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1 代数的整数

複素数 αが代数的数であるとは, ある定数でない Q係数多項式 f(X)が存在して f(α) = 0が成

り立つときにいう. 特に, f(X)がモニック (すなわち, 最高次係数が 1)かつ Z係数であるときに

は, αを代数的整数という. 代数的数の全体を Q, 代数的整数の全体を Zで表す. 定義から明らか

に, Z ⊆ Qが成り立つ.

代数的整数のことも単に整数と呼ぶことがあるため, Zの元のほうを有理整数と呼んで区別する.

aを有理数とすると, aは 1次多項式X − aの根である. このことは, aが代数的数であることを

意味し, 特に aが有理整数のときには代数的整数であることを示している. よって, Q ⊆ Qおよび

Z ⊆ Zが成り立つ.

［定理 1.1］Q ∩ Z = Z.

［証明］(⊆) α ∈ Q ∩ Zとする. α ∈ Qより, αを既約分数として表すことができる:

α =
c

d
, c, d ∈ Z, d > 0, gcd(c, d) = 1.

また, α ∈ Zより, ある a0, a1, . . ., an−1 ∈ Zが存在して,

αn + an−1α
n−1 + · · · + a1α + a0 = 0.

すなわち, ( c

d

)n

+ an−1

( c

d

)n−1

+ · · · + a1

( c

d

)
+ a0 = 0.

分母を払うと,

cn = −d(an−1c
n−1 + · · · + a1cd

n−2 + a0d
n−1).

これより, d | cn. もし仮に d > 1とすれば, dのある素因子 pが存在して p | cn, したがって p | cと

なる. これは gcd(c, d) = 1に反する. ゆえに, d = 1. すなわち, α ∈ Z.

(⊇) Z ⊆ Qかつ Z ⊆ Zより明らか.

［定理 1.2］任意の α ∈ Qに対して, ある有理整数 a > 0が存在して, aα ∈ Z.

［証明］仮定より, ある a0, a1, . . ., an ∈ Qが存在して,

anαn + an−1α
n−1 + · · · + a1α + a0 = 0.

が成り立つ. an < 0のときには各 ai を −ai に置き換えればよいから, an > 0と仮定してもよい.

ai の分母の最小公倍数を l > 0とし, bi = lai とおくと,

bnαn + bn−1α
n−1 + · · · + b1α + b0 = 0, bi ∈ Z, bn > 0

3



となる. 両辺に bn−1
n を掛けると,

bn−1
n (bnαn + bn−1α

n−1 + · · · + b1α + b0) = 0.

よって,

(bnα)n + bn−1(bnα)n−1 + · · · + b1b
n−2
n (bnα) + b0b

n−1
n = 0.

したがって, bnα ∈ Z.

［補題 1.3］γ1, γ2, . . ., γm ∈ Cとし, 少なくとも 1つは 0でないとする. また,

M =

{
m∑

i=1

ciγi

∣∣∣∣∣ ci ∈ Z

}

とおく. このとき, 任意の α ∈ Cに対して,

αM ⊆ M =⇒ α ∈ Z

が成り立つ.

［証明］α ∈ Cとし, αM ⊆ M とすると, 各 iに対して,

αγi =
m∑

j=1

aijγj , aij ∈ Z.

A = (aij), p =


γ1

...

γm

とおくと, Aは Z成分のm次正方行列であり,

Ap = αp, p 6= 0.

すなわち, αは Aの固有値である. ゆえに, αは Aの固有多項式 det(xE − A)の根であり, その固

有多項式は最高次係数が 1であるようなm次 Z係数多項式である. したがって, α ∈ Z.

［定理 1.4］Zは Cの部分整域である. Zを代数的整数環という.

［証明］まず, Zが空集合でないことは明らかである.

α, β ∈ Zを任意にとる. αに対して, ある a0, a1, . . ., an−1 ∈ Zが存在して,

αn + an−1α
n−1 + · · · + a1α + a0 = 0. (1)

同様に, β に対して, ある b0, b1, . . ., bm−1 ∈ Zが存在して,

βm + bm−1β
m−1 + · · · + b1β + b0 = 0.
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また, α, β に対して,

M =


m−1∑
j=0

(
n−1∑
i=0

cijα
i

)
βj

∣∣∣∣∣ cij ∈ Z


とおく. M は, αiβj (0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1)の Z係数の 1次結合で表されるものの全体で

ある. γ ∈ M を任意にとる. すると,

γ =
m−1∑
j=0

(
n−1∑
i=0

cijα
i

)
βj , cij ∈ Z

と表せる. このとき,

αγ =
m−1∑
j=0

(
n−1∑
i=0

cijα
i+1

)
βj

=
m−1∑
j=0

(
n−1∑
i=1

ci−1,jα
i

)
βj +

m−1∑
j=0

cn−1,jα
nβj .

(1)より αn =
∑n−1

i=0 (−ai)αi であるから,

m−1∑
j=0

cn−1,jα
nβj =

m−1∑
j=0

cn−1,j

(
n−1∑
i=0

(−ai)αi

)
βj

=
m−1∑
j=0

(
n−1∑
i=0

(−aicn−1,j)αi

)
βj .

ゆえに,

αγ =
m−1∑
j=0

(
n−1∑
i=0

c′ijα
i

)
βj , c′ij ∈ Z.

ただし,

c′ij =

−a0cn−1,j , i = 0のとき

ci−1,j − aicn−1,j , 1 ≤ i ≤ n − 1のとき

とおく. したがって, αM ⊆ M が成り立つ. 同様にして, βM ⊆ M が成り立つこともいえる. これ

らから,

(α − β)M ⊆ αM − βM ⊆ M − M ⊆ M,

(αβ)M = α(βM) ⊆ αM ⊆ M.

α1β0 = α 6= 0のとき, αiβj (0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1)のうち少なくとも 1つは 0でないか

ら, 補題 1.3より,

α − β, αβ ∈ Z. (2)

α0β1 = β 6= 0のときも同様である. α = β = 0のとき, (2)が成り立つことは明らかである. ゆえ

に, Zは Cの部分環である.

一般に, 体は整域であり, 整域の部分環は整域である. したがって, Zは整域である.
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［補題 1.5］Q · Z ⊆ Q.

［証明］r ∈ Q, α ∈ Zとする. α ∈ Zより, ある a0, a1, . . ., an−1 ∈ Zが存在して,

αn + an−1α
n−1 + · · · + a1α + a0 = 0.

