
1 p進整数環

pを素数とし，Z/piZを Zの piZによる剰余環とする．n ≤ mなる二つの自然数m, nに対し

て，写像 φm,nを

φm,n : Z/pm+1Z −→ Z/pn+1Z, x + pm+1Z �−→ x + pn+1Z

と定義すれば，φm,n は環の全射準同型であって

φm,m = id (恒等写像)

n ≤ m ≤ l =⇒ φl,n = φm,n ◦ φl,m

が成り立つ．いま

Zp =

{
(xi)i∈N ∈

∞∏
i=0

Z/pi+1Z

∣∣∣∣ n ≤ m =⇒ φm,n(xm) = xn

}

とおく．

注意 1.1. 以後，Zp の元 x = (xi)i∈N, y = (yi)i∈N に対して，

xi ≡ 0 (mod pi+1), xi ≡ yi (mod pi+1)

などを，省略してそれぞれ

xi = 0, xi = yi

と書く．

命題 1.2. x = (xi)i∈N を Zp の元，mを自然数とする．このとき，xm = 0ならば，0 ≤ n ≤ m

に対して xn = 0が成り立つ．

証明. 0 ≤ n ≤ mに対して

xn = φm,n(xm) = φm,n(0) = 0

となる．

系 1.3. x = (xi)i∈N を Zp の元，mを自然数とする．このとき，xm �= 0ならば，k ≥ mなるす

べての自然数 kに対して xk �= 0が成り立つ．

証明. もし仮に k ≥ mなる自然数 kで xk �= 0なるものがあれば，命題 1.2より xm = 0となる．
これは仮定に矛盾する．

Zpにおける和および積を次のように定義する．Zpの二つの元 x = (xi)i∈N, y = (yi)i∈Nに対して

x + y = (xi + yi)i∈N, xy = (xiyi)i∈N

と定める．ここで x + y ∈ Zp, xy ∈ Zp であることは，n ≤ mならば

φm,n(xm + ym) = φm,n(xm) + φm,n(ym) = xm + ym,

φm,n(xmym) = φm,n(xm)φm,n(ym) = xmym
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となることからわかる．各 Z/pi+1Zが可換環であることから，Zp の二つの元 x, yについて

x + y = (xi + yi)i∈N = (yi + xi)i∈N = y + x,

xy = (xiyi)i∈N = (yixi)i∈N = yx

したがって Zpは可換環である．Zp の零元，単位元はそれぞれ

0 = (0)i∈N, 1 = (1)i∈N

である．

写像

f : Z −→ Zp, a �−→ (a + pi+1Z)i∈N

を考える．f が well-definedであることは

n ≤ m =⇒ φm,n(a + pmZ) = a + pnZ

より明らかである．φm,n の準同型性から f が環の準同型写像であることがわかる．また，Zの二

つの元 a, bに対して

f(a) = f(b) =⇒ a ≡ b (mod pi) (∀i ∈ N) =⇒ pi | a − b (∀i ∈ N) =⇒ a − b = 0

したがって f は単射である．この f により Zを Zp の部分環とみなすことができる．

命題 1.4. Zp は整域である．そこで Zp を p進整数環ということにする．

証明. x = (xi)i∈N, y = (yi)i∈N を Zpの 0でない二つの元とする．このときある番号m, nがあっ

て xm �≡ 0 (mod pm+1), yn �≡ 0 (mod pn+1)となる．すなわちある整数 a, b, k, lによって

xm ≡ apk (mod pm+1), k < m + 1, (p, a) = 1,

yn ≡ bpl (mod pn+1), l < n + 1, (p, b) = 1

と表せる．このとき

xm+n+1ym+n+1 �≡ 0 (mod pm+n+2)

が示せる．なぜなら

φm+n+1,m(xm+n+1) = xm ≡ apk (mod pm+1)

より，ある整数 a′が存在して

xm+n+1 = a′pk, k < m + 1, (a′, p) = 1

と書ける．同様にして，ある整数 b′が存在して

ym+n+1 = b′pk, k < n + 1, (b′, p) = 1

と書ける．したがって

xm+n+1ym+n+1 = a′b′pk+l, k + l < m + n + 2, (a′b′, p) = 1

ゆえに xm+n+1ym+n+1 �≡ 0 (mod pm+n+2)となる．したがって xy �= 0．
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命題 1.5.
Z×

p = {x = (xi)i∈N ∈ Zp | x0 �= 0}

証明.

(⊆) x ∈ Z×
p とすると，Zpの元 yが存在して xy = 1を満たす．y = (yi)i∈Nとおくと，x0y0 = 1．

よって x0 �= 0，したがって x �= 0．

(⊇) x = (xi)i∈NをZpの元でx0 �= 0を満たすものとする．このときx0y0 = 1を満たす y0 ∈ Z/pZ

が存在する．いま

xiyi ≡ 1 (mod pi+1), yi ≡ yi−1 (mod pi)

が成り立つような yi ∈ Z/pi+1Zが存在すると仮定して

(1) xi+1yi+1 ≡ 1 (mod pi+2), yi+1 ≡ yi (mod pi+1)

を満たす yi+1 ∈ Z/pi+2Zが存在することを示す．このことが示せれば帰納的に y = (yi)i∈N ∈
Zpが定まる．この yは xy = 1を満たす．したがって x ∈ Z×

p がいえる．

xは Zp の元なので

xi+1 ≡ xi + spi+1 (mod pi+2)

なる s ∈ Zが存在する．また，(1)の二番目の条件は

yi+1 ≡ yi + tpi+1 (mod pi+2)

なる t ∈ Zが存在することと同値である．このとき

xi+1yi+1 − 1 ≡ (xi + spi+1)(yi + tpi+1) − 1

≡ xiyi − 1 + (syi + txi)pi+1 (mod pi+2)

よって

xi+1yi+1 = 1 ⇐⇒ xiyi − 1 + (syi + txi)pi+1 ≡ 0 (mod pi+2)

⇐⇒ xiyi − 1
pi+1

+ syi + txi ≡ 0 (mod p)

⇐⇒ xiyi − 1
pi+1

+ sy0 + tx0 ≡ 0 (mod p)

