ M(p) とすると, ある整数 e ≥ 0 が存在して, pex = 0M である. p, q は同伴であるか

ら, R の単元 ε が存在して, q = pε. このとき,

qex = (pε)ex = εe(pex) = 0M .

よって, x ∈ M(q). ゆえに, M(p) ⊆ M(q). 逆の包含関係も同様にして示せる.

［定理 2.4］R を単項イデアル整域, M , M ′ を R 加群, f : M → M ′ を R 準同型, p を R の素

元とする. このとき,

f
(
M(p)

)
⊆

(
f(M)

)
(p)

が成り立つ. さらに, f が単射ならば, 等号が成り立つ.

［証明］x ∈ M(p) とすると, ある整数 e ≥ 0 が存在して, pex = 0M である. f の準同型性より,

pef(x) = f(pex) = f(0M ) = 0M ′ .

ゆえに, f
(
M(p)

)
⊆

(
f(M)

)
(p).
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次に, f が単射であると仮定する. y ∈
(
f(M)

)
(p) とすると, ある整数 e ≥ 0 が存在して,

pey = 0M ′ である. y ∈ f(M) であるから, ある x ∈ M が存在して, y = f(x). よって,

f(pex) = pef(x) = pey = 0M ′ .

f の単射性より, pex = 0M . ゆえに, x ∈ M(p). したがって, y ∈ f
(
M(p)

)
となり, 逆の包含関係

もいえる.

［定理 2.5］R を単項イデアル整域, M を有限生成ねじれ R 加群とする. このとき, ある素元

p1, p2, . . ., pt ∈ R が存在して, 直和分解

M =
t⊕

i=1

M(pi)

が成り立つ. しかも, p1, p2, . . ., pt は互いに同伴でないようにとれる.

［証明］u1, u2, . . ., uk を M の R 上の生成元とする. 各 ui は 0M でないとしておく.

各 i = 1, 2, . . ., k に対して, ri を AnnR(ui) の生成元とする. M はねじれ加群だから, ri 6= 0R

である. また, ui 6= 0M としたから, ri は単数ではない. R は素元分解整域であり, r1r2 · · · rk は R

の零元でも単元でもないから, 互いに同伴でない素元 p1, p2, . . ., pt によって,

r1r2 · · · rk = ε′p
e′
1

1 · · · pe′
t

t

と素元分解される. ただし, ε′ は R の単元, e′i ≥ 1 は整数である.

さて, x ∈ M を任意にとる. x は u1, u2, . . ., uk の R 上の 1 次結合で表される. このとき,

(r1r2 · · · rk)x = 0M .

すなわち,

r1r2 · · · rk ∈ AnnR(x).

r を AnnR(x) の生成元とすると,

r | r1r2 · · · rk.

したがって, r は

r = εpe1
1 · · · pet

t , 0 ≤ ei ≤ e′i

の形に素元分解される. ただし, εは Rの単元, ei は整数である. r の代わりに rε−1 をとり, ε = 1R

としてよい. i = 1, 2, . . ., t に対して

qi =
∏

1≤j≤t, j 6=i

pei
i
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とおけば, q1, q2, . . ., qt の最大公約元は 1R であるから,
n∑

i=1

siqi = 1R, si ∈ R

と表される. このとき,

x = 1R · x =
n∑

i=1

(siqix).

さらに,

pei
i (siqix) = sirx = 0M

であるから,

siqix ∈ M(pi).

ゆえに,

M =
t∑

i=1

M(pi).

次に, xi ∈ M(pi) (i = 1, 2, . . ., t) とし,

t∑
i=1

xi = 0M

と仮定する. 定理 2.1 より, 各 i = 1, 2, . . ., t に対して, ある整数 ei ≥ 0 が存在して,

AnnR(xi) = pei
i R

が成り立つ. i を任意に 1 つ固定したとき,

xi = −
∑

1≤j≤t, j 6=i

xj ,

qixj = 0M (j 6= i)

であるから, qixi = 0M である. R は単項イデアル整域であり, pei
i と qi は互いに素だから, ある

u, v ∈ R が存在して,

pei
i u + qiv = 1R.

ゆえに,

xi = 1R · xi

= u(pei
i xi) + v(qixi)

= 0M .

したがって, M は M(p1), M(p2), . . ., M(pt) の直和に分解される.

R を単項イデアル整域, M を R 加群, p を R の素元とする. M = M(p) であるとき, すなわち,

任意の x ∈ M に対して, ある整数 e ≥ 0 が存在して pex = 0M が成り立つとき, M を p 加群とい

う. p 加群はねじれ加群である.
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［定理 2.6］R を単項イデアル整域, p を R の素元, M を有限生成 p 加群とする. このとき, ある

整数 e1, e2, . . ., ek が存在して,

M ∼=
k⊕

i=1

R/peiR

かつ

1 ≤ e1 ≤ e2 ≤ · · · ≤ ek

が成り立つ.