両辺に rn を掛けると,

rn(αn + an−1α
n−1 + · · · + a1α + a0) = 0.

よって,

(rα)n + an−1r(rα)n−1 + · · · + a1r
n−1(rα) + a0r

n = 0.

したがって, rα ∈ Q.

［注意 1.1］この時点ではまだ Qが体であること (特に, 積について閉じていること)を証明して

いないため, Q ⊆ Qと Z ⊆ Qとから直ちに Q · Z ⊆ Qとはいかない.

［定理 1.6］Qは Cの部分体である. Qを代数的数体という.

［証明］α, β ∈ Qとする. 定理 1.2より, ある有理整数 a > 0, b > 0が存在して aα, bβ ∈ Zとな

る. Z ⊆ Zおよび Zが環であること (定理 1.4)から,

abα = b(aα) ∈ Z,

abβ = a(bβ) ∈ Z.

ゆえに, 再び Zが環であることから,

ab(α − β) = abα − abβ ∈ Z.

補題 1.5により,

α − β =
1
ab

· ab(α − β) ∈ Q.

また, 再び Zが環であることから,

ab(αβ) = (aα)(bβ) ∈ Z.

再び補題 1.5により,

αβ =
1
ab

· ab(αβ) ∈ Q.

以上より, Qが Cの部分環であることが示された.

α ∈ Q, α 6= 0とすると, ある a0, a1, . . ., an ∈ Qが存在して,

anαn + an−1α
n−1 + · · · + a1α + a0 = 0, an 6= 0.
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a0 = 0のときは両辺を αで割ればよいから, a0 6= 0と仮定してもよい. 両辺に α−n を掛けると,

an + an−1α
−1 + · · · + a1(α−1)n−1 + a0(α−1)n = 0.

ゆえに, α−1 ∈ Q. したがって, Qの 0でないすべての元は Qにおいて逆元をもつ.

［定理 1.7］Qは Zの商体である.

［証明］以下のことを証明すればよい.

(i) Qは体である.

(ii) Zは Qの部分整域である.

(iii) 任意の α ∈ Qに対して, ある β, γ ∈ Zが存在して, α = β/γ, γ 6= 0.

定理 1.6より, Qは Cの部分体である. よって, (i)が成り立つ.

定理 1.4より, Zは Cの部分整域である. Z ⊆ Qであるから, (ii)が成り立つ.

α ∈ Qとすると, 定理 1.2より, ある有理整数 a > 0が存在して aα ∈ Zとなる. β = aαとおく

と, α = β/aである. よって, (iii)が成り立つ.

2 2次体

Cの部分体 K が代数体であるとは, Q ⊆ K ⊆ Qであり, Q上のベクトル空間として有限次元

であるときにいう. ここで, スカラー倍は積によって定めるものとする. [K : Q] = dimQ K とお

き, これを代数体 K の Q上の次数という. [K : Q] = nのとき, K は n次体であるという. 特に,

[K : Q] = 2のとき, K を 2次体という.

有理整数mに対して,

Q(
√

m) = {a + b
√

m | a, b ∈ Q}

とおく. 定義より明らかに Q ⊆ Q(
√

m)である.

［補題 2.1］mを有理整数とする. このとき,
√

mが有理数ならば, mは 0または平方数である.

［証明］
√

m ∈ Qとすると,
√

mは既約分数として表される:

√
m =

a

b
, a, b ∈ Z, b > 0, gcd(a, b) = 1.

このとき,

b2m = a2.

a2 ≥ 0, b2 ≥ 0なので, m ≥ 0である.
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いま, m 6= 0と仮定し, |a|, b, mの素因数分解

|a| =
r∏

i=1

pei
i , b =

r∏
i=1

pfi

i , m =
r∏

i=1

pgi

i , ei, fi, gi ≥ 0

を考えると, 分解の一意性により,

2fi + gi = 2ei (i = 1, 2, . . . , r).

ゆえに, g1, g2, . . ., gr はすべて偶数でなければならない. したがって, mは平方数である.

［定理 2.2］mを 0でも平方数でもない有理整数とする. このとき, 任意の a, b, c, d ∈ Qに対して,

a + b
√

m = c + d
√

m ⇐⇒ a = c, b = d

が成り立つ.

［証明］a′ = a − c, b′ = b − dとおくと,

a = c, b = d ⇐⇒ a − c = b − d = 0

⇐⇒ a′ = b′ = 0.

一方,

a + b
√

m = c + d
√

m

⇐⇒ (a − c) + (b − d)
√

m = 0

⇐⇒ a′ + b′
√

m = 0.

さらに,

a′ = b′ = 0 =⇒ a′ + b′
√

m = 0

は明らかである. したがって,

a′ + b′
√

m = 0 =⇒ a′ = b′ = 0

を示せば十分である.

a′ + b′
√

m = 0とする. もし仮に b′ 6= 0とすると,

√
m = −a′

b′
∈ Q.

補題 2.1より, mは 0または平方数である. これは定理の仮定に反する. ゆえに, b′ = 0でなければ

ならない. a′ + b′
√

m = 0より a′ = 0もいえる.
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任意の a, b ∈ Qに対して,

a + b
√

m ∈ Q ⇐⇒ b = 0

が成り立つ. なぜなら, (⇒)については, a, b ∈ Qとし, a + b
√

m ∈ Qであるとすると, ある c ∈ Q

が存在して, a + b
√

m = cとなる. 定理 2.2より, b = 0が得られる. (⇐)は明らかである.

［補題 2.3］Q(
√

m) ⊆ Q. ただし, mは有理整数であるとする.

［証明］α ∈ Q(
√

m)とすると,

α = a + b
√

m, a, b ∈ Q

と表せる. 両辺に −aを加えて 2乗すると,

(α − a)2 = b2m.

左辺を展開して整理すると,

α2 − 2aα + a2 − b2m = 0.

ゆえに, α ∈ Q. したがって, Q(
√

m) ⊆ Q.

［定理 2.4］mを 0でも平方数でもない有理整数とする. このとき, Q(
√

m)は 2次体である. 特

に, Q(
√

m)は Q上のベクトル空間であり, 1,
√

mはその Q上の基底である.

［証明］Q ⊆ Q(
√

m)は明らか. 特に, Q(
√

m)は空集合でない. また, 補題 2.3より, Q(
√

m) ⊆ Q.