ただし最後の同値を示すのに帰納法の仮定を用いている．x0 �≡ 0 (mod p)であったから，素
数 pを法とする一次合同式の性質より，最後の条件を満たす tは pを法としてただ一つ存在

する．したがって (1)を満たす yi+1 ∈ Z/pi+2Zが存在する．

例 1.6. pを 3以外の素数とする．このとき 3 ∈ Z×
p が成り立つ．なぜなら，3 = (3)i∈N だから，

とくに最初の成分について 3 �≡ 0 (mod p)．

例 1.7. より一般に，pを素数，mを pと互いに素な Zの元とすれば，例 1.6と同じような理由
で，m ∈ Z×

p が成り立つ．
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2 p進展開

pを素数とし，S := {0, 1, 2, . . ., p− 1}とおく．(ai)i∈N を S の元の列とする．すなわち各番号

iに対して ai は 0, 1, 2, . . ., p − 1のいずれかの値をとる．いま，n = 0, 1, 2, . . .に対して

xn =
n∑

i=0

aip
i

とおけば，(xn)n∈N は Zpの元である．実際

xn ∈ Z/pn+1Z (∀n ∈ N)

n ≤ m =⇒ φm,n(xm) = xn

が成り立つ．よって (xn)n∈N ∈ Zp．このとき (xn)n∈N を

∞∑
i=0

aip
i

のように表す．

定理 2.1. pを素数とし，S := {0, 1, 2, . . ., p − 1}とおく．Zp の各元 xに対して，S の元の列

(ai)i∈N がただ一つ存在して

x =
∞∑

i=0

aip
i

が成り立つ．
∞∑

i=0

aip
iを xの p進展開という．

証明. Zp の元 x = (xn)n∈N に対して，n = 0, 1, 2, . . .に対する合同式

(∗)n xn ≡
n∑

i=0

aip
i (mod pn+1)

を満たす S の元の列 (ai)i∈N が一意的に定まることを示せばよい．

(i) n = 0のとき．a0 ≡ x0 (mod p)なる S の元 a0はただ 1つ存在する．

(ii) いま，n ≥ 1に対して，S の元の a0, a1, . . ., an−1が一意的に定まって，合同式 (∗)0, (∗)1,
. . ., (∗)n−1 が満たされていると仮定する．このとき φn,n−1(xn) = xn−1より

φn,n−1(xn −
n−1∑
i=0

aip
i) = φn,n−1(xn) − φn,n−1(

n−1∑
i=0

aip
i) = xn−1 − xn−1 = 0

ゆえに

xn −
n−1∑
i=0

aip
i ∈ kerφn,n−1 = pnZ/pn+1Z (⊆ Z/pn+1Z)

よって，S の元 an を適当にとって

xn −
n−1∑
i=0

aip
i ≡ anpn (mod pn+1)
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とできる．このとき数列 a0, a1, . . ., an に対して合同式 (∗)0, (∗)1, . . ., (∗)n が満たされる．

an の一意性は次のようにしてわかる．もし S のもう 1つの元 a′
n に対して

xn ≡
n−1∑
i=0

aip
i + a′

npn (mod pn+1)

が成り立つとすると

pn(an − a′
n) ≡ 0 (mod pn+1)

よって an − a′
n は pの倍数である．一方，an, a′

n はともに S の元だから

|an − a′
n| < p

これより an − a′
n = 0を得る．

系 2.2. nを自然数，xを Zpの元とする．x =
∞∑

i=0

aip
iを xの p進展開とするとき，列 (bi)i∈Nを

bi =

{
0, 0 ≤ i ≤ n − 1
ai−n, n ≤ i

によって定めれば

pnx =
∞∑

i=0

bip
i

が pnxの p進展開になる．

証明. x = (xi)i∈N とすると，pnx = (pnxi)i∈N である．一方，p進展開の定義から各 iに対して

xi ≡
i∑

k=0

akpk (mod pi+1)

したがって

pnxi ≡
i∑

k=0

akpn+k ≡
i∑

k=0

bkpk (mod pi+1)

となる．

系 2.3. nを自然数，xを Zp の元とする．このとき

pnx = 0 =⇒ x = 0

が成り立つ．

証明. Zp が整域であることを認めれば，この事実は自明である．

ここでは，Zpが整域であることを仮定せずに，定理 2.1の系として証明する．x =
∞∑

i=0

aip
iを x

の p進展開とすると，系 2.2より
∞∑

i=0

bip
i = pnx = 0
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ただし

bi =

{
0, 0 ≤ i ≤ n − 1
ai−n, n ≤ i

p進展開の一意性により，各 iについて bi = 0，したがって ai = 0を得る．よって x = 0．

命題 2.4. 任意の素数 pについて，Zp の濃度は Rの濃度に等しい．

証明. 概略を示す．濃度についての一般的な事実は，松坂和夫著「集合・位相入門」(岩波書店)
を参照せよ．

集合 Aの濃度を card Aとおき，a = card N, c = card Rとおくと，Rは区間 (0, 1)と対等であ
るから

card (0, 1) = c

また，区間 (0, 1)に属する実数が二進小数で表せることから

card (0, 1) ≤ card
∞∏

n=0

{0, 1} = 2a

である．一方，Zp の元が p進展開で表されることと包含関係から

card
∞∏

n=0

{0, 1} ≤ Zp ≤ card
∞∏

n=0

Z

がいえる．さらに card Z = aであるから

card
∞∏

n=0

Z = aa

最後に

2a = aa = c

という事実を認めれば，Bernsteinの定理より，card Zp = cが示される．

命題 2.5. Zp の 0でない元 xはすべて

x = peu, e ∈ N, u ∈ Z×
p

の形で一意的に表される．

証明. x = (xi)i∈N =
∞∑

i=0

aip
i とする．ただし最後の式は xの p進展開である．x �= 0より

e = min{i ∈ N | xi �= 0}

が存在する．

u =
∞∑

k=0

ak+ep
k

とおくと，x = peuが成り立つ (系 2.2)．u = (ui)i∈N とすると，u = ae �= 0がわかる．実際，eの

取り方から

xi = 0 (0 ≤ i ≤ e) ⇐⇒ ai = 0 (0 ≤ i < e)
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p進展開の定義から