［証明］G を M の R 上の生成系のうち有限集合であるもの全体とし, G に属する生成系の元の

個数の最小値を k とする. {x1, x2, . . . , xk} を k 個の元よりなる生成系とすると, M は p 加群な

ので, 定理 2.1 より, すべての i = 1, 2, . . ., k に対して, ある整数 ei ≥ 0 が存在して,

AnnR(xi) = peiR

が成り立つ. k 個の元よりなる生成系のうち

k∑
i=1

ei が最小であるものを改めて {x1, x2, . . . , xk}

とする. 必要ならば, 番号を付け替えて

e1 ≤ e2 ≤ · · · ≤ ek

とする. もし仮に e1 = 0 であるとすると, AnnR(x1) = R であるから,

x1 = 1R · x1 = 0M

となって, k− 1 個の元からなる集合 {x2, . . . , xk} が G に属することになり, k の最小性に反する.

ゆえに, e1 ≥ 1 である.

さて, M が

M =
k⊕

i=1

Rxi

のように直和に分解されることが示せたとする. 各 i = 1, 2, . . ., k に対して, 定理 2.2 より

Rxi
∼= R/AnnR(xi)

= R/peiR

である. これにより, 求める R 同型が得られる. 一方, {x1, x2, . . . , xk} は M の R 上の生成系な

ので,

M =
k∑

i=1

Rxi.

したがって, 各 i = 1, 2, . . ., k − 1 に対してi−1∑
j=0

Rxk−j

 ∩ Rxk−i = {0M}
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が成り立つことを証明すれば十分である. これを背理法により示す.

ある i0 (1 ≤ i0 ≤ k − 1) が存在して, 上式が i = 1, 2, . . ., i0 − 1 に対しては成り立つが, i = i0

に対しては成り立たないと仮定する. R の部分集合

a =

r ∈ R

∣∣∣∣∣ rxk−i0 ∈
i0−1∑
j=0

Rxk−j


は R のイデアルである. R は単項イデアル整域だから, ある a0 ∈ R が存在して, a = a0R となる.

pek−i0 ∈ a だから, ある s ∈ R が存在して, pek−i0 = a0s である. R は素元分解整域であり, p は R

の素元だから, ある整数 e′ が存在して, a0 は pe′
と同伴であり, かつ 0 ≤ e′ ≤ ek−i0 である. もし

仮に e′ = ek−i0 であるとすると, pe′
xk−i0 = 0M . ところが, 背理法の仮定より, ある a ∈ R が存在

して,

axk−i0 ∈
i0−1∑
j=0

Rxk−j , axk−i0 6= 0M .

1 番目の式より

a ∈ a = a0R = pe′
R

であるから, axk−i0 = 0M . これは 2 番目の式に反する. ゆえに, e′ < ek−i0 . また,

pe′
xk−i0 =

i0−1∑
j=0

rjp
fj xk−j ,

rj ∈ R, fj ∈ Z, fj ≥ 0

と表せる. ただし, rj 6= 0R ならば p - rj とする. 両辺に pek−i0−e′
を掛けると,

0M = pek−i0 xk−i0

=
i0−1∑
j=0

rjp
ek−i0−e′+fj xk−j .

M の部分 R 加群 N =
i0−1∑
j=0

Rxk−j は, 背理法の仮定より

N =
i0−1⊕
j=0

Rxk−j

のように直和に分解される. よって, 各 j = 0, 1, . . ., i0 − 1 に対して,

rjp
ek−i0−e′+fj xk−j = 0M ,

すなわち,

rjp
ek−i0−e′+fj ∈ pek−j R.

もし rj 6= 0R ならば, p - rj なので,

ek−i0 − e′ + fj ≥ ek−j ,

12



したがって,

fj − e′ ≥ ek−j − ek−i0 ≥ 0.

そこで, M の元 x′
1, x′

2, . . ., x′
k を, i = k − i0 のとき

x′
k−i0 = xk−i0 −

i0−1∑
j=0

rjp
fj−e′

xk−j

とおき, それ以外のとき x′
i = xi とおくことにより定めれば,

{x′
1, x′

2, . . . , x′
k} ∈ G

であり, しかも

pe′
x′

k−i0 = 0M .