α, β ∈ Q(
√

m)とし,

α = a + b
√

m, a, b ∈ Q,

β = c + d
√

m, c, d ∈ Q

とおくと,

α − β = (a − c) + (b − d)
√

m ∈ Q(
√

m),

αβ = (ac + bdm) + (ad + bc)
√

m ∈ Q(
√

m).

したがって, Q(
√

m)は Qの部分環である.

α = a + b
√

m 6= 0のとき, 定理 2.2より a − b
√

m 6= 0だから,

a2 − mb2 = (a + b
√

m)(a − b
√

m) 6= 0.

よって,

α−1 =
1

a + b
√

m
=

a − b
√

m

(a + b
√

m)(a − b
√

m)

=
a

a2 − mb2
− b

a2 − mb2

√
m ∈ Q(

√
m).
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ゆえに, αは Q(
√

m)において逆元をもつ. したがって, Q(
√

m)は体である.

Q(
√

m)はQを部分体として含むので, Q上のベクトル空間をなす. Q(
√

m)が 1,
√

mによってQ

上生成されることはQ(
√

m)の定義より明らかである. また, 定理 2.2より, 1,
√

mはQ上 1次独立

である. ゆえに, 1,
√

mはQ(
√

m)のQ上の基底である. よって, [Q(
√

m) : Q] = dimQ Q(
√

m) = 2.

以上より, Q(
√

m)が 2次体であることが示された.

［補題 2.5］任意の a ∈ Q \ Q2 に対して, ある t ∈ Q×, m ∈ Zが存在して,

a = t2m, m 6= 0, 1, mは平方因子を含まない

となる.

［証明］aを既約分数で表す:

a =
b

c
, b, c ∈ Z, c > 0, gcd(b, c) = 1.

さらに,

b = b2
1b2, b2 は平方因子を含まない,

c = c2
1c2, c2 は平方因子を含まない

とおく. t = b1/c1c2, m = b2c2 とおくと, a = t2mとなる. a 6∈ Q2 より, m 6= 1. 再び a 6∈ Q2

より, a 6= 0 だから, t 6= 0, m 6= 0. また, b2, c2 はともに平方因子を含まない有理整数であり,

gcd(b2, c2) = 1であるから, mもまた平方因子を含まない有理整数である.

［定理 2.6］任意の 2次体K に対して, ある有理整数mが存在して, K = Q(
√

m)が成り立つ. し

かも, mとして, 0, 1と異なり, かつ平方因子を含まないものがとれる.

［証明］K は 2次体だから, Q ⊆ K. また, α ∈ K \ Qとすると, dimQ K = 2より, 1, α, α2 は Q

上 1次従属である. よって, ある a, b, c ∈ Qが存在して,

aα2 + bα + c = 0.

もし仮に a = 0とすると, bα + c = 0となり, b = 0ならば c = 0となって αがQ上 1次従属である

ことに反し, b 6= 0ならば α = −c/bとなって α 6∈ Qに反する. ゆえに, a 6= 0である. D = b2 − 4ac

とおくと, 2次方程式の解の公式により,

α =
−b ±

√
D

2a
.

α 6∈ Qより, D 6∈ Q2. 補題 2.5より, ある t ∈ Q×, m ∈ Zが存在して,

D = t2m, m 6= 0, 1, mは平方因子を含まない
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となる. このとき,

α =
−b ±

√
t2m

2a
= − b

2a
± t

2a

√
m ∈ Q(

√
m).

したがって, K = Q ∪ (K \ Q) ⊆ Q(
√

m). 定理 2.6より, Q(
√

m)は 2次体である. よって, K は

Q(
√

m)の Q上の部分ベクトル空間であり,

dimQ K = dimQ Q(
√

m) = 2

であるから, K = Q(
√

m).

［定理 2.7］m, m′ はともに 0, 1と異なり平方因子を含まない有理整数とする. このとき,

m 6= m′ =⇒ Q(
√

m) ∩ Q(
√

m′) = Q

が成り立つ.

［証明］m 6= m′ と仮定する. α ∈ Q(
√

m) ∩ Q(
√

m′)とすると, ある a, b, c, d ∈ Qが存在して,

α = a + b
√

m = c + d
√

m′.

もし仮に b 6= 0, d 6= 0とすると,

√
m′ = a′ + b′

√
m, a′ =

a − c

d
, b′ =

b

d
6= 0

と表せる. 2乗すると,

m′ = (a′ + b′
√

m)2 = (a′2 + b′2m) + 2a′b′
√

m.

定理 2.2より,

m′ = a′2 + b′2m, 2a′b′ = 0.

b′ 6= 0だから, 2番目の式より a′ = 0. よって, 1番目の式よりm′ = b′2m. 最初にm 6= m′ と仮定

したから, b′2 6= 1. これはm′ が平方因子を含まないことに反する. ゆえに, b = 0または d = 0で

なければならない.

b = 0ならば, α = a ∈ Q. 一方, d = 0ならば, α = c ∈ Q. いずれにせよ, α ∈ Qとなる. ゆえに,

Q(
√

m) ∩ Q(
√

m′) ⊆ Q. 逆の包含関係は明らかだから, Q(
√

m) ∩ Q(
√

m′) = Q.

K を 2次体とする. K ⊆ Rであるとき, K を実 2次体といい, そうでないとき, K を虚 2次体と

いう. K = Q(
√

m), m ∈ Zと表すとき, m > 0ならば実 2次体, m < 0ならば虚 2次体である.
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3 トレースとノルム

K = Q(
√

m), m ∈ Zを 2次体とする. K の元 α = a + b
√

m, a, b ∈ Qに対して,

ασ = a − b
√

m

を αの共役という.

［注意 3.1（複素共役との関係）］K = Q(
√

m), m ∈ Zを 2次体とし, α = a + b
√

mをK の元と

する.

K が虚 2次体のとき, すなわちm < 0のとき, αの共役 ασ は複素共役に一致する.

K が実 2次体のとき, すなわちm > 0のとき, b 6= 0の場合には, αは無理数で, その共役 ασ は

αと異なる. よって, この場合は 2次体の元の共役と複素共役とが一致しない. b = 0の場合には,

αは有理数で, その共役は αに一致する. よって, この場合は 2次体の元の共役と複素共役とが一

致する.

［定理 3.1］K を 2次体とし, α ∈ K とする.

(i) (ασ)σ = α.

(ii) ασ = α ⇐⇒ α ∈ Q.

(iii) α = 0 ⇐⇒ ασ = 0 ⇐⇒ αασ = 0.

［証明］α = a + b
√

m, a, b ∈ Qとおく.

(i) (ασ)σ = (a − b
√

m)σ = a − (−b)
√

m = a + b
√

m = α.

(ii) ασ = α ⇐⇒ α − ασ = 0 ⇐⇒ 2b
√

m = 0 ⇐⇒ b = 0 ⇐⇒ α ∈ Q.

(iii) α = 0 ⇐⇒ a + b
√

m = 0 ⇐⇒ a = b = 0 ⇐⇒ a − b
√

m = 0 ⇐⇒ ασ = 0.

また, ασ = 0ならば αασ = 0. 逆に, αασ = 0ならば, α = 0または ασ = 0. 先に示したように

α = 0 ⇐⇒ ασ = 0なので, いずれの場合も ασ = 0. したがって, ασ = 0 ⇐⇒ αασ = 0.

［定理 3.2］K を 2次体とし, α, β ∈ K とする.

(i) ασ + βσ = (α + β)σ.

(ii) −ασ = (−α)σ.

(iii) ασβσ = (αβ)σ.

(iv) (ασ)−1 = (α−1)σ. ただし, α 6= 0と仮定する.

［証明］α = a + b
√

m, β = c + d
√

m, a, b, c, d ∈ Qとおく.

(i) ασ+βσ = (a−b
√

m)+(c−d
√

m) = (a+c)−(b+d)
√

m = ((a+c)+(b+d)
√

m)σ = (α+β)σ.
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(ii) −ασ = −(a−b
√

m) = (−a)− (−b)
√

m = ((−a)+(−b)
√

m)σ =
(
−(a+b

√
m)

)σ = (−α)σ.

(iii) ασβσ = (a− b
√

m)(c− d
√

m) = (ac + bd)− (ad + bc)
√

m =
(
(ac + bd) + (ad + bc)

√
m

)σ

= (αβ)σ.

(iv) (ασ)−1 =
1

a − b
√

m
=

a + b
√

m

(a + b
√

m)(a − b
√

m)
=

a + b
√

m

a2 − b2m
. 一方, (α−1)σ =

(
1

a − b
√

m

)σ

=
(

a − b
√

m

(a + b
√

m)(a − b
√

m)

)σ

=
(

a − b
√

m

(a + b
√

m)(a − b
√

m)

)σ

=
(

a − b
√

m

a2 − b2m

)σ

=
a + b

√
m

a2 − b2m
.

2次体K の各元の共役により定まる写像

σ : K −→ K, α 7−→ ασ

を共役写像という. 定理 3.1より, σ の逆写像は σ 自身である. 特に, σ は全単射である. また, 定

理 3.2より, 共役写像はK からK 自身への (環の)準同型写像である. したがって, σはK の自己

同型写像である.

id : K −→ K をK の恒等写像とし, Gal(K/Q) = {id, σ}とおく.

［定理 3.3］K を 2次体とするとき, Gal(K/Q)は写像の合成を積として位数 2の巡回群をなす.

Gal(K/Q)をK の Q上のGalois群という.

［証明］σおよび idはK の自己同型であり, それらの合成もまたK の自己同型である. したがっ

て, 積が定義できる. また, 写像の合成は結合法則を満たす.

σ ◦ id = id ◦ σ = σより, Gal(K/Q)の単位元は idである.

σ ◦ σ = id. すなわち, σの逆写像は σ自身である. よって, σ自身が σの Gal(K/Q)における逆

元である. idについても同様である.

元の個数は 2個なので, 群の位数は 2である. σ 6= idであるから, Gal(K/Q)は σによって生成

される巡回群である.

2次体K = Q(
√

m)の元 α = a + b
√

m, a, b ∈ Qのトレース, ノルムを, それぞれ

TrKα = α + ασ = 2a,

NKα = αασ = a2 − b2m

によって定める. 定め方からわかるように, TrKα, NKα ∈ Qである. また,

X2 − (TrKα)X + NKα = (X − α)(X − ασ)

であるから, α, ασ はともに Q係数 2次方程式

X2 − (TrKα)X + NKα = 0
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の解である.

K が虚 2次体のとき, K の元 αの共役 ασ は複素共役であるから,

NKα = αασ = |α|2.

よって, 虚 2次体における 0でない元のノルムの値は常に正である.

［定理 3.4］K を 2次体とし, α, β ∈ K, c ∈ Qとする.

(i) TrK(α + β) = TrKα + TrKβ.

(ii) TrK(cα) = c · TrKα.

(iii) TrKc = 2c.

［証明］(i) 定理 3.2より (α + β)σ = ασ + βσ であるから,

TrK(α + β) = α + β + (α + β)σ

= α + β + ασ + βσ

= (α + ασ) + (β + βσ)

= TrKα + TrKβ.

(ii) 定理 3.2より (cα)σ = cσ ασ = cασ であるから,

TrK(cα) = cα + (cα)σ = cα + cασ = c(α + ασ) = c · TrKα.

(iii) 定理 3.1より cσ = cであるから, TrKc = c + cσ = c + c = 2c.

［定理 3.5］K を 2次体とし, α, β ∈ K, c ∈ Qとする.

(i) NK(αβ) = NKαNKβ.

(ii) NKc = c2.

(iii) NKα = 0 ⇐⇒ α = 0.

(iv) NKα−1 = (NKα)−1. ただし, α 6= 0と仮定する.

［証明］(i) 定理 3.2より (αβ)σ = ασβσ であるから,

NK(αβ) = αβ(αβ)σ = αβασβσ = (αασ)(ββσ) = NKαNKβ.

(ii) 定理 3.1より cσ = cであるから, NKc = ccσ = c2.

(iii) 定理 3.1より, NKα 6= 0 ⇐⇒ αασ 6= 0 ⇐⇒ α 6= 0.

(iv) (iii)より, α 6= 0ならばNKα 6= 0. このとき, (i), (ii)を用いて計算すると,

NKαNKα−1 = NK(αα−1) = NK1 = 12 = 1.

ゆえに, NKα−1 = (NKα)−1.
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K の各元のトレースにより定まる写像

TrK : K −→ Q, α 7−→ TrKα

をトレース写像という. 定理 3.4より, トレース写像はQ上の線型写像である. また, 各元のノルム

により定まる写像

NK : K× −→ Q×, α 7−→ NKα

をノルム写像という. ここで, 定理 3.5よりNKα = 0 ⇐⇒ α = 0であるから, ノルム写像は実際に

定義できる. 再び定理 3.5より, ノルム写像は乗法群の準同型写像である.

4 整数環

代数体K に対して, oK = K ∩ Zとおく. oK は, K および Zの部分整域である. oK をK の整

数環といい, oK の元をK の整数という.

［定理 4.1］Q ∩ oK = Z. ただし, K は代数体, oK はK の整数環.

［証明］Z ⊆ Q ⊆ K かつ Z ⊆ Zより, Z ⊆ oK . さらに,

Z ⊆ Q ∩ oK ⊆ Q ∩ Z = Z

より, Q ∩ oK = Zが得られる.

［定理 4.2］K を代数体とする. このとき, K は oK の商体である.

［証明］定理 1.7と同様にして証明すればよい. oK がK の部分整域であることは oK の定め方か

ら明らかである. α ∈ K とする. K ⊆ Qであるから, 定理 1.2より, ある有理整数 a > 0が存在し

て aα ∈ Z. また, a ∈ Z ⊆ K より, aα ∈ K. ゆえに, aα ∈ K ∩ Z = oK となる. β = aαとおくと,

α = β/a.

［定理 4.3］K を 2次体とする. 任意の α ∈ K に対して,

α ∈ oK ⇐⇒ TrKα, NKα ∈ Z

が成り立つ.

［証明］(⇒) α ∈ oK とする. αは代数的整数だから, ある a0, a1, . . ., an−1 ∈ Zが存在して,

αn + an−1α
n−1 + · · · + a1α + a0 = 0.
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共役をとると,

(ασ)n + an−1(ασ)n−1 + · · · + a1α
σ + a0

= (αn + an−1α
n−1 + · · · + a1α + a0)σ

= 0σ = 0.

したがって, ασ も代数的整数である. ゆえに,

TrKα = α + ασ ∈ Z,

NKα = αασ ∈ Z.

一方で, もともと TrKα,NKα ∈ Qだったから,

TrKα, NKα ∈ Q ∩ Z = Z

となる.

(⇐) α ∈ K は方程式

X2 − (TrKα)X + NKα = 0

の解である. TrKα, NKα ∈ Zとすると, この方程式は Z係数である. ゆえに, α ∈ Z.

［補題 4.4］K = Q(
√

m)を 2次体とする. ただし, m 6= 0, 1は平方因子を含まない有理整数とす

る. また, α = x +
√

m, x, y ∈ QをK の元とする. さらに, u = 2x, v = 2yとおく. このとき, 次

の 2つの条件は同値である.

(i) α ∈ oK .

(ii) u, v ∈ Zかつ u2 − mv2 ≡ 0 (mod 4).

［証明］(i)⇒(ii) α ∈ oK とすると, 定理 4.3より,

u = 2x = TrKα ∈ Z,

u2 − mv2 = 4(x2 − my2) = 4 · NKα ∈ 4Z.

さらに,

mv2 = u2 − (u2 − mv2) ∈ Z.

c = mv2 とおく. また, vを既約分数で表す: v = a/b, a, b ∈ Z, b > 0, gcd(a, b) = 1. すると,

b2c = ma2.

もし仮に b > 1とすると, ある素数 pが存在して p | b, したがって p2 | b2. よって, p2 | ma2. と

ころが, gcd(a, b) = 1であるから, p2 | m. これはmが平方因子を含まないことに反する. ゆえに,

b = 1. したがって, v = a ∈ Z.
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(ii)⇒(i) TrKα = 2x = u ∈ Z. また,

4 · NKα = 4(x2 − my2) = u2 − mv2 ∈ 4Z.

ゆえに, NKα ∈ Z. したがって, 定理 4.3より, α ∈ oK .

［補題 4.5］m, u, v ∈ Zとする.

(i) m ≡ 1 (mod 4)のとき,

u2 − mv2 ≡ 0 (mod 4) ⇐⇒ u ≡ v (mod 2).

(ii) m ≡ 2, 3 (mod 4)のとき,

u2 − mv2 ≡ 0 (mod 4) ⇐⇒ u ≡ v ≡ 0 (mod 2).

［証明］(i) m ≡ 1 (mod 4)のとき,

u2 − mv2 ≡ 0 (mod 4) ⇐⇒ u2 − v2 ≡ 0 (mod 4)

⇐⇒ u2 ≡ v2 (mod 4)

⇐⇒ u ≡ v (mod 2).

(ii) (⇒) u2 − mv2 ≡ 0 (mod 4)とする.

m ≡ 2 (mod 4)のとき,

u2 ≡ 2v2 (mod 4)

なので,

2 | u2 =⇒ 2 | u =⇒ 4 | u2 =⇒ 4 | 2v2 =⇒ 2 | v2 =⇒ 2 | v.

よって, u ≡ v ≡ 0 (mod 2).

m ≡ 3 (mod 4)のとき,

u2 ≡ 3v2 (mod 4).

もし仮に vが奇数であるとすれば,

v ≡ 1 (mod 2) =⇒ v2 ≡ 1 (mod 4) =⇒ u2 ≡ 3 (mod 4).

一方, 任意の u ∈ Zに対して u2 ≡ 0, 1 (mod 4)であるから, これは矛盾である. ゆえに, v は偶数

である. したがって, uも偶数である. すなわち, u ≡ v ≡ 0 (mod 2).

(⇐) 明らかである.
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［定理 4.6］K = Q(
√

m)を 2次体とする. ただし, m 6= 0, 1は平方因子を含まない有理整数と

する.

(i) m ≡ 1 (mod 4)のとき,

oK =
{

u + v
√

m

2

∣∣∣∣ u, v ∈ Z, u ≡ v (mod 2)
}

. (3)

(ii) m ≡ 2, 3 (mod 4)のとき,

oK = {x + y
√

m | x, y ∈ Z}. (4)

［証明］α = x + y
√

m, x, y ∈ QをK の元とする. また, u = 2x, v = 2yとおく.

(i) m ≡ 1 (mod 4)のとき, 補題 4.4, 補題 4.5より,

α ∈ oK ⇐⇒ u, v ∈ Z, u ≡ v (mod 2).

α を u, v で表すと α = (u + v
√

m)/2 なので, 上の同値から直ちに (3) の ⊆ が得られる. 逆に,

α = (u + v
√

m)/2と条件 u, v ∈ Z, u ≡ v (mod 2)が先に与えられたとき, x = u/2, y = v/2とお

くと, α = x + y
√

mであり, 上の同値より α ∈ oK が得られる. よって, ⊇もいえる.

(ii) m ≡ 2, 3 (mod 4)のとき, 補題 4.4, 補題 4.5より,

α ∈ oK ⇐⇒ u, v ∈ Z, u ≡ v ≡ 0 (mod 2)

⇐⇒ x, y ∈ Z.

よって, (4)が成り立つ.

5 整数底

Kを 2次体, oK をKの整数環とする. ω1, ω2 ∈ oK がKの整数底であるとは, 任意の α ∈ oK が

α = aω1 + bω2, a, b ∈ Z

と一意的に表されるときにいう. ω1, ω2 がK の整数底であることを, 記号で

oK = [ω1, ω2]

と表す.

［補題 5.1］K を 2次体とする. ω1, ω2 ∈ oK がK の整数底であるための必要十分条件は, 次の 2

つの条件を満たすことである.

(i) oK = Zω1 + Zω2.
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(ii) ω1, ω2 は Z上 1次独立である.

［証明］(条件の必要性) ω1, ω2 ∈ oK を K の整数底とする. 任意の α ∈ oK に対して, ある a,

b ∈ Zが存在して,

α = aω1 + bω2 ∈ Zω1 + Zω2.

ゆえに, oK ⊆ Zω1 + Zω2. 一方, 任意の a, b ∈ Zに対して aω1 + bω2 ∈ oK であるから, 逆の包含

関係も成り立つ. したがって, (i)が成り立つ.

0 = 0 · ω1 + 0 · ω2 であるから, 任意の a, b ∈ Zに対して,

aω1 + bω2 = 0 =⇒ a = b = 0.

すなわち, (ii)が成り立つ.

(条件の十分性) α ∈ oK とする. (i)より, αは ω1, ω2 の Z係数の 1次結合で表される.

a, b, c, d ∈ Zとし,

α = aω1 + bω2 = cω1 + dω2

とすると,

(a − c)ω1 + (b − d)ω2 = 0.

(ii)より, a − c = b − d = 0. ゆえに, a = c, b = d. したがって, α = aω1 + bω2, a, b ∈ Zという表

し方は一意的である.

［定理 5.2］K = Q(
√

m), m 6= 0, 1は平方因子を含まない有理整数とし,

ω =


1 +

√
m

2
, m ≡ 1 (mod 4)のとき,

√
m, m ≡ 2, 3 (mod 4)のとき

とおくとき, 1, ωは oK の整数底である. これをK の標準的整数底という.

［証明］m ≡ 1 (mod 4)のとき, 定理 4.6より,

oK =
{

u + v
√

m

2

∣∣∣∣ u, v ∈ Z, u ≡ v (mod 2)
}

.

明らかに 1, ω ∈ oK , したがって Z + Zω ⊆ oK .

α = (u + v
√

m)/2, u, v ∈ Z, u ≡ v (mod 2)を oK の元とすると,

α =
u + v

√
m

2

=
(u − v) + v(1 +

√
m)

2

=
u − v

2
+ v · 1 +

√
m

2

=
u − v

2
+ vω.
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u ≡ v (mod 2)より (u − v)/2 ∈ Z. よって, α ∈ Z + Zω. ゆえに, oK ⊆ Z + Zω.

また, 任意の a, b ∈ Zに対して,

a + bω =⇒ a + b · 1 +
√

m

2
= 0

=⇒
(

a +
b

2

)
+

b

2
√

m = 0

=⇒ a +
b

2
=

b

2
= 0

=⇒ a = b = 0.

よって, 1, ωは Z上 1次独立である.

以上の議論と補題 5.1より, m ≡ 1 (mod 4)のとき, 1, ωはK の整数底である.

m ≡ 2, 3 (mod 4)のとき, 1, ω は Q上 1次独立だから, Z上 1次独立である. また, 定理 4.6よ

り, oK は 1, ωで Z上生成される. 補題 5.1より, 1, ωはK の整数底である.

［注意 5.1］整数底とは, まさに 2次体K の整数環 oK における Z上の基底のことである.

基底をもつ加法群のことを自由加群という. 代数学の一般論により, 自由加群の基底の元の個数

は一定であることが知られている. その個数を自由加群の階数という. 定理 5.2より oK は元の個

数が 2個の基底を少なくとも 1つもつから, oK のすべての基底は, その元の個数が必ず 2個であ

る. すなわち, oK は階数 2の自由加群である.

［定理 5.3］K を 2次体, oK をK の整数環, ω1, ω2 を oK の元とする. このとき, ω1, ω2 がK の

整数底ならば, それらの共役 ωσ
1 , ωσ

2 もK の整数底である.

［証明］oK = [ω1, ω2]ならば, oK = Zω1 + Zω2. このとき,

Zωσ
1 + Zωσ

2 = (Zω1 + Zω2)σ = oσ
K = oK .

さらに, 任意の x, y ∈ Zに対して,

xωσ
1 + yωσ

2 = 0 =⇒ (xω1 + yω2)σ = 0

=⇒ xω1 + yω2 = 0

=⇒ x = y = 0.

ゆえに, ωσ
1 , ωσ

2 は Z上 1次独立である. 補題 5.1より, ωσ
1 , ωσ

2 はK の整数底である.

［定理 5.4］ω1, ω2 を 2次体K の整数底とする. また, p, q, r, s ∈ Zとし, ps − qr = ±1を満た

すとする. このとき,

µ1 = pω1 + qω2,

µ2 = rω1 + sω2

(5)

とおけば, µ1, µ2 もまたK の整数底である.
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［証明］µ1, µ2 ∈ oK . したがって, Zµ1 + Zµ2 ⊆ oK .

(5)を行列で表すと, µ1

µ2

 = P

ω1

ω2

 , P =

p q

r s

 .

両辺に P−1 を掛けると,ω1

ω2

 = P−1

µ1

µ2

 , P−1 =
1

ps − qr

 s −q

−r p

 .

e = 1/(ps − qr)とおくと, ps − qr = ±1より e = ±1であり,

ω1 = e(sµ1 − qµ2),

ω2 = e(−rµ1 + pµ2).

α ∈ oK を任意にとる. ω1, ω2 はK の整数底だから, ある a, b ∈ Zが存在して,

α = aω1 + bω2

= ae(sµ1 − qµ2) + be(−rµ1 + pµ2)

= e(as − br)µ1 + e(−aq + bp)µ2

∈ Zµ1 + Zµ2.

ゆえに, oK ⊆ Zµ1 + Zµ2.

任意の a, b ∈ Zに対して,

aµ1 + bµ2 = 0 =⇒ a(pω1 + qω2) + b(rω1 + sω2) = 0

=⇒ (ap + br)ω1 + (aq + bs)ω2 = 0

=⇒ ap + br = aq + bs = 0.

最後の式を行列で表すと,

P

a

b

 =

0

0

 .

両辺に P−1 を掛けると, a

b

 =

0

0

 .

すなわち, a = b = 0. したがって, µ1, µ2 は Z上 1次独立である.

以上の議論と補題 5.1より, µ1, µ2 はK の整数底である.

［補題 5.5］ω1, ω2 を 2次体K の整数底, P を Z成分の 2次正方行列とし,ω1

ω2

 = P

ω1

ω2

 (6)

が成り立つとする. このとき, P = E となる. ただし, E は単位行列である.
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［証明］P =

p q

r s

とおくと, (6)より,

ω1 = pω1 + qω2,

ω2 = rω1 + sω2.

oK の元を整数底の Z係数の 1次結合で表す仕方は一意的だから,

p = s = 1, q = r = 0.

すなわち, P = E.

［補題 5.6］P を Z成分の 2次正方行列とする. このとき, P が Z成分の逆行列をもつための必要

十分条件は, detP = ±1であることである.

［証明］(条件の必要性) P =

p q

r s

とおく. P が逆行列 P−1 をもつとすると,

P−1 =
1

detP

 s −q

−r p

 , det P = ps − qr 6= 0.

P−1 も Z成分ならば, det P は p, q, r, sをすべて割る. したがって, ある u ∈ Zが存在して,

det P = ps − qr = (detP )4u.

もし det P が素因子をもてば, 両辺の素因子の数が一致しないので, Zにおける素因子分解の一意

性に反する. ゆえに, det P は素因子をもたない. すなわち, det P = ±1.

(条件の十分性) det P = ±1とすると, P−1 =
1

detP

 s −q

−r p

 は P の Z成分の逆行列であ

る.

［定理 5.7］K を 2次体, oK をK の整数環, ω1, ω2, µ1, µ2 ∈ oK , p, q, r, s ∈ Zとし,

µ1 = pω1 + qω2,

µ2 = rω1 + sω2

(7)

を満たすとする. このとき, oK = [ω1, ω2] = [µ1, µ2]ならば ps − qr = ±1が成り立つ.

［証明］(7)を行列で表すと, µ1

µ2

 = P

ω1

ω2

 , P =

p q

r s

 . (8)
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また, ω1, ω2 ∈ oK = [µ1, µ2]であるから, ある p′, q′, r′, s′ ∈ Zが存在して,

ω1 = p′µ1 + q′µ2,

ω2 = r′µ1 + s′µ2.

これを行列で表すと, ω1

ω2

 = Q

µ1

µ2

 , Q =

p′ q′

r′ s′

 . (9)

(9)に (8)を代入すると, ω1

ω2

 = QP

ω1

ω2

 .

oK = [ω1, ω2]であるから, 補題 5.5より, QP = E. すなわち, P−1 = Q. さらに, 補題 5.6より,

ps − qr = det P = ±1.

2次体K の整数底 ω1, ω2 が正規整数底であるとは, ω2 = ωσ
1 が成り立つときにいう.

［定理 5.8］K = Q(
√

m)を 2次体とする. ただし, m 6= 0, 1は平方因子を含まない有理整数とす

る. このとき,

K の正規整数底が存在する⇐⇒ m ≡ 1 (mod 4)

が成り立つ. また, m ≡ 1 (mod 4)のとき, 1, ω = (1+
√

m)/2をKの標準的整数底とすると, ω, ωσ

がK の正規整数底である.

［証明］まず, mは平方因子を含まないので, m 6≡ 0 (mod 4)である.

m ≡ 1 (mod 4)のとき, ω = (1 +
√

m)/2とおくと,

ωσ =
1 −

√
m

2
= 1 − 1 +

√
m

2
= 1 − ω.

定理 5.2より oK = [1, ω]だから, 任意の α ∈ oK に対して, ある a, b ∈ Zが存在して,

α = a + bω = (a + b)ω + a(1 − ω) ∈ Zω + Zωσ.

ゆえに, oK ⊆ Zω + Zωσ. 逆の包含関係は明らかである. また, 任意の a, b ∈ Zに対して,

aω + bωσ = 0 =⇒ aω + b(1 − ω) = 0

=⇒ b + (a − b)ω = 0

=⇒ b = a − b = 0

=⇒ a = b = 0.

よって, ω, ωσ は Z上 1次独立である. 補題 5.1より, oK = [ω, ωσ].
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m 6≡ 1 (mod 4)のとき, すなわちm ≡ 2, 3 (mod 4)のとき, oK = [1,
√

m]である. もし仮に K

の正規整数底が存在するとすれば, ある α ∈ oK が存在して

oK = [α, ασ], α = a + b
√

m, a, b ∈ Z

と表せる. ασ = a − b
√

mであるから, 定理 5.7より,

−2ab = ±1.

これは不可能である. ゆえに, K の正規整数底は存在しない.

6 判別式

2次体K の元 α, β に対して, ∣∣∣∣∣∣ α β

ασ βσ

∣∣∣∣∣∣
2

をK における α, β の判別式といい, dK(α, β)で表す.

［定理 6.1］K を 2次体とし, α, β ∈ K とする. このとき,

dK(α, β) =

∣∣∣∣∣∣TrK(α2) TrK(αβ)

TrK(αβ) TrK(β2)

∣∣∣∣∣∣ ∈ Q

が成り立つ. 特に, α, β がともに整数環 oK の元ならば dK(α, β) ∈ Z.

［証明］A =

 α β

ασ βσ

 とおくと, tA =

α ασ

β βσ

 であり,

dK(α, β) = (det A)2 = det tA · det A = det(tAA)

=

∣∣∣∣∣∣α
2 + (ασ)2 αβ + ασβσ

αβ + ασβσ β2 + (βσ)2

∣∣∣∣∣∣
=

∣∣∣∣∣∣TrK(α2) TrK(αβ)

TrK(αβ) TrK(β2)

∣∣∣∣∣∣ .

トレースは常に有理数なので, dK(α, β) ∈ Q. また, 整数環 oK の元のトレースは有理整数なので,

α, β ∈ oK ならば dK(α, β) ∈ Z.

2次体K の元 αに対して,

dK(1, α) =

∣∣∣∣∣∣1 α

1 ασ

∣∣∣∣∣∣
2

= (α − ασ)2

をK における αの判別式といい, dK(α)で表す.
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［定理 6.2］K を 2次体とし, α ∈ K とする.

(i) dK(−α) = dK(α).

(ii) dK(ασ) = dK(α).

(iii) dK(α) = 0 ⇐⇒ α ∈ Q.

［証明］(i) dK(−α) =
(
(−α) − (−α)σ

)2 = (−α + ασ)2 = (α − ασ)2 = dK(α).

(ii) dK(ασ) =
(
ασ − (ασ)σ

)2 = (ασ − α)2 = (α − ασ)2 = dK(α).

(iii) dK(α) = 0 ⇐⇒ (α − ασ)2 = 0 ⇐⇒ α − ασ = 0 ⇐⇒ α ∈ Q. ここで, 最後の同値において

定理 3.1を用いた.

［定理 6.3］K を 2次体とする. このとき, 任意の α ∈ K に対して,

dK(α) = (TrKα)2 − 4 · NKα

が成り立つ.

［証明］dK(α) = (α − ασ)2 = (α + ασ)2 − 4αασ = (TrKα)2 − 4 · NKα.

定理 6.3によれば, dK(α)は αを解にもつ 2次方程式

X2 − (TrKα)X + NKα = 0

の判別式に一致することがわかる.

K を 2次体とし, ω1, ω2 をK の整数底とするとき,

dK(ω1, ω2) =

∣∣∣∣∣∣ω1 ω2

ωσ
1 ωσ

2

∣∣∣∣∣∣
2

をK の判別式といい, dK で表す.

［定理 6.4］dK の値はK の整数底の選び方によらない.

［証明］oK = [ω1, ω2] = [µ1, µ2]とすると, ある p, q, r, s ∈ Zが存在して,

µ1 = pω1 + qω2,

µ2 = rω1 + sω2.

定理 5.7より, ps − qr = ±1. また, 共役をとると,

µσ
1 = pωσ

1 + qωσ
2 ,

µσ
2 = rωσ

1 + sωσ
2
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であるから, ∣∣∣∣∣∣µ1 µ2

µσ
1 µσ

2

∣∣∣∣∣∣ =

∣∣∣∣∣∣ω1 ω2

ωσ
1 ωσ

2

∣∣∣∣∣∣
∣∣∣∣∣∣p r

q s

∣∣∣∣∣∣ = ±

∣∣∣∣∣∣ω1 ω2

ωσ
1 ωσ

2

∣∣∣∣∣∣ .

したがって, dK の値は整数底の選び方によらない.

［定理 6.5］K = Q(
√

m)とし, m 6= 0, 1を平方因子を含まない有理整数とする. このとき,

dK =

m, m ≡ 1 (mod 4)のとき,

4m, m ≡ 2, 3 (mod 4)のとき.

特に, dK ∈ Zかつ dK ≡ 0, 1 (mod 4)である. また, 実 2次体の判別式は正であり, 虚 2次体の

判別式は負である.

［証明］標準的整数底を選んで dK を計算すると, m ≡ 1 (mod 4)のとき,

dK =

∣∣∣∣∣∣1 (1 +
√

m)/2

1 (1 −
√

m)/2

∣∣∣∣∣∣
2

= m.

m ≡ 2, 3 (mod 4)のとき,

dK =

∣∣∣∣∣∣1
√

m

1 −
√

m

∣∣∣∣∣∣
2

= 4m.

後半の主張は前半より明らかである.

［定理 6.6］Kを 2次体, oK をKの整数環, 1, ωをKの標準的整数底とする. また, α ∈ oK とし,

α = a + bω, a, b ∈ Z

と表すとする. このとき,

dK(α) = b2dK

が成り立つ.

［証明］K = Q(
√

m)とおく. ただし, m 6= 0, 1は平方因子を含まない有理整数とする.

m ≡ 1 (mod 4)のとき, ω = (1 +
√

m)/2であるから,

dK(α) = (α − ασ)2

=
((

a + b · 1 +
√

m

2

)
−

(
a + b · 1 −

√
m

2

))2

= b2m.
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m ≡ 2, 3 (mod 4)のとき, ω =
√

mであるから,

dK(α) = (α − ασ)2

=
(
(a + b

√
m) − (a − b

√
m)

)2

= 4b2m.

定理 6.5より, dK(α) = b2dK .

［例 6.1］1, ωを 2次体K の標準的整数底とするとき, dK(ω) = dK(1, ω) = dK .

7 代数体の単数

K を代数体, oK をK の整数環とする.

α, β ∈ oK に対して, ある ξ ∈ oK が存在して β = αξが成り立つとき, αは βを割るといい, βは

αで割り切れるという. このことを記号で α | β と書く. またこのとき, αを β の約数, β を αの倍

数という.

α ∈ oK がいくつかの β1, β2, . . ., βs ∈ oK の約数であるとき, αをそれらの公約数という. また,

αがそれらの最大公約数であるとは, 2つの条件

(i) αは β1, β2, . . ., βs の公約数である.

(ii) β1, β2, . . ., βs の任意の公約数は αの約数である.

を満たすときにいう. 「約数」を「倍数」に書き換えれば, 公倍数, 最小公倍数も同様に定義できる.

［定理 7.1］α, β, γ ∈ oK とする.

(i) α | α.

(ii) α | β, β | γ =⇒ α | γ.

［証明］(i) 任意の α ∈ oK に対して, α = α · 1. よって, α | α.

(ii) α | β かつ β | γ とする. α | β より, ある ξ ∈ oK が存在して,

β = αξ.

同様に, γ | β より, ある ