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この文書の主な目的は, 二項間漸化式

ak+1 = p ak + q

または三項間漸化式

ak+2 = p ak+1 + qak + r

で定義される数列 (ak)の一般項を計算することです.
この文書で登場する数列は, すべて実数列であるとします. また, 数列は

a1, a2, a3, . . .

のような, 自然数で番号づけられているもののみを扱います1. したがって, 添え字が自然数である
ことを明記せずに, 数列を (ak)のように表すことが多々あります.
Rは実数の全体からなる集合をで表します. Nは自然数全体からなる集合を表します. この文書

において, 自然数は 0を含めず, 1から始まるものとします.

1 定数列

最初に, 最も単純な数列である定数列に触れたいと思います.
c ∈ Rに対して, 漸化式

ak = c

で定義されるような数列 (ak)を定数列といいます.
定数列の場合, 一般項が漸化式ですでに表示されているので, これ以上することはありません.

2 等差数列

q ∈ Rに対して, 漸化式
ak+1 = ak + q

で定義されるような数列を公差 qの等差数列といいます.
1自然数で番号づけられた数列しか見たことのない方にとっては, 当たり前のことをわざわざ言っているように思われる

かもしれません. しかし, 世の中には添え字として自然数以外のものを用いる数列も存在します. この文書ではそのような
ものは考えない, ということを最初に断っているわけです.
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等差数列の一般項は

ak = a1 + (k − 1)q

となります.

3 等比数列

p ∈ Rに対して, 漸化式
ak+1 = p ak

で定義されるような数列を公比 pの等比数列といいます.
等比数列の一般項は

ak = pk−1a1

となります.

4 二項間漸化式 (1)

p, q ∈ Rに対して, 二項間漸化式
ak+1 = p ak + q (1)

で与えられる数列 (ak)を考察します. ここで, 数列 (ak)は, p = 1のとき公差 qの等差数列であり,
q = 0のときは公比 pの等比数列です.
式 (1)において, kのところに k + 1を代入すると

ak+2 = p ak+1 + q (2)

となります. 式 (1)と式 (2)より

ak+2 − ak+1 = p (ak+1 − ak)

が得られます.
ここで, 階差数列について復習します. 一般に, 二つの数列 (ak), (bk)の間に

ak+1 − ak = bk

のような関係があるとき, (bk)を (ak)の階差数列といいます. このとき, 任意の k ∈ Nに対して

ak − a1 =
k−1∑

i=1

bi

が成り立ちます2.
さて,

bk = ak+1 − ak

とおくと,
bk+1 = p bk

2ただし, k = 1 のときは右辺の和が 0 であると考えます.
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です. よって, 数列 (bk)は公比 pの等比数列であり, 一般項は

bk = pk−1b1

となります. (bk)の定義と漸化式 (1)より,

b1 = a2 − a1 = (pa1 + q)− a1 = (p− 1)a1 + q.

よって

bk = pk−1
(
(p− 1)a1 + q

)
.

(bk)は (ak)の階差数列なので,

ak = a1 +
k−1∑

i=1

bi

= a1 +
k−1∑

i=1

pi−1
(
(p− 1)a1 + q

)

= a1 +
(
(p− 1)a1 + q

) k−1∑

i=1

pi−1

と計算できます.
p 6= 1のとき,

k−1∑

i=1

pk−1 =
pk−1 − 1

p− 1

なので, (ak)の一般項を表す式は

ak = a1 +
(
(p− 1)a1 + q

)pk−1 − 1
p− 1

= pk−1a1 +
pk−1 − 1

p− 1
q (3)

となります.
p = 1のとき,

k−1∑

i=1

pk−1 =
k−1∑

i=1

1 = k − 1

なので,

ak = a1 +
(
(p− 1)a1 + q

)
(k − 1)

= a1 + (k − 1)q

となり, 確かに公差 qの等差数列の一般項を表す式が得られます.

5 二項間漸化式 (2)

§4では階差数列を用いて一般項を計算しました. この節では, §4とは別の方法で一般項を計算し
ます.
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p, q ∈ Rに対して, 二項間漸化式
ak+1 = p ak + q (4)

で与えられる数列 (ak)を考察します. ただし, p 6= 1を仮定する必要があります.

ξ = p ξ + q (5)

を満たすような ξをとります. p 6= 1であればこのような ξが存在します. 実際, この等式を ξにつ

いての方程式と見れば, ξ = −q/(p− 1)が解になります.
式 (4)と式 (5)より

ak+1 − ξ = p (ak − ξ)

が得られます. bk = ak − ξとおくと, (bk)は公比 pの等比数列であり, 一般項は

bk = pk−1b1

です. よって
ak − ξ = pk−1(a1 − ξ).

ξ = −q/(p− 1)を代入して整理すれば

ak = pk−1a1 +
pk−1 − 1

p− 1
q

が得られます. これは §4の式 (3)と一致します.
式 (5)の ξ を用いるというのは, 式 (4)の形の二項間漸化式から一般項を計算するときによく使

われる方法です. 誰が最初にこの方法を思いついたのか, 私は知りません. ただ, 勘のいい人であれ
ばこの程度のことは思いつきそうな気がします3.

6 フィボナッチ数列

この節では, 三項間漸化式を一般的な形で扱う前に, 三項間漸化式の定番ともいえるフィボナッ
チ数列の一般項を計算してみます. フィボナッチ数列とは, 漸化式

ak+2 = ak+1 + ak

によって定義される数列 (ak)のことです.
α + β = 1, αβ = −1となるような α, β を考えます. すなわち,

ak+2 = (α + β)ak+1 − αβak (6)

です. この α, β は後で計算します. 今はとりあえず先に進みます.
式 (6)より,

ak+2 − αak+1 = β(ak+1 − αak) (7)

が得られます.
ck = ak+1 − αak

3q を消去して等比数列に帰着できないか, ということを考えれば, このような発想に行き着くのではないでしょうか.
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とおくと, (ck)は公比 β の等比数列であり, 一般項は

ck = βk−1c1

です. よって
ak+1 − αak = βk−1(a2 − αa1) (8)

が得られます.
また, 式 (6)より,

ak+2 − βak+1 = α(ak+1 − βak) (9)

が得られます. ちなみにこの式は, 式 (7)において αと β とを入れ替えたものになっています.

dk = ak+1 − βak

とおくと, (dk)は公比 αの等比数列であり, 一般項は

dk = αk−1d1

です. よって
ak+1 − βak = αk−1(a2 − βa1) (10)

が得られます.
式 (8)と式 (10)によって ak+1 を消去すれば,

ak =
αk−1 − βk−1

α− β
a2 +

αβk−1 − βαk−1

α− β
a1

が得られます4. これがフィボナッチ数列の一般項です.
あとは, αと β が計算できれば完璧です.
さて, 二次方程式における解と係数の関係を思い出すと, α + β = 1, αβ = −1となるような α,

β は, 方程式
t2 − t− 1 = 0

の 2つの解です. これを解くことにより

α =
1 +

√
5

2
, β =

1−√5
2

が得られます5.
とくに, a1 = 0, a2 = 1のとき, (ak)の一般項が

ak =
1√
5

((
1 +

√
5

2

)k−1

−
(

1−√5
2

)k−1
)

と表せる, というのは周知の結果です.

4ここで, もし仮に α = β とすると, α + β = 1, αβ = −1 は同時には成り立ちません. したがって α 6= β です.
5α = (1−√5)/2, β = (1 +

√
5)/2 とおいても問題ありません.
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7 三項間漸化式 (1)

二次方程式

t2 − p t− q = 0

の解を α, β とする6と, 解と係数の関係から

α + β = p, αβ = −q

が成り立ちます.
三項間漸化式

ak+2 = p ak+1 + qak

が与えられたとき,
ak+2 = (α + β)ak+1 − αβak

となります. この式から,

ak+2 − αak+1 = β(ak+1 − αak),

ak+2 − βak+1 = α(ak+1 − βak)

が得られます. フィボナッチ数列の一般項を計算したときと同様にして, 二つの式から

ak+1 − αak = βk−1(a2 − αa1),

ak+1 − βak = αk−1(a2 − βa1)

が得られます.
α 6= β であれば, 二つの式から ak+1 の項を消去して, 一般項を表す式

ak =
αk−1 − βk−1

α− β
a2 +

αβk−1 − βαk−1

α− β
a1

が得られます.
α = β のとき, 二つの式は一致し,

ak+2 − αak+1 = αk−1(ak+1 − αak)

となります. α = β = 0の場合は自明なので7, α = β 6= 0と仮定します.

ck = ak+1 − αak

とおくと, (ck)は公比 β の等比数列であり, 一般項は

ck = αk−1c1

です. よって
ak+1 − αak = αk−1(a2 − αa1)

が得られます. 両辺を αk+1 で割ると,

ak+1

αk+1
− ak

αk
=

a2 − αa1

α2

6α, β は, 一般には複素数になります.
7実際, a1, a2 をどのように定めても, すべての番号 k ≥ 3 について ak = 0 となることはすぐにわかると思います.
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となります. 右辺は定数ですので,
dk =

ak

αk

とおくと, (dk)は等差数列です. よって

dk = d1 + (k − 1)
a2 − αa1

α2
,

すなわち
ak

αk
=

a1

α
+ (k − 1)

a2 − αa1

α2
.

両辺に αk を乗じて整理すると

ak = (k − 1)αk−2a2 − (k − 2)αk−1a1

が得られます.

最後に結果をまとめます. 三項間漸化式

ak+2 = p ak+1 + qak

によって定義される数列 (ak)の一般項は次のようになります：二次方程式

t2 − p t− q = 0

の解を α, β とするとき, α 6= β ならば

ak =
αk−1 − βk−1

α− β
a2 +

αβk−1 − βαk−1

α− β
a1

であり, α = β ならば

ak = (k − 1)αk−2a2 − (k − 2)αk−1a1

です.

8 三項間漸化式 (2)

この節では, p, q ∈ Rに対して, 三項間漸化式

ak+2 = p ak+1 + qak (11)

で与えられる数列 (ak)の一般項を, 行列を使って計算する方法を紹介します.
行列を使って計算するときの技術的なポイントは,

bk = ak−1 (12)

によって定義される数列 (bk)を補助的に利用することです. これにより, 連立漸化式

ak+1 = p ak + qbk

bk+1 = ak
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が得られます. これは, 行列を用いて
(

ak+1

bk+1

)
=

(
p q

1 0

)(
ak

bk

)

と表示できます. A =

(
p q

1 0

)
とおき, 再帰的に計算すると

(
ak+1

bk+1

)
= Ak−1

(
a2

b2

)

が得られます. 数列 (bk)の定義の仕方より, 上式は
(

ak+1

ak

)
= Ak−1

(
a2

a1

)
(13)

と同じです. したがって, Ak−1 が計算できれば, 数列 (ak)の一般項 ak が求まります.
行列 Aが単純な形であれば, 直接 Ak−1 を計算することも可能です. しかし, Aが複雑な形のと

きでも, Ak−1 を系統的に計算する方法があります.
実は, 行列Aが与えられたとき, 適当な正則行列8 P をとると, P−1AP が単純な形の行列になる

ことが知られています9. B = P−1AP とおくと,

Bk−1 = (P−1AP )k−1 = P−1Ak−1P

なので

Ak−1 = PBk−1P−1 (14)

となります. Bは単純な形なので, Bk−1は容易に計算できます. よって, Aが複雑な形のときには,
Ak−1 を直接計算するより PBk−1P−1 を計算するほうが簡単です.
この方法の難所は, 正則行列 P を計算する部分です. しかし, この文書では説明を省略します. 興

味のある方は線形代数の本をお読みください10. 一言だけ注意しておくと, 正則行列 P の存在は理

論的に保証されており, 系統的に計算して求めることが可能です11.
さて, 二次方程式

t2 − p t− q = 0

の解を α, β とします. 解と係数の関係により,

α + β = p, αβ = −q

が成り立つことに注意してください12. α 6= 0のときと α = β のときとで場合分けをします.
α 6= β のとき,

P =

(
α β

1 1

)

8逆行列 P−1 が存在するとき, 行列 P は正則であるといいます. E を単位行列とすると, P−1P = PP−1 = E が成り
立ちます.

9いわゆる「行列の標準化」です.
10線形代数の本は数学の専門書のコーナーにあります. 学習参考書のコーナーにはありません. また, 数学の専門書は, 大
規模な書店でないと置いてありません. 近所に大規模な書店がない場合には, アマゾンなどインターネット上の書店を利用
するとよいでしょう.

11したがって Ak−1 が系統的に計算できます.
12このことは後の計算で暗黙のうちに利用しています.
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とおくと,

P−1 =
1

α− β

(
1 −β

−1 α

)

なので,

P−1AP =

(
α 0
0 β

)

となります. よって式 (14)より

Ak−1 = P

(
α 0
0 β

)k−1

P−1 = P

(
αk−1 0

0 βk−1

)
P−1

=
1

α− β

(
αk − βk αβk − βαk

αk−1 − βk−1 αβk−1 − βαk−1

)
.

これを式 (13)に代入して計算すれば, 一般項を表す式

ak =
αk−1 − βk−1

α− β
a2 +

αβk−1 − βαk−1

α− β
a1

が得られます.
α = β のとき,

P =

(
α 1
1 0

)

とおくと13,

P−1 =

(
0 1
1 −α

)

なので,

P−1AP =

(
α 1
0 α

)

となります. よって式 (14)より

Ak−1 = P

(
α 1
0 α

)k−1

P−1 = P

(
αk−1 (k − 1)αk−2

0 αk−1

)
P−1

=
1

α− β

(
kαk−1 −(k − 1)αk

(k − 1)αk−2 −(k − 2)αk−1

)
.

これを式 (13)に代入して計算すれば, 一般項を表す式

ak = (k − 1)αk−2a2 − (k − 2)αk−1a1

が得られます.

13なぜ α 6= β のときと同じ P をとらないのでしょうか. その理由は, α = β のとき P =

„
α β
1 1

«
が正則ではないか

らです.
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9 三項間漸化式 (3)

いよいよ

ak+2 = p ak+1 + qak + r (p, q, r ∈ R) (15)

という形の三項間漸化式で定義された数列 (ak)の一般項を計算します. まず,

p + q 6= 1

が成り立つ場合について考察します. このとき

ξ = p ξ + q ξ + r (16)

を満たす ξが存在します. 式 (15)と式 (16)より

ak+2 − ξ = p (ak+1 − ξ) + q(ak − ξ) (17)

が得られます.
bk = ak − ξ = ak +

r

p + q − 1

とおくと, 式 (17)は
bk+2 = p bk+1 + qbk

と書き直すことができます.
二次方程式

t2 − p t− q = 0

の解を α, β とおきます. α 6= β のときと α = β のときとで場合分けをします.
α 6= β のとき, §7の結果から, (bk)の一般項は

bk =
αk−1 − βk−1

α− β
b2 +

αβk−1 − βαk−1

α− β
b1

となります. よって,

ak +
r

p + q − 1
=

αk−1 − βk−1

α− β

(
a2 +

r

p + q − 1

)

+
αβk−1 − βαk−1

α− β

(
a1 +

r

p + q − 1

)
.

整理すると,

ak =
αk−1 − βk−1

α− β
a2 +

αβk−1 − βαk−1

α− β
a1

+
(

(1− β)αk−1 − (1− α)βk−1

α− β
− 1

)
r

p + q − 1

が得られます.
α = β のとき, §7の結果から, (bk)の一般項は

bk = (k − 1)αk−2b2 − (k − 2)αk−1b1
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となります. よって,

ak +
r

p + q − 1
= (k − 1)αk−2

(
a2 +

r

p + q − 1

)

− (k − 2)αk−1

(
a1 +

r

p + q − 1

)
.

整理すると,

ak = (k − 1)αk−2a2 − (k − 2)αk−1a1

+
(
(k − 1)αk−2 − (k − 2)αk−1 − 1

) r

p + q − 1

が得られます.

10 三項間漸化式 (4)

この節でも引き続き,
ak+2 = p ak+1 + qak + r (p, q, r ∈ R) (18)

という形の三項間漸化式で定義された数列 (ak)の一般項を計算します. 今度は

p + q = 1

が成り立つ場合について考察します. このとき

t2 − p t− q = t2 − (1− q)t− q = (t− 1)(t + q)

なので, 二次方程式 t2 − p t− q = 0の解は 1, −qです.
式 (18)の kに k + 1を代入すると,

ak+3 = p ak+2 + qak+1 + r. (19)

式 (18)と式 (19)より

ak+3 − ak+2 = p (ak+2 − ak+1) + q(ak+1 − ak) (20)

が得られます.
bk = ak+1 − ak

とおくと, 式 (20)は
bk+2 = p bk+1 + qbk

と書き直すことができます. また, (bk)は (ak)の階差数列なので,

ak = a1 +
k−1∑

i=1

bi

が成り立ちます.
q 6= −1のとき, §7の結果から, (bk)の一般項は

bk =
1− (−q)k−1

1 + q
b2 +

(−q)k−1 + q

1 + q
b1
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となります. よって

s1,k =
k−1∑

i=1

(−q)i−1 =
1− (−q)k−1

1 + q
,

s2,k =
k−1∑

i=1

1 = k − 1

とおくと,

ak = a1 +
k−1∑

i=1

bi

= a1 +
b2

1 + q
(s2,k − s1,k) +

b1

1 + q
(s1,k + qs2,k) (21)

と書けます. (bk)の定義と漸化式 (18)より

b2 = a3 − a2 = (p a2 + qa1 + r)− a2

= (p− 1)a2 + qa1 + r

= −qa2 + qa1 + r,

b1 = a2 − a1

なので, これらを式 (21)に代入して計算すると,

ak = a1 +
−qa2 + qa1 + r

1 + q
(s2,k − s1,k) +

a2 − a1

1 + q
(s1,k + qs2,k)

= s1,ka2 + (1− s1,k)a1 + (s2,k − s1,k)
r

1 + q
.

したがって

ak =
1− (−q)k−1

1 + q
a2 +

q + (−q)k−1

1 + q
a1

+
(

(k − 1)− 1− (−q)k−1

1 + q

)
r

1 + q

となります.
q = −1のとき, §7の結果から, (bk)の一般項は

bk = (k − 1)b2 − (k − 2)b1

となります. よって

ak = a1 +
k−1∑

i=1

bi

= a1 + b2

k−1∑

i=1

(i− 1)− b1

k−1∑

i=1

(i− 2). (22)

p = 1− q = 2であることに注意すると, (bk)の定義と漸化式 (18)より

b2 = a3 − a2 = (2 a2 − a1 + r)− a2

= a2 − a1 + r,

b1 = a2 − a1
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なので, これらを式 (22)に代入して計算すると,

ak = a1 + (a2 − a1 + r)
k−1∑

i=1

(i− 1)− (a2 − a1)
k−1∑

i=1

(i− 2)

=

(
k−1∑

i=1

(i− 1)−
k−1∑

i=1

(i− 2)

)
a2

+

(
1−

k−1∑

i=1

(i− 1) +
k−1∑

i=1

(i− 2)

)
a1

+

(
k−1∑

i=1

(i− 1)

)
r

= (k − 1)a2 − (k − 2)a1 +
1
2
(k − 1)(k − 2)r

となります.

11 三項間漸化式 (5)

この節では, 三項間漸化式

ak+2 = p ak+1 + qak + r (p, q, r ∈ R) (23)

で与えられる数列 (ak)の一般項を, 行列を使って計算する方法を紹介します.
数列 (bk)を補助的に利用し, 連立漸化式

ak+1 = p ak + qbk + r

bk+1 = ak

1 = 1

を考えます. これは, 行列を用いて



ak+1

bk+1

1


 =




p q r

1 0 0
0 0 1







ak

bk

1




と表示できます. A =




p q r

1 0 0
0 0 1


 とおき, 再帰的に計算すると




ak+1

bk+1

1


 = Ak−1




a2

b2

1




が得られます. 上式は 


ak+1

ak

1


 = Ak−1




a2

a1

1


 (24)

13



と同じです. したがって, Ak−1 が計算できれば, 数列 (ak)の一般項 ak が求まります.

二次方程式

t2 − p t− q = 0

の解を α, β とします.
(I) α 6= 1, β 6= 1のとき

1− p− q = 1− (α + β) + αβ = (1− α)(1− β) 6= 0

が成り立ちます14. そこで,
ξ =

r

p + q − 1

とおきます.
(I-i) α 6= β のとき

P =




α β −ξ

1 1 −ξ

0 0 1




とおくと,

P−1 =
1

α− β




1 −β −ξ(β − 1)
−1 α ξ(α− 1)
0 0 α− β




であり,

P−1AP =




α 0 0
0 β 0
0 0 1




となります. よって,

Ak−1 = P




α 0 0
0 β 0
0 0 1




k−1

P−1 = P




αk−1 0 0
0 βk−1 0
0 0 1


P−1

=




αk−βk

α−β
αβk−βαk

α−β

(
(1−β)αk−(1−α)βk

α−β − 1
)
ξ

αk−1−βk−1

α−β
αβk−1−βαk−1

α−β

(
(1−β)αk−1−(1−α)βk−1

α−β − 1
)
ξ

0 0 1


 .

これを式 (24)に代入して計算すれば, 一般項を表す式

ak =
αk−1 − βk−1

α− β
a2 +

αβk−1 − βαk−1

α− β
a1

+
(

(1− β)αk−1 − (1− α)βk−1

α− β
− 1

)
r

p + q − 1

が得られます.

14実は, 条件「p + q 6= 1」と条件「α 6= 1, β 6= 1」とは同値です.
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(I-ii) α = β のとき

P =




α 1 −ξ

1 0 −ξ

0 0 1




とおくと,

P−1 =




0 1 ξ

−1 −α −(α− 1)ξ
0 0 1




であり,

P−1AP =




α 1 0
0 α 0
0 0 1




となります. よって,

Ak−1 = P




α 1 0
0 α 0
0 0 1




k−1

P−1 = P




αk−1 (k − 1)αk−2 0
0 αk−1 0
0 0 1


 P−1

=




kαk−1 −(k − 1)αk
(
kαk−1 − (k − 1)αk − 1

)
ξ

(k − 1)αk−2 −(k − 2)αk−1
(
(k − 1)αk−2 − (k − 2)αk−1 − 1

)
ξ

0 0 1


 .

これを式 (24)に代入して計算すれば, 一般項を表す式

ak = (k − 1)αk−2a2 − (k − 2)αk−1a1

+
(
(k − 1)αk−2 − (k − 2)αk−1 − 1

) r

p + q − 1

が得られます.
(II) α = 1または β = 1のとき
(II-i) α 6= β, α = 1のとき15

このとき, β = αβ = −qが成り立ちます. α 6= β という仮定から, q 6= −1です.

η =
r

1 + q

とおき,

P =




β −2qη + 2r η

1 2η −η

0 0 2




とおくと,

P−1 =
1

α− β




−1 1 η

1/(2η) α/(2η) (1 + α)/4
0 0 −(1− α)/2




15α 6= β, β = 1 としても同じ結果が得られます.
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であり,

P−1AP =




β 0 0
0 1 1
0 0 1




となります. よって,

Ak−1 = P




β 0 0
0 1 1
0 0 1




k−1

P−1 = P




βk−1 0 0
0 1 (k − 1)
0 0 1


 P−1

=




1−(−q)k

1+q
q+(−q)k

1+q

(
k − 1−(−q)k

1+q

)
η

1−(−q)k−1

1+q
q+(−q)k−1

1+q

(
(k − 1)− 1−(−q)k−1

1+q

)
η

0 0 1


 .

これを式 (24)に代入して計算すれば, 一般項を表す式

ak =
1− (−q)k−1

1 + q
a2 +

q + (−q)k−1

1 + q
a1

+
(

(k − 1)− 1− (−q)k−1

1 + q

)
r

1 + q

が得られます.
(II-ii) α = β = 1のとき

P =




r r 0
r 0 0
0 0 1




とおくと,

P−1 =
1
r




0 1 0
−1 −1 0
0 0 r




であり,

P−1AP =




1 1 0
0 1 1
0 0 1




となります. よって,

Ak−1 = P




1 1 0
0 1 1
0 0 1




k−1

P−1 = P




1 k − 1 (k−1)(k−2)
2

0 1 k − 1
0 0 1


P−1

=




k −(k − 1) k(k−1)
2 r

(k − 1) −(k − 2) (k−1)(k−2)
2 r

0 0 1


 .

これを式 (24)に代入して計算すれば, 一般項を表す式

ak = (k − 1)a2 − (k − 2)a1 +
(k − 1)(k − 2)

2
r

が得られます.
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12 三項間漸化式 (6)

今までの結果をまとめたいと思います.
p, q, r ∈ Rとし, 二次方程式

t2 − p t− q − 0

の解を α, β とします. 三項間漸化式

ak+2 = p ak+1 + qak + r

で定義される数列 (ak)の一般項は次のようになります.

(I) p + q 6= 1のとき
(I-i) α 6= β のとき

ak =
αk−1 − βk−1

α− β
a2 +

αβk−1 − βαk−1

α− β
a1

+
(

(1− β)αk−1 − (1− α)βk−1

α− β
− 1

)
r

p + q − 1
.

(I-ii) α = β のとき

ak = (k − 1)αk−2a2 − (k − 2)αk−1a1

+
(
(k − 1)αk−2 − (k − 2)αk−1 − 1

) r

p + q − 1
.

(II) p + q = 1のとき
(II-i) q 6= −1のとき

ak =
1− (−q)k−1

1 + q
a2 +

q + (−q)k−1

1 + q
a1

+
(

(k − 1)− 1− (−q)k−1

1 + q

)
r

1 + q
.

(II-ii) q = −1のとき

ak = (k − 1)a2 − (k − 2)a1 +
(k − 1)(k − 2)

2
r.
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