定理 2.1 より, 各 i = 1, 2, . . ., k に対して, ある整数 e′i ≥ 0 が存在して,

AnnR(x′
i) = pe′

iR

が成り立つ. このとき, e′k−i0
≤ e′ であり, かつ i 6= k − i0 なるすべての番号 i に対しては e′i = ei

である. したがって,
k∑

i=1

e′i ≤ e′ +
∑

i 6=k−i0

ei <

k∑
i=1

ei.

これは

k∑
i=1

ei の最小性に反する.

3 単項イデアル整域上の有限生成加群の構造定理

［定理 3.1（単項イデアル整域上の有限生成加群の構造定理）］R を単項イデアル整域, M を有限

生成 R 加群とする. このとき, R の 2 つずつ同伴でない素元 p1, p2, . . ., pt と, 整数 ei,j (i = 1, 2,

. . ., t; j = 1, 2, . . ., u(i)) が存在して,

M ∼=

 t⊕
i=1

u(i)⊕
j=1

R/p
ei,j

i R

 ⊕ Rs (1)

かつ, 各 i = 1, 2, . . ., t に対して,

1 ≤ ei,1 ≤ ei,2 ≤ · · · ≤ ei,u(i)

が成り立つ. しかも, イデアルの列の集合{(
p

ei,1
i R, . . . , p

ei,u(i)
i R

) ∣∣∣ i = 1, 2, . . . , t
}

および s は, M に対して一意的に定まる.
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［証明］T (M) を M のねじれ部分とする. 定理 1.9 より, R 同型

M ∼= T (M) ⊕
(
M/T (M)

)
が成り立つ. 系 1.6 より, M/T (M) は階数有限の自由 R 加群である. ゆえに, ある整数 s ≥ 0 が

存在して,

M/T (M) ∼= Rs.

また, 定理 2.5 より, R の 2 つずつ同伴でない素元 p1, p2, . . ., pt が存在して,

T (M) =
t⊕

i=1

(
T (M)

)
(pi).

さらに, 各 i = 1, 2, . . ., t に対して, 定理 2.6 より, 整数 u(i) ≥ 1 と整数 ei,j が存在して,

(
T (M)

)
(pi) ∼=

u(i)⊕
j=1

R/p
ei,j

i R

かつ,

1 ≤ ei,1 ≤ ei,2 ≤ · · · ≤ ei,u(i).

ゆえに, M を式 (1) の形で表すことができる.

次に, 一意性を証明する. M が式 (1) の形で表されると仮定すると, 補題 4.1 (後述) より,

T (M) ∼=
t⊕

i=1

u(i)⊕
j=1

R/p
ei,j

i R

 ,

M/T (M) ∼= Rs

が成り立つ. 自由加群の階数の一意性により, s は M に対して一意的に定まる. また, イデアルの

列の集合 {(pei,j

i )} の一意性は補題 4.9 (後述) よりわかる.

［系 3.2（有限生成 Abel 群の構造定理）］G を有限生成 Abel 群とする. このとき, 互いに異な

る素数 p1, p2, . . ., pt と, 整数 ei,j (i = 1, 2, . . ., t; j = 1, 2, . . ., u(i)) が存在して,

G ∼=

 t⊕
i=1

u(i)⊕
j=1

Z/p
ei,j

i Z

 ⊕ Zs

かつ, 各 i = 1, 2, . . ., t に対して,

1 ≤ ei,1 ≤ ei,2 ≤ · · · ≤ ei,u(i)

が成り立つ. しかも, 素数の列の集合{(
p

ei,1
i , . . . , p

ei,u(i)
i

) ∣∣∣ i = 1, 2, . . . , t
}

および s は, M に対して一意的に定まる.
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［証明］Abel 群とは Z 加群のことである. R = Z として定理 3.1 を適用すればよい.

［定理 3.3（単項イデアル整域上の有限生成加群の構造定理）］R を単項イデアル整域, M を有限

生成 R 加群とする. このとき, R の元 d1, d2, . . ., du が存在して,

M ∼=

 u⊕
j=1

R/djR

 ⊕ Rs (2)

かつ, 各 i = 1, 2, . . ., u に対して,

R 6= d1R ⊇ d2R ⊇ · · · ⊇ duR 6= {0M}

が成り立つ. しかも, d1R, d2R, . . ., duR および s は M に対して一意的に定まる.

［証明］定理 3.1 より, R の 2 つずつ同伴でない素元 p1, p2, . . ., pt と, 整数 ei,j (i = 1, 2, . . ., t;

j = 1, 2, . . ., u(i)) が存在して,

M ∼=

 t⊕
i=1

u(i)⊕
j=1

R/p
ei,j

i R

 ⊕ Rs

かつ, 各 i = 1, 2, . . ., t に対して,

1 ≤ ei,1 ≤ ei,2 ≤ · · · ≤ ei,u(i)

が成り立つ. そこで,

u = max{u(i) | i = 1, 2, . . . , t}

とおき, 各 i = 1, 2, . . ., t に対して,

e∗i,j =

0, j ≤ u − u(i) のとき,

ei,j−u+u(i), j > u − u(i) のとき

とおく. すると,

t⊕
i=1

u(i)⊕
j=1

R/p
ei,j

i R


∼=

t⊕
i=1

 u⊕
j=1

R/p
e∗

i,j

i R


∼=

u⊕
j=1

(
t⊕

i=1

R/p
e∗

i,j

i R

)
.

各 j = 1, 2, . . ., u に対して,

dj =
t∏

i=1

p
e∗

i,j

i
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とおく. du 6= 0R かつ d1 は R の単元ではなく, すべての j = 1, 2, . . ., u − 1 に対して,

dj | dj+1.

また, p1, p2, . . ., pt は 2 つずつ互いに素だから, 中国剰余定理により,

R/djR ∼=
t⊕

i=1

R/p
e∗

i,j

i R.

ゆえに,
t⊕

i=1

u(i)⊕
j=1

R/p
ei,j

i R

 ∼=
u⊕

j=1

R/djR.

よって, M を式 (2) の形で表すことができる.

次に, 一意性を証明する. 補題 4.1 (後述) より,

T (M) ∼=
u⊕

i=1

R/djR,

M/T (M) ∼= Rs

が成り立つ. 自由加群の階数の一意性により, s は M に対して一意的に定まる. また, d1, d2, . . .,

du のいずれかの素元分解に現れる 2 つずつ互いに素な素元を p1, p2, . . ., pt とし, 各 j = 1, 2,

. . ., u に対して,

dj = εj

t∏
i=1

p
e∗

i,j

i , e∗i,j ≥ 0

を素元分解とする. ここで, εj は R の単元である. di についての条件から, 各 j = 1, 2, . . ., u に

対して,

0 ≤ e∗1,j ≤ e∗2,j ≤ · · · ≤ e∗t,j

であり, 少なくとも 1 つの j に対して e∗1,j ≥ 1 であり, またすべての j に対して e∗t,j ≥ 1 である.

各 i = 1, 2, . . ., t に対して, e∗i,j = 0 が成り立つ j の最大値を u(i) とおき, 各 j = 1, 2, . . ., u−u(i)

に対して,

ei,j = e∗i,j+u(i)

とおく. すると,

T (M) ∼=
u⊕

j=1

R/djR

∼=
u⊕

j=1

(
t⊕

i=1

R/p
e∗

i,j

i R

)

∼=
t⊕

i=1

 u⊕
j=1

R/p
e∗

i,j

i R


∼=

t⊕
i=1

u(i)⊕
j=1

R/p
ei,j

i R

 .
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また, 各 i = 1, 2, . . ., t に対して,

1 ≤ ei,1 ≤ ei,2 ≤ · · · ≤ ei,u(i)

が成り立つ. 別の d1, d2, . . ., du に対しても, T (M) についての R 同型による同様の表示が得られ

る. 補題 4.9 (後述) より t, piR, u(i), ei,j は一意的である. これより, e∗i,j の一意性がいえる. した

がって, d1, d2, . . ., du は, 各 j = 1, 2, . . ., u に対して, 単数倍 εj を除いて一致しなければならな

い.

［系 3.4（有限生成 Abel 群の構造定理）］G を有限生成 Abel 群とするとき, 正の整数 d1, d2,

. . ., du が存在して,

M ∼=

 u⊕
j=1

Z/djZ

 ⊕ Zs

かつ,

d1 > 1, di | di+1 (i = 1, 2, . . . , u − 1)

が成り立つ. しかも, d1, d2, . . ., du および s は M に対して一意的に定まる.

［証明］Abel 群とは Z 加群のことである. R = Z として定理 3.3 を適用すればよい.

4 構造定理の一意性を示すための補題

この節では, 単項イデアル整域上の有限生成加群の構造定理における一意性を示すときに使用し

た補題を証明する.

［補題 4.1］R を単項イデアル整域, M を R 加群, T (M) を M のねじれ部分とし,

M ∼=

(
r⊕

i=1

R/diR

)
⊕ Rs

であるとする. ただし, d1, d2, . . ., dr は R の 0 でない元とする. このとき,

T (M) ∼=
r⊕

i=1

R/diR,

M/T (M) ∼= Rs

が成り立つ.

［証明］N =
r⊕

i=1

R/diR とおく. R 加群の同型写像

f : N ⊕ Rs → M
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が与えられたとする. N および Rs からの入射

ι1 : N → N ⊕ Rs,

ι2 : Rs → N ⊕ Rs

を考え, i = 1, 2 に対して

fi = f ◦ ιi

とおく. すると, M は

M = f1(N) ⊕ f2(Rs)

のように直和分解される.

さて, d = d1d2 · · · dr とおくと, R は整域なので d 6= 0R. さらに, 任意の x ∈ N に対して,

d · f1(x) = f1(dx) = f1(0N ) = 0M .

ゆえに, f1(N) ⊆ T (M). もし仮に f1(N) 6= T (M) とすると, ある x ∈ T (M) \ f1(N) が存在する.

x ∈ M より

x = y + z, y ∈ f1(N), z ∈ f2(Rs)

と表せる. もし仮に z = 0M とすると x 6∈ f1(N) に反するから, z 6= 0M である. f2 は単射だから,

f−1
2 (z) ∈ Rs かつ f−1

2 (z) 6= 0Rs である. また, z = x − y ∈ T (M) より, ある a ∈ R が存在して,

az = 0M , a 6= 0R.

よって,

a · f−1
2 (z) = f−1

2 (az) = 0Rs .

ゆえに, (c1, c2, . . . , cs) = f−1
2 (z) とおくと,

(c1, c2, . . . , cs) 6= 0Rs ,

(ac1, ac2, . . . , acs) = 0Rs .

1 番目の式より, ある番号 i が存在して ci 6= 0R. ところが, 2 番目の式より aci = 0R であり, R が

整域であることと a 6= 0R より ci = 0R. これは矛盾である. ゆえに, f1(N) = T (M) でなければ

ならない. これにより, R 加群の同型

(N ⊕ Rs)/ι1(N) ∼= M/T (M),

が成り立つ. さらに, Rs への射影

N ⊕ Rs → Rs

の核は ι1(N) であるから, 準同型定理より R 加群の同型

(N ⊕ Rs)/ι1(N) ∼= Rs
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が得られる. したがって,

M/T (M) ∼= Rs

が成り立つ.

［補題 4.2］R を単項イデアル整域とし, p を R の素元とする. このとき, R 加群としての同型

u⊕
i=1

R/pR ∼=
u′⊕

i=1

R/pR

が成り立てば, u = u′ である.

［証明］まず, R 自身は R 加群であり, pR は R の部分 R 加群である. したがって, R/pR は R

の pR による剰余 R 加群である. π : R → R/pR を自然な全射 R 準同型とする. K = R/pR とお

くと,

Ku =
u⊕

i=1

R/pR,

Ku′
=

u′⊕
i=1

R/pR

である. これらは R 加群である. 各 a ∈ R と x ∈ Ku に対して, スカラー倍を

π(a) · x = ax

と定めれば, Ku は K 加群になる. 同様にして, Ku′
も K 加群になる. R は単項イデアル整域で

あるから,

p は R の素元 =⇒ pR は R の素イデアル

=⇒ pR は R の極大イデアル

=⇒ K = R/pR は体.

ゆえに, Ku, Ku′
は K 上のベクトル空間であり, K 上の次元はそれぞれ u, u′ である. さらに,

f : Ku → Ku′
を R 同型とすると, 任意の a ∈ R と x ∈ Ku に対して

f
(
π(a) · x

)
= f(a · x) = a · f(x)

= π(a) · f(x)

であるから, f は K 同型でもある. したがって, Ku, Ku′
の K 上の次元は一致する. すなわち,

u = u′ となる.

［補題 4.3］R を単項イデアル整域, M を巡回 R 加群, x を M の生成元, a を AnnR(x) の生成

元とする. このとき, a と互いに素な任意の b ∈ R に対して, bM = M が成り立つ.
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［証明］R は単項イデアル整域であり, a, b は互いに素だから, ある r, s ∈ R が存在して,

1R = ra + sb.

ゆえに,

x = (ra + sb)x

= rax + sbx

= b(sx) ∈ bM.

したがって, M ⊆ bM . 逆の包含関係は明らかだから, bM = M .

［補題 4.4］R を単項イデアル整域, p, q を R の素元, M を巡回 R 加群とする. x を M の R 上

の生成元, e ≥ 1 を整数とし, AnnR(x) = qeR であるとする. さらに, i ≥ 0 を整数とする.

(i) p, q が互いに素のとき,

piM/pi+1M ∼= {0R}.

(ii) p, q が同伴 かつ e ≤ i のとき,

piM/pi+1M ∼= {0R}.

(iii) p, q が同伴 かつ e > i のとき,

piM/pi+1M ∼= R/pR.

［証明］(i) 補題 4.3 より,

piM = M, pi+1M = M

であるから,

piM/pi+1M = M/M ∼= {0R}.

(ii) p, q は同伴だから,

AnnR(x) = qeR = peR.

さらに, e ≤ i より,

piM = {0M}, pi+1M = {0M}.

ゆえに,

piM/pi+1M = {0M}/{0M} ∼= {0R}.

(iii) M = Rx より,

f : R → piM, r 7→ pi(rx)
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は全射 R 準同型である.

πi : piM → piM/pi+1M

を自然な全射 R 準同型とする. πi と f との合成

πi ◦ f : R → piM/pi+1M

は全射 R 準同型である. また, kerπi ◦ f = pR である. 実際, r ∈ kerπi ◦ f とすれば,

pi(rx) = f(r) ∈ ker πi = pi+1M.

よって, ある s ∈ R が存在して,

pi(rx) = pi+1(sx).

移項すると,

pi(r − ps)x = 0M .

ゆえに,

pi(r − ps) ∈ AnnR(x) = peR.

R は素元分解整域であり, e > i であるから,

r − ps ∈ pe−iR.

ゆえに, r ∈ pR. 逆に, r ∈ pR とすれば,

f(r) = pi(rx) ∈ pi+1M

となり, r ∈ kerπi ◦ f である. したがって, kerπi ◦ f = pR. 準同型定理により, R 加群の同型

R/pR ∼= piM/pi+1M

が得られる.

［補題 4.5］R を単項イデアル整域とし, p を R の素元とする. このとき, R 加群としての同型

u⊕
j=1

R/pej R ∼=
u′⊕

j=1

R/pe′
j R

が成り立ち, さらに

0 < e1 ≤ e2 ≤ · · · ≤ eu,

0 < e′1 ≤ e′2 ≤ · · · ≤ e′u′

(3)

であれば,

u = u′, ej = e′j (j = 1, 2, . . . , u)

となる.
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［証明］N =
u⊕

j=1

R/pej R, N ′ =
u′⊕

j=1

R/pe′
j R とおく. f : N → N ′ を R 同型とする.

整数 i ≥ 0 を固定する. まず, f(piN) = piN ′ が成り立つから, f の piN への制限

fi : piN → piN ′, x 7→ f(x)

は R 同型である. さらに,

fi(pi+1N) = f(pi+1N) = pi+1 · f(N)

= pi+1N ′

であるから,

piN/pi+1N ∼= piN ′/pi+1N ′.

次に,

piN = pi

 u⊕
j=1

R/pej R


=

u⊕
j=1

pi(R/pej R).

補題 4.4 より, ej ≤ i ならば pi(R/pej R) ∼= {0R} であるから,

u⊕
j=1

pi(R/pej R) ∼=
⊕
ej>i

pi(R/pej R).

よって, R 同型

g : piN →
⊕
ej>i

pi(R/pej R)

が存在する. pi+1N は piN の部分 R 加群であり,

g(pi+1N) = p · g(piN)

= p

⊕
ej>i

pi(R/pej R)


=

⊕
ej>i

pi+1(R/pej R)

であるから,

piN/pi+1N ∼= g(piN)/g(pi+1N)

∼=
⊕
ej>i

pi(R/pej R)
pi+1(R/pej R)

∼=
⊕
ej>i

R/pR.
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ここで, 最後の R 同型に補題 4.4 を用いた. 同様にして, R 同型

piN ′/pi+1N ′ ∼=
⊕
e′

j>i

R/pR

も得られる. ゆえに, R 同型 ⊕
ej>i

R/pR ∼=
⊕
e′

j>i

R/pR

が成り立つ.

n(i) = #{j | ej > i},

n′(i) = #{j | e′j > i}

とおけば, 補題 4.2 より, n(i) = n′(i) となる.

以上より, 任意の整数 i ≥ 0 に対して,

n(i) = n′(i)

が成り立つ. i = 0 のとき,

u = n(0) = n′(0) = u′.

また, 各 k = 0, 1, 2, . . ., u − 1 に対して, 条件 (3) と

n′(eu−k) = n(eu−k) ≤ k

より, e′u−k ≤ eu−k. 逆に, 条件 (3) と

n(eu−k) = n(e′u−k) ≤ k

より, eu−k ≤ e′u−k. ゆえに, eu−k = e′u−k. したがって, すべての j = 1, 2, . . ., u に対して, ej = e′j

が成り立つ.

［補題 4.6］R を可換環, M を R 加群とする. M1, M2, . . ., Mn および N1, N2, . . ., Nn を M

の部分 R 加群とし,

M =
n⊕

i=1

Mi =
n⊕

i=1

Ni.

のように直和に分解されているものとする. さらに, すべての i = 1, 2, . . ., n に対して, Ni ⊆ Mi

であるとする. このとき, すべての i = 1, 2, . . ., n に対して, Ni = Mi が成り立つ.

［証明］番号 j を任意にとり固定する. x ∈ Mj とする. M が N1, N2, . . ., Nn の直和に分解され

ることから,

x =
n∑

i=1

xi, xi ∈ Ni
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と表せる. よって,

(x − xj) +
∑
i 6=j

xi = 0M .

すべての i = 1, 2, . . ., n に対して Ni ⊆ Mi であるから,

x − xj ∈ Mj ,

xi ∈ Mi (i 6= j).

M が M1, M2, . . ., Mn の直和に分解されることから, x − xj = 0M を得る. よって,

x = xj ∈ Nj .

ゆえに, Mj ⊆ Nj . したがって, Nj = Mj となる.

［補題 4.7］R を単項イデアル整域, p1, p2, . . ., pt を R の素元とし, 2 つずつ互いに素であると

する. また,

M =
t⊕

i=1

u(i)⊕
j=1

R/p
eij

i R


とおく. このとき, 各 i = 1, 2, . . ., t に対して,

M(pi) ∼=
u(i)⊕
j=1

R/p
eij

i R.

また,

M =
t⊕

i=1

M(pi).

さらに, p を R の素元とし, p1, p2, . . ., pt と互いに素であるとすれば,

M(p) = {0M}

となる.

［証明］各 i = 1, 2, . . ., t に対して,

ιi :
u(i)⊕
j=1

R/p
eij

i R → M

を入射とし, ιi の像を Ni とおく:

Ni = ιi

u(i)⊕
j=1

R/p
eij

i R

 .

すると, Ni ⊆ M(pi) であるから,

M =
t∑

i=1

M(pi).
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次に, xi ∈ M(pi) (i = 1, 2, . . ., t) とし,

t∑
i=1

xi = 0M

であるとする. 定理 2.1 より, i = 1, 2, . . ., t に対して, ある整数 ei ≥ 0 が存在して,

AnnR(xi) = pei
i R

が成り立つ. そこで, i を任意に 1 つ固定し,

qi =
∏

1≤j≤t, j 6=i

p
ej

j

とおくと,

xi = −
∑

1≤j≤t, j 6=i

xj ,

qixj = 0M (j 6= i)

であるから, qixi = 0M である. R は単項イデアル整域であり, pei
i と qi は互いに素であるから, あ

る u, v ∈ R が存在して,

pei
i u + qiv = 1R.

よって,

xi = 1R · xi

= u(pei
i xi) + v(qixi)

= 0M .

したがって, M は

M =
t⊕

i=1

M(pi)

のように M(p1), M(p2), . . ., M(pt) の直和に分解される. M は

M =
t⊕

i=1

Ni

のように N1, N2, . . ., Nt の直和に分解され, 各 i = 1, 2, . . ., t に対して Ni ⊆ M(pi) であるから,

補題 4.6 より, 各 i = 1, 2, . . ., t に対して Ni = M(pi) となる.

さて, p を R の素元とし, p1, p2, . . ., pt と互いに素であるとする. x ∈ M(p) とすると, ある整

数 e ≥ 0 が存在して,

pex = 0M .

一方,

x =
t∑

i=1

xi, xi ∈ Ni
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と表すと,

0M = pex =
t∑

i=1

pexi.

各 i = 1, 2, . . ., t に対して, pexi ∈ Ni であるから,

pexi = 0M .

よって,

xi ∈ M(p) ∩ Ni.

Ni = M(pi) であるから,

xi ∈ M(p) ∩ M(pi).

定理 2.3 より M(p) ∩ M(pi) = {0M} であるから, xi = 0M . ゆえに, x = 0M . したがって,

M(p) = {0M} となる.

［補題 4.8］R を単項イデアル整域, M を有限生成ねじれ R 加群, p1, p2, . . ., pt を R の素元と

し, M は

M =
t⊕

i=1

M(pi)

のように直和に分解され, かつ

M(pi) 6= {0M} (i = 1, 2, . . . , t)

であるとする.

(i) p1, p2, . . ., pt は 2 つずつ同伴でない.

(ii) q1, q2, . . ., qt′ を R の素元とし, p1, p2, . . ., pt と同じ条件を満たしているとすれば,

{piR | i = 1, 2, . . . , t} = {qiR | i = 1, 2, . . . , t′}

が成り立ち, t = t′ となる.

［証明］(i) もし仮に p1, p2 が同伴であるとすれば, 定理 2.3 より M(p1) = M(p2) であるから,

M(p1) ∩ M(p2) = M(p1) 6= {0M}.

一方, M が M(pi) (i = 1, 2, . . ., n) の直和に分解されていることから,

M(p1) ∩ M(p2) = {0M}.

これは矛盾である. ゆえに, p1, p2 は同伴でない. 他の pi, pj (i 6= j) についても同様である.
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(ii) もし仮に

q1R 6∈ {piR | i = 1, 2, . . . , t}

とすると, M(q1) 6= {0M} より, ある整数 e ≥ 1 と x ∈ M が存在して,

qe
1x = 0M , x 6= 0M .

一方,

x =
t∑

i=1

xi, xi ∈ M(pi)

と表すと,

0M = qe
1x =

t∑
i=1

qe
1xi.

各 i = 1, 2, . . ., t に対して, M(pi) は M の部分 R 加群だから, qe
1xi ∈ M(pi). ゆえに,

qe
1xi = 0M .

すなわち,

xi ∈ M(p1).

x 6= 0M より, ある番号 i0 (1 ≤ i0 ≤ t) が存在して, xi0 6= 0M . ゆえに,

M(q1) ∩ M(pi0) 6= {0M}.

ところが, 仮定より q1 と pi0 とは同伴でないから, 定理 2.3 より

M(q1) ∩ M(pi0) = {0M}.

これは矛盾である. よって,

q1R ∈ {piR | i = 1, 2, . . . , t}.

他の qi についても同様である. ゆえに,

{qiR | i = 1, 2, . . . , t′} ⊆ {piR | i = 1, 2, . . . , t}.

逆の包含関係も同じようにしていえるので, 等号が成り立つ. さらに, p1, p2, . . ., pt は 2 つずつ同

伴でないから, p1R, p2R, . . ., ptR はすべて異なる. q1, q2, . . ., qt′ についても同様. したがって,

t = t′ となる.

［補題 4.9］R を単項イデアル整域とする. p1, p2, . . ., pt を R の素元とし, 2 つずつ互いに素で

あるとする. q1, q2, . . ., qt′ も同様とする. R 加群としての同型

t⊕
i=1

u(i)⊕
j=1

R/p
eij

i R

 ∼=
t′⊕

i=1

u′(i)⊕
j=1

R/q
fij

i R

 (4)
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が成り立ち, さらに i ごとに

0 < ei,1 ≤ ei,2 ≤ · · · ≤ ei,u(i),

0 < fi,1 ≤ fi,2 ≤ · · · ≤ fi,u′(i)

(5)

であるとする. このとき, q1, q2, . . ., qt′ の番号を適当に振りなおせば,

t = t′, piR = qiR (i = 1, 2, . . . , t),

u(i) = u′(i) (i = 1, 2, . . . , t),

ei,j = fi,j (i = 1, 2, . . . , t; j = 1, 2, . . . , u(i))

となる.

［証明］式 (4) の右辺を M , 左辺を M ′ とおく. f : M → M ′ を R 同型とする. 補題 4.7 より,

M =
t⊕

i=1

M(pi),

M ′ =
t′⊕

i=1

M ′(qi)

と表せる. ただし, p1, p2, . . ., pt は互いに同伴でない R の素元である. q1, q2, . . ., qt′ も同様であ

る. また, 定理 2.4 より, 各 i = 1, 2, . . ., t に対して

M(pi) ∼= f
(
M(pi)

)
=

(
f(M)

)
(pi)

= M ′(pi). (6)

よって,

M ′ = f(M)

= f

(
t⊕

i=1

M(pi)

)

=
t⊕

i=1

f
(
M(pi)

)
=

t⊕
i=1

M ′(pi).

ゆえに,
t⊕

i=1

M ′(pi) =
t′⊕

i=1

M ′(qi).

補題 4.8 より,

{piR | i = 1, 2, . . . , t} = {qiR | i = 1, 2, . . . , t′}
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が成り立ち, t = t′ となる. q1, q2, . . ., qt′ の番号を適当に振りなおして, 各 i = 1, 2, . . ., t に対し

て, piR = qiR であるとしても一般性を失わない.

次に, 各 i = 1, 2, . . ., t に対して, 補題 4.7 より,

M(pi) ∼=
u(i)⊕
j=1

R/p
eij

i R,

M ′(pi) ∼=
u′(i)⊕
j=1

R/p
fij

i R.

これと (6) より,
u(i)⊕
j=1

R/p
eij

i R ∼=
u′(i)⊕
j=1

R/p
fij

i R.

したがって, 補題 4.5 より, u(i) = u′(i). またこのとき, j = 1, 2, . . ., u(i) に対して, eij = fij が

成り立つ.
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