0 �= xe =
e∑

k=0

aep
e = aep

e, ae ∈ {0, 1, . . . , p − 1}

ゆえに ae �= 0を得る．したがって u ∈ Z×
p である．

次に一意性を示す．

x = peu = pe′
u′, e, e′ ∈ N, u, u′ ∈ Z×

p

とする．e ≤ e′と仮定しても一般性を失わない．このとき

pe(u − pe′−e) = 0

系 2.3から
u = pe′−ev

を得る．u ∈ Z×
p だから e′ − e = 0でなければならない (命題 1.5)．

注意 2.6. 命題 2.5と系 2.3によって，Zp が整域であることが再び証明される．

命題 2.7. Zp の元 x = (xi)i∈N =
∞∑

k=0

akpk (p進展開)に対して，次の条件は同値である．

(i) xn = 0

(ii) a0 = a1 = · · · = an = 0

(iii) ある y ∈ Zp が存在して x = pn+1y

証明.

(i)⇒(ii) 条件 (i)と命題 1.2より，0 ≤ i ≤ nなる iに対して

i∑
k=0

akpk ≡ xi ≡ 0 (mod pi+1)

ak ∈ {0, 1, · · · , p − 1}より

0 ≤
i∑

k=0

akpk ≤
i∑

k=0

(p − 1)pk = pi − 1 < pi (0 ≤ i ≤ n)

ゆえに (ii)を得る．

(ii)⇒(iii) (ii)が成り立つとき

y =
∞∑

k=0

ak+n+1p
k

とおけば x = pn+1yである (系 2.2)．

(iii)⇒(i) y = (yi)i∈N とすると

xn ≡ pn+1y ≡ 0 (mod pn+1)

である．
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命題 2.8.
Zp/pn+1Zp

∼= Z/pn+1Z (∀n ∈ N)

証明. 写像

fn : Zp −→ Z/pn+1Z, (xi)i∈N �−→ xn

を考えると，fn が全射準同型であることはすぐにわかる．

Ker fn = pn+1Zpであることは，命題 2.7より

x ∈ pn+1Zp ⇐⇒ xn = 0

であることからわかる．

例 2.9. Z2の元 xに対して

x(1 + x) ∈ 2Z2

が成り立つ．

証明. x = (xi)i∈N とすると，1 + x = (1 + xi)i∈N である．x0 ∈ Z/2Zより x0, 1 + x0 のいず

れか一方は 0 である．したがって x0(1 + x0) = 0．ゆえに命題 2.7より，ある y ∈ Zp があって

x(1 + x) = 2yとなる．

定理 2.10. x = (xi)i∈N を Z×
2 の元とする．このとき

x ∈ (Z×
2 )2 ⇐⇒ x2 = 1

が成り立つ．

証明.

(⇒) x = y2 なる y ∈ Z×
p が存在したとする．y = (yi)i∈N とおくと y0 = 1である．よって命題

2.7より y − 1 ∈ 2Z2．そこで y = 1 + 2z (z ∈ Z2)とおくと

x = y2 = (1 + 2z)2 = 1 + 4z(1 + z)

ここで例 2.7より，z(1 + z) ∈ 2Z2 であるから

x − 1 = 4z(1 + z) ∈ 8Z2

一方，x − 1 = (xi − 1)i∈N であるから，命題 2.7より x2 − 1 = 0を得る．

(⇐) x2 = 1とする．このとき x0 = 1, x1 = 1であるから，xの二進展開は

x = 1 +
∞∑

k=3

ak2k, ak ∈ {0, 1}

と書ける．いま，n ≥ 3に対して，整数列 (bi)i∈N が存在して

yn−1 = 1 +
n−1∑
k=2

bk2k
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とおいたとき

(∗)n y2
n−1 ≡ 1 +

n∑
k=3

ak2k (mod 2n+1)

が満たされていることを，nに関する数学的帰納法で示す．

n = 3のとき．b2 = a3とおくと

y2
2 = (1 + 4b2)2 = (1 + 4a3)2 ≡ 1 + 8a3 (mod 24)

となる．

次に，n ≥ 3として，(∗)n を満たす yn−1が上述のように取ることができたと仮定すると，

ある s ∈ Zによって

y2
n−1 = 1 +

n∑
k=3

ak2k + s2n+1

と書ける．任意の整数 t ∈ Zに対して

(yn−1 + t2n)2 = (yn−1)2 + tyn−12n+1 + t222n

≡ 1 +
n∑

k=3

ak2k + 2n+1(s + tyn−1) (mod 2n+2)

が成り立つ．yn−1 ≡ 1 (mod 2)だから，tについての一次合同式

s + tyn−1 ≡ an+1 (mod 2)

は解 bn ∈ Z/2Zを満たす．したがって y0 = 1, y1 = 1とおき，y = (yi)i∈N とおけば x = y2

となる．x ∈ Z×
2 より y ∈ Z×

2 でなければならない．したがって x ∈ (Z×
2 )2．

命題 2.11.

Z×
2 /(Z×

2 )2 ∼= Z/2Z × Z/2Z

証明. G = Z×
2 /(Z×

2 )2とおく．命題 1.5より x = (xi)i∈N ∈ Z2について

x ∈ Z×
2 ⇐⇒ x0 = 1 ⇐⇒ x2 = 1, 3, 5, 7 ⇐⇒ x2 ∈ (Z/8Z)×

である．よって写像

f : Z×
2 −→ (Z/8Z)×, (xi)i∈N �−→ x2

を考えると，f は全射準同型である．定理 2.10から，x ∈ Z2について

x ∈ Ker f ⇐⇒ x2 = 1 ⇐⇒ x ∈ (Z×
2 )2

したがって Ker f = (Z2)× となり，準同型定理により G ∼= (Z/8Z)× を得る．一方，(Z/8Z)× は
位数 4の元であって，すべての元は 2乗すると単位元に一致するから，(Z/8Z)× ∼= Z/2Z×Z/2Z．

したがって G ∼= Z/2Z × Z/2Z．

とくに Gの生成元として 3, 5, 7 ∈ Z×
p を代表とする同値類のうち任意の 2つがとれる．実際，

それら 3つの類は互いに異なり，かつ単位類とも一致しない．
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定理 2.12. pを奇素数とし，x = (xi)i∈N を Z×
p の元とする．このとき

x ∈ (Z×
p )2 ⇐⇒

(
x0

p

)
= 1

証明.

(⇒) x = y2なる y ∈ Z×
p が存在したとする．y = (yi)i∈N とおくと

xi = y2
i (∀i ∈ N)

が成り立つ．したがって特に x0 = y2
0 が成り立つ．

(⇐) 自然数 nに対して，合同式

(∗)n X2 ≡ xn (mod pn+1)

を考える．いま，
(

x0

p

)
= 1ならば，整数列 (ak)k∈N が存在して

yn =
n∑

k=0

akpk

とおいたとき ynが (∗)nの解になることを示す．そうすれば y = (yi)i∈Nとおいたとき x = y2

が成り立つ．

n = 0のとき，
(

x0

p

)
= 1より a2

0 ≡ x0 (mod p)を満たす a0 ∈ Z/pZが存在する．y0 = a0

とおけば，y0は (∗)0の解となる．

一般の nについて，(∗)nの解 yn =
n∑

k=0

akpkが存在したと仮定する．このとき，ある b ∈ Z

によって

y2
n = xn + bpn+1

と書ける．一方，任意の s ∈ Zに対して

(yn + spn+1)2 = y2
n + 2ynspn+1 + s2p2(n+1)

≡ xn + pn+1(b + 2yns) (mod pn+2)

となる．pは奇素数，x ∈ Z×
p だから

2yn ≡ 2y0 = 2x0 �≡ 0 (mod p)

よって sについての一次方程式

b + 2yns ≡ 0 (mod p)

は解 an+1 ∈ Z/pZを持つ．このとき

yn+1 = yn + an+1p
n+1 =

n+1∑
k=0

akpk

が (∗)n+1の解となる．
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命題 2.13. pを奇素数とする．このとき Z×
p /(Z×

p )2 は位数 2の群である．

証明. G = Z×
p /(Z×

p )2 とおく．Gの単位元でない元がただ一つ存在することをいえばよい．x =
(xi)i∈N を Z×

p の元とすると，定理 2.12より

x ∈ (Z×
p )2 ⇐⇒

(
x0

p

)
= 1

である．pを法とする平方剰余と平方非剰余は 0を除いてちょうど半々ずつ存在するから，(Zp)×

の元であって，(Z×
p )2 の元でないようなものが存在する．すなわち Gは単位元でない元をもつ．

次に，x = (xi)i∈N, y = (yi)i∈N を Z×
p の元で (Z×

p )2に属さないものとする．このとき y−1 ∈ Z×
p

であり，また，上述のことから(
x0

p

)
=
(

y0

p

)
= −1,

(
x0y0

p

)
=
(

x0

p

)(
y0

p

)
= 1

したがって xy ∈ (Z×
p )2 となる．よって xy−1 ∈ (Z×

p )2であるから，x, yは (Z×
p )2 を法として同じ

同値類に属する．このことはGにおいて，単位元以外の元がただ一つであることを示している．し

たがって Gは位数 2の群である．

例 2.14. pを素数とする．このとき，x2 + 1 = 0を満たす x ∈ Zp が存在するための必要十分条

件は p ≡ 1 (mod 4)である．

証明. (−1)2 = 1より，任意の素数 pに対して −1 ∈ Z×
p である．

p = 2のとき，Z2内では

−1 = (−1, −1, −1, . . .) = (1, 3, 7, . . .)

であるから，−1 = (yi)i∈N とおくと y2 �= 1．したがって定理 2.10より −1 �∈ (Z×
2 )2．すなわち

x2 + 1 = 0を満たす x ∈ Zp は存在しない．

pが奇素数のとき，−1 = (yi)i∈Nとすると y0 ≡ −1 (mod p)である．よって平方剰余の相互法則
(より正確には第一補充法則)と定理 2.12より

x2 + 1 = 0を満たす x ∈ Zp が存在しない⇐⇒ −1 ∈ (Z×
p )2

⇐⇒
(

y0

p

)
= 1

⇐⇒
(−1

p

)
= 1

⇐⇒ p ≡ 1 (mod 4)

がいえる．

3 p進体

Zpは整域だから，その商体が存在する．Zpの商体をQpで表し，これを p進体という．Z ⊆ Zp

だから Q ⊆ Qp，したがって Qpの標数は 0である．
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命題 3.1. Qpの濃度は Rの濃度に等しい．

証明. Qpが Zp の商体であることと命題 2.4より

card Qp ≤ card Zp × Zp = card Zp · card Zp = c · c = c

一方，命題 2.4と包含関係により

c = card Zp ≤ card Qp

ゆえに Bernsteinの定理より，c = card Qp．

命題 3.2. Qpの 0でない元 αは

(∗) α = peu, e ∈ Z, u ∈ Z×
p

と一意的に書ける．

証明. Qpは Zp の商体なので，αは

α =
y

x
, x, y ∈ Zp, x �= 0

と表すことができる．命題 2.5より

x = pmv, y = pnw, m, n ∈ N, v, w ∈ Z×
p

と表せるから，e = n − m, u = w/vとおけば αは (∗)のように表すことができる．
表し方の一意性は命題 2.5のときと全く同じようにして，系 2.3と命題 1.5を用いて証明するこ

とができる．

命題 3.3.

Q×
2 /(Q×

2 )2 ∼= Z/2Z × Z/2Z × Z/2Z

証明. 命題 3.2により，Q2の元 αはすべて

α = 2eu, e ∈ Z, u ∈ Z×
2

と書ける．このとき

α ∈ (Q×
2 )2 ⇐⇒ e ≡ 0 (mod 2)かつ u ∈ (Z×

2 )2

したがって定理 2.10より
{1, 2, u, v, w, 2u, 2v, 2w}

が Q×
2 /(Q×

2 )2 の完全代表系である．ただし

u, v ∈ Z×
2 , u, v �∈ (Z×

2 )2, u �≡ v, w ≡ uv (mod Z×
2 )

とする．このことから命題の同型を得る．

とくに，2, u, vを代表元とする三つの同値類がQ×
2 /(Q×

2 )2の生成元になる．u, vとしては 3, 5,
7のうちいずれか二つを選ぶことができる．
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命題 3.4. pを奇素数とする．このとき

Q×
p /(Q×

p )2 ∼= Z/2Z × Z/2Z

が成り立つ．

証明. 命題 3.2により，Qpの元 αはすべて

α = peu, e ∈ Z, u ∈ Z×
p

と書ける．このとき

α ∈ (Q×
p )2 ⇐⇒ e ≡ 0 (mod 2)かつ u ∈ (Z×

p )2

したがって定理 2.12より
{1, p, u, pu}

が Q×
p /(Q×

p )2 の完全代表系である．ただし

u ∈ Z×
p , u �∈ (Z×

p )2

このことから命題の同型を得る．

とくに p, uを代表元とする二つの同値類が Q×
p /(Q×

p )2 の生成元になる．

4 p進体の付値

pを素数とし，Qpを p進体，Zp を p進整数環とする．

Q×
p の元 αに対して

α = peu, e ∈ Z, u ∈ Z×
p

と表したとき，αの p進絶対値 |α|p を
|α|p = p−e

によって定める．0に対しては |0|p = 0とする．

命題 4.1. | ∗ |pは非アルキメデス付値をなす．すなわち

(i) |α| ≥ 0

(ii) |α|p = 0 ⇐⇒ α = 0

(iii) |αβ|p = |α|p|β|p
(iv) |α + β|p ≤ max{|α|p, |β|p}

ただし α, β ∈ Qpとする．

証明. (i), (ii)は | ∗ |pの定義から明らかである．

α = pmu, β = pnv, m, n ∈ Z, u, v ∈ Z×
p

とおくと

αβ = pm+nuv, m + n ∈ Z, uv ∈ Z×
p
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となる．よって

|α|p|β|p = p−m · p−n = p−(m+n) = |αβ|p
すなわち (iii)が成り立つ．
さらに，m ≤ nと仮定しても一般性を失わない．m < nのとき

α + β = pm(u + pn−mv), u + pn−mv ∈ Z×
p

m = nのとき

α + β = pm(u + v), u + v ∈ Zp

いずれにせよ

|α + β|p ≤ p−m = |α|p = max{|α|p, |β|p}
すなわち (iv)が成り立つ．

命題 4.2.

(i) Zp = {α ∈ Qp | |α|p ≤ 1}

(ii) 任意のm ∈ Nに対して pm+1Zp = {α ∈ Qp | |α|p ≤ p−(m+1)}．
とくに pZp = {α ∈ Qp | |α|p < 1}．

(iii) Z×
p = {α ∈ Qp | |α|p = 1}

証明. 命題 2.5より明らかである．

Qpの二つの元 α, β に対して，α, β の p進距離を

ρp(α, β) = |α − β|p

と定める．| ∗ |pは非アルキメデス付値なので，ρpは距離の公理を満たし，(Qp, ρp)は距離空間を
なす．

Q×
p の元 αに対して，ordp(α) = − log |α|pと定義する．α = 0のときは ordp(0) = ∞と定める．

こうして定まる写像 ordp : Qp −→ R ∪ {∞}を p進付値という．

命題 4.3.

(i) ordp(α) ∈ Z (α ∈ Q×
p )

(ii) ordp(αβ) = ordp(α) + ordp(β)

(iii) ordp(α + β) ≥ min{ordp(α), ordp(β)}

証明. p進付置 ordpの定義と，命題 4.1からわかる．
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5 p進体の元の列の収束について

Qpの元の列 (αn)n∈N がQpの元 αに収束するとは，任意の実数 ε > 0に対して，ある自然数 N

が存在して，自然数 nについて

n ≥ N =⇒ |αn − α|p < ε

が成り立つことをいう．このとき αを (αn)n∈N の極限値という．

命題 5.1. Qpの元の列 (αn)n∈N が Qpの元 αに収束すれば，(αn)n∈N の任意の部分列 (αnk
)k∈N

も αに収束する．

証明. εを正の実数とする．(αn)n∈N は αに収束するので，ある自然数N が存在して，任意の自

然数 nについて

n ≥ N =⇒ |αn − α|p < ε

が成り立つ．このとき

k ≥ N =⇒ nk ≥ N =⇒ |αnk
− α|p < ε

である．したがって (αnk
)k∈N も αに収束する．

命題 5.2. Qpの元の列 (αn)n∈NがQpの元 αに収束しているとする．α �= 0ならば，ある自然数
M が存在して，任意の自然数 nについて

n ≥ M =⇒ |αn|p = |α|p

が成り立つ．すなわち，ある番号より大きいところでは |αn|pが一定になる．

証明. (αn)n∈N は収束列なので，任意の自然数 mに対して，ある自然数 N が存在して，任意の

自然数 nについて

n ≥ N =⇒ |αn − α|p < p−m

=⇒ αn − α ∈ pm+1Zp

=⇒ αn ∈ α + pm+1Zp

一方，α �= 0なので
α = pm0u, m0 ∈ Z, u ∈ Z×

p

と一意的に書ける．よってm1 = max{m0, 1}に対して，ある自然数M をとれば，自然数 nにつ

いて

n ≥ M =⇒ αn ∈ pm0Z×
p + pm1+1Zp = pm0Z×

p

=⇒ |αn|p = p−m0 = |α|p

が成り立つ．とくにM の取り方は自然数mには依存しない．

命題 5.3. (αn)n∈N, (βn)n∈N をそれぞれQpの元 α, β に収束する Qpの元の列とする．

(i) (αn + βn)n∈N は α + β に収束する．

(ii) (−αn)n∈N は −αに収束する．
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(iii) (αnβn)n∈N は αβ に収束する．

(iv) α �= 0かつ各 nに対して αn �= 0ならば (1/αn)n∈N は 1/αに収束する．

証明.

(i)
|(αn + βn) − (α + β)|p = |(αn − α) + (βn − β)|p ≤ max{|αn − α|p, |βn − β|p}

(ii)
|(−αn) − (−α)|p = | − (αn − α)|p = |αn − α|p

(iii) |βn|p ≤ 0(n ≤ 0)のときは，十分大きな nに対して |βn|p < M となるような正の実数M が

存在する．そうでないときは，十分大きな nに対して |βn|p = |β|pになる．そこでこのとき
はM = |β|p とおく．そうすればいずれの場合も十分大きな nに対して |βn| ≤ M となって

|αnβn − αβ|p = |(αn − α)βn + α(βn − β)|p
≤ max{|αn − α|p|βn|p, |α|p|βn − β|p}
≤ max{|αn − α|pM, |α|p|βn − β|p}

となる．

(iv) 十分大きい自然数 nに対して，|αn|p = |α|p となって∣∣∣∣ 1
αn

− 1
α

∣∣∣∣
p

=
|αn − α|p
|α|p|αn|p =

|αn − β|p
|β|2p

となる．

定理 5.4. 任意の α ∈ Qpに対し，αに収束する有理数列 (αn)n∈N が存在する．

証明. Qpの元 αは

α = peu, e ∈ Z, u ∈ Z×
p

と書ける．uを p進展開して

u =
∞∑

k=0

akpk

とおいたとき，有理数列 (αn)n∈N を

αn =
n∑

k=0

akpk+e

とおくと，(αn)n∈N は αに収束する．実際，自然数 nに対して

|αn − α|p =
∣∣∣∣pe

(
u −

n∑
k=0

akpk

)∣∣∣∣
p

= p−e

∣∣∣∣∣u −
n∑

k=0

akpk

∣∣∣∣∣
p

≤ p−n−e → 0 (n → ∞)

となる．
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Qpの元の列 (αn)n∈N が | ∗ |pについてCauchy列をなすとは，任意の実数 ε > 0に対して，あ
る自然数 N が存在して，自然数m, nについて

m, n ≥ N =⇒ |αm − αn|p < ε

が成り立つことをいう．

実数体 Rのときと同じような事実が Qpについても成り立つ．

命題 5.5. Qpの元 (αn)n∈N について

(αn)n∈N がある α ∈ Qpに収束する⇐⇒ (αn)n∈N が Cauchy列である

証明.

(⇒) 仮定より，実数 εに対して，ある自然数 N が存在して，自然数 nについて

n > N =⇒ |αn − α|p < ε

とできる．よって，自然数m, nについて

m, n > N =⇒ |αm − αn|p ≤ max{|αm − α|p, |αn − α|p} < ε

が成り立つ．

(⇐) まず，Zp の元の Cauchy列 (αn)n∈N を考え

αn =
∞∑

k=0

an,kpk (p進展開)

と表す．Cauchy列の定義から，各自然数 eに対して，ある番号N(e)が存在して，自然数m,
nに対して

m, n > N(e) =⇒ |αm − αn|p <
1
pe

が成り立つ．一方

|αm − αn|p <
1
pe

⇐⇒ αm − αn ∈ pe+1Z

⇐⇒ an,k = am,k (0 ≤ k ≤ e)

よって

m, n > N(e) =⇒ an,k = am,k (0 ≤ k ≤ e)

となる．そこで，自然数 eに対して，N(e)より大きい自然数mについて一定になる am,eを

aeと定めることにする．こうして定まる数列 (ak)k∈N に対して

α =
∞∑

k=0

akpk

とおくと，(αn)n∈N は αに収束する．実際，任意の実数 ε > 0に対して，p−e < εなる自然

数 eを一つとり，先ほどの N(e)をとると αの定め方から

n > N(e) =⇒ |αn − α|p =

∣∣∣∣∣
∞∑

k=e+1

ae+1p
k

∣∣∣∣∣
p

≤ 1
pe+1

< ε
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が成り立つ．次に，Qp の元の Cauchy列 (αn)n∈N について考える．Cauchy列の定義から，
任意の実数 ε > 0に対して，ある自然数 N があって，自然数m, nについて

m, n > N =⇒ |αm − αn|p < ε

が成り立つ．まず，有限個を除いて |αm|pが一定である場合を考える．このとき自然数N を

とりなおして

m, n > N =⇒ |αm|p = |αn|p
が成り立つとしてよい．そこで N より大きい番号について一定な |αm|p の値を p−e とおき

βm =

{
0, m ≤ N

p−eαm, m > N

によって列 (βm)m∈N を定める．(βm)m∈N は Cauchy列になる．実際，実数 ε > 0に対して，
ある番号 N1 > N があって

m, n > N1 =⇒ |αm − αn|p <
ε

pe

とできる．したがって

m, n > N1 =⇒ |βm − βn|p = pe|αm − αn|p < ε

となる．(βm)m∈N は Zp の元の列なので，先に述べたことから極限値 β をもつ．このとき

α = peβが (αn)n∈Nの極限値になる．実際，実数 ε > 0に対して，十分大きい自然数N2 > N

をとると，自然数 nに対して

n > N2 =⇒ |αn − α|p = p−e|βn − β|p < ε

とできる．

次に，|αm|p の値が異なるような αm が無限個あったとする．(αn)n∈N からこのようなも

のを順番に抜き出してできる部分列を (αm)m∈N とする．α′
m �= α′

n ならば，非アルキメデス

付値の性質から

|α′
m − α′

n|p = max{|α′
m|p, |α′

n|p}
よって任意の実数 ε > 0に対して，ある番号 N があって，自然数mについて

m > N =⇒ |α′
m|p ≤ max{|α′

m|p, |α′
N+1|p} = |α′

m − α′
N+1|p < ε

すなわち (α′
m)m∈N は 0に収束する．したがって，十分大きい番号 N1をとると，自然数m,

n > N1に対して

|αn|p = |(αn − α′
m) + α′

m|p ≤ max{|αn − α′
m|p, |α′

m|p} < ε

とできる．よって (αn)n∈N も 0に収束する．
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Qpの元の列 (αn)n∈N に対し，列 (βn)n∈N を

βn =
n∑

k=0

αk

によって定める．(βn)n∈N が極限値をもつとき，その極限値を

∞∑
n=0

αn

と表す．

命題 5.6. Qpの元の列 (αn)n∈N について，次の三つの条件は同値である：

(i)
∞∑

n=0

αn が収束する

(ii) n → ∞のとき Rの中で |αn|p → 0となる

(iii) (αn)n∈N が Qpの中で 0に収束する．

証明.

(i)⇔(ii) sn =
n∑

k=0

αk とおくと，命題 5.5より (sn)n∈N が収束することと (sn)n∈N が Cauchy列

であることとは同値である．また，後者は |αn|p → 0 (n → ∞)と同値である．実際，(sn)n∈N

が Cauchy列ならば

|αN+2|p = |sN+2 − sN+1|p → 0 (n → ∞)

となる．逆に，|αn|p → 0 (n → ∞)ならば

|sm − sn|p = |αm + · · · + αn+1|p ≤ max{|αm|p, . . . , |αn+1|p} → 0 (n → ∞)

となる．

(ii)⇔(iii) 収束の定義から明らかである．

命題 5.7.
∞∑

n=0

αn,
∞∑

n=0

βn がそれぞれ α, β に収束するとき

γn =
n∑

k=0

αkβn−k

とおくと，
∞∑

n=0

γn は収束し

∞∑
n=0

γn = αβ

が成り立つ．
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証明. 命題 5.6より，|αn|p → 0, |βn|p → 0 (n → ∞)であるから，|αn|p, |βn|p は上に有界であ
る．すなわち，ある正の実数M が存在して，すべての自然数 nについて |αn|p < M , |βn|p < M

となる．εを正の実数とすると，ある自然数 N が存在して，任意の自然数 nに対して

n ≥ N =⇒ |αn|p <
ε

M
, |βn|p <

ε

M

が成り立つ．このとき，2N よりも大きい自然数 nに対して

|γn|p =

∣∣∣∣∣
n∑

k=0

αkβn−k

∣∣∣∣∣
p

≤ max
0≤k≤n

|αk|p|βn−k|p

< M max{|βn|p, . . . , |β[ n+1
2 ]|p, |α[ n+1

2 ]|p, . . . , |αn|p}
< M · ε

M
= ε

が成り立つ．ゆえに |γn|p → ∞ (n → ∞)．したがって命題 5.6より
∞∑

n=0

γn は収束する．

正の整数mについて∣∣∣∣∣
2m∑
n=0

γn −
m∑

s=0

αs

m∑
t=0

βt

∣∣∣∣∣
p

=

∣∣∣∣∣
2m∑

t=m+1

2m−t∑
s=0

αsβt +
2m∑

s=m+1

2m−s∑
t=0

αsβt

∣∣∣∣∣
p

≤ max

{∣∣∣∣∣
2m∑

t=m+1

2m−t∑
s=0

αsβt

∣∣∣∣∣
p

,

∣∣∣∣∣
2m∑

s=m+1

2m−s∑
t=0

αsβt

∣∣∣∣∣
p

}

一方，命題 5.6より |αs|p → 0 (s → ∞)であるから，|αs|pは上に有界である．その上界をM とお

くと ∣∣∣∣∣
2m∑

t=m+1

2m−t∑
s=0

αsβt

∣∣∣∣∣
p

≤ max
m+1≤t≤2m

∣∣∣∣∣
2m−t∑
s=0

αsβt

∣∣∣∣∣
p

≤ max
m+1≤t≤2m
0≤s≤2m−t

{|αs|p|βt|p}

≤ M max
m+1≤t≤2m

{|βt|p} → 0 (m → ∞)

ここで，最後の収束は命題 5.6を用いた．同様にして∣∣∣∣∣
2m∑

s=m+1

2m−s∑
t=0

αsβt

∣∣∣∣∣
p

→ 0 (m → ∞)

したがって
2m∑
n=0

γn −
m∑

s=0

αs

m∑
t=0

βt → 0 (m → ∞)

がいえる．したがって
∞∑

n=0

γn =
∞∑

n=0

αn

∞∑
n=0

βn

が成り立つ．
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6 p進体の指数関数・対数関数

命題 6.1. pを素数とする．正の整数 nに対して

ordp(n!) =
∞∑

i=1

[
n

pm

]

が成り立つ．

証明.
[

n

pm

]
は 1から nまでの整数のうち pm で割り切れるものの個数であり，n > logp nすな

わち pm > nならば
[

n

pm

]
= 0である．ゆえに

ordp(n!) = ordp

( ∏
1≤x≤n

p|x

x
)

=
∑

1≤x≤n
p|x

ordp(x) =
[logp n]∑
m=1

[
n

pm

]
=

∞∑
m=1

[
n

pm

]

である．

命題 6.2. cを実数，nを正の整数，pを素数とする．

(i) nc − ordp(n!) → ∞ (n → ∞) ⇐⇒ c >
1

p − 1

(ii) nc − ordp(n) → ∞ (n → ∞) ⇐⇒ c > 0

(iii) c ≥ 1
p − 1

=⇒ nc − ordp(n!) ≥ c

証明.

(i) c >
1

p − 1
と仮定すると

nc − ordp(n!) ≥ nc −
∞∑

i=1

n

pi
≥ nc − n

p − 1
→ ∞ (n → ∞)

である．逆に，nc − ordp(n!) → ∞ (n → ∞)とすると

pmc − ordp(pm!) → ∞ (m → ∞)

が成り立つ．一方，命題 6.1より

pmc − ordp(pm!) = pmc −
m∑

i=1

pm−i = pm

(
c − 1

p − 1

)
+

1
p − 1

これが∞に発散するためには c >
1

p − 1
でなければならない．

(ii) logp nを実数体 Rにおける pを底とする nの対数とすると，ordp(n) ≥ logp nゆえ

nc − ordp(n) ≥ nc − logp n

これは c > 0のとき∞に発散する．逆に，nc − ordp(n) → ∞ならば

pmc − ordp(pm) → ∞ (m → ∞)
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一方

pmc − ordp(pm) = pmc − m = m

(
pm

m
c − 1

)

これが∞に発散するためには c > 0であることが必要である．

(iii) 命題 6.1より

ordp(n!) =
∞∑

i=1

[
n

pi

]
<

∞∑
i=1

n

pi
=

n

p − 1

である．一方，
n

p − 1
より小さい整数は

n − 1
p − 1

以下であるから

ordp(n!) ≤ n − 1
p − 1

である．よって c >
1

p − 1
ならば

nc − ordp(n!) − c ≥ (n − 1)
(

c − 1
p − 1

)
≥ 0

となる．

命題 6.3.

(i) x ∈ Qpについて
∞∑

n=0

xn

n!
が収束⇐⇒ x ∈ pmZp

である．ただし pが奇素数のときm = 1, p = 2のときm = 2とする．

証明. すべての自然数 nに対して

ordp

(
xn

n!

)
= n ordp(x) − ordp(n!)

である．したがって命題 6.2 (i)によって

∞∑
n=0

xn

n!
が収束する⇐⇒ ordp

(
xn

n!

)
→ ∞ (n → ∞)

⇐⇒ n ordp(x) − ordp(n!) → ∞ (n → ∞)

⇐⇒ ordp(x) >
1

p − 1

pが奇素数ならば

ordp(x) >
1

p − 1
⇐⇒ ordp(x) ≥ 1 ⇐⇒ x ∈ pZp

p = 2ならば

ordp(x) >
1

p − 1
⇐⇒ ord2(x) > 1 ⇐⇒ ord2(x) ≥ 2 ⇐⇒ x ∈ 4Z2

である．
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そこで，pが奇素数のときは x ∈ pZp に対して，p = 2のときは x ∈ 4Z2に対して

exp(x) =
∞∑

n=0

xn

n!

とおく．

命題 6.4. x, yがともに expの収束域に属するならば

exp(x + y) = exp(x) exp(y)

が成り立つ．

証明. 命題 5.7より

exp(x) exp(y) =
∞∑

n=0

γn

ただし

γn =
n∑

k=0

xk

k!
yn−k

(n − k)!
=

1
n!

n∑
k=0

(
n

k

)
xkyn−k =

1
n!

(x + y)n

したがって

exp(x) exp(y) =
∞∑

n=0

(x + y)n

n!
= exp(x + y)

となる．

命題 6.5. x ∈ Qpについて

∞∑
n=0

(−1)n−1

n
xn が収束⇐⇒ x ∈ pZp

である．

証明. すべての正の整数 nに対して

ordp

(
(−1)n−1

n
xn

)
= n ordp(x) − ordp(n)

である．したがって命題命題 6.2 (i)によって

∞∑
n=1

(−1)n−1

n
xn が収束する⇐⇒ ordp

(
(−1)n−1

n
xn

)
→ ∞ (n → ∞)

⇐⇒ n ordp(x) − ordp(n) → ∞ (n → ∞)

⇐⇒ ordp(x) > 0

⇐⇒ ordp(x) ∈ pZp

そこで，x − 1 ∈ pZp なる xに対して

log(x) =
∞∑

n=1

(−1)n−1

n
(x − 1)n

とおく．
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補題 6.6 (形式的べき級数の反転). 形式的べき級数

f(x) = x + a2x
2 + · · · + anxn + · · ·

が与えられたとき，k ≥ 2, m ≥ 2に対して

a
(1)
k = ak,

a
(m+1)
m+k = ak + ak−1a

(m)
m+1 + ak−2a

(m)
m+2 + · · · + a2a

(m)
m+k−2 + a

(m)
m+k−1

とおき

b1 = 1,

bn = −bn−1a
(n−1)
n − bn−2a

(n−2)
n − · · · − a(1)

n (n ≥ 2)

によって形式的べき級数 g(x) =
∞∑

n=1

bnxn を定めれば

f(g(x)) = g(f(x)) = x

が成り立つ．

証明. 概略を示す．いま y = f(x)とおき，m ≥ 1について　

yk = xk + a
(k)
k+1x

k+1 + a
(k)
k+2x

k+2 · · ·

とおくと，各 a
(m)
n は

a
(1)
k = ak,

a
(m+1)
m+k = ak + ak−1a

(m)
m+1 + ak−2a

(m)
m+2 + · · · + a2a

(m)
m+k−2 + a

(m)
m+k−1

によって計算できる．一方

1 = b1, 0 = bn + bn−1a
(n−1)
n + · · · + b1a

(1)
n (n ≥ 2)

であることが

x = b1y + b2y
2 + · · · + bnyn + · · ·

であるための必要十分条件である．

f(x) = exp(x) − 1, g(x) = log(1 + x)とおき，上の補題を用いて計算すると

exp(log(1 + x)) = 1 + x, log(exp(x)) = x

が確かめられる．

注意 6.7. 実は，直接確かめるのは簡単ではない．ただし，少なくとも実数における expと log
については，級数が収束する範囲において上の事実は正しいので，形式的べき級数において上の事

実が正しくないということはないはずである (実数の場合はまず指数関数 expを定義し，expが単
調増加連続関数であるという事実から逆関数が存在することが言える．その逆関数を logと定義し
たのち，Taylor展開や逆関数の微分を考えることによって上の事実を導く)．
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定理 6.8. pが奇素数ならm ≥ 1, p = 2ならm ≥ 2とする．このとき expと logは，群としての
互いに逆な同型

pmZp
∼= 1 + pmZp

を与える．ただし，pmZp は加法群，1 + pmZp は乗法群であるとする．

証明. 命題 6.2 (iii)より，x ∈ pmZp ならば，n ≥ 1のとき

ordp

(
xn

n!

)
= n ordp(x) − ordp(n!)

≥ ordp(x)

≥ m

ゆえに

x ∈ pmZp =⇒ exp(x) − 1 ∈ pmZp

また，再び命題 6.2 (iii)より，x ∈ 1 + pnZpならば，n ≥ 1のとき

ordp

(
(−1)n−1 (x − 1)n

n

)
= n ordp(x − 1) − ordp(n)

≥ n ordp(x − 1) − ordp(n!)

≥ ordp(x − 1)

≥ m

ゆえに

x ∈ 1 + pmZp =⇒ log(x) ∈ pmZp

形式的べき級数として exp(log(x)) = x, log(exp(x)) = xが成り立つことはすでに示されている．

よって以上で exp, logが互いに逆写像であることが示された．expが準同型写像であることも既に
示されているので，logもまた準同型写像でなければならない．すなわち

log(xy) = log(x) + log(y)

が成り立つ．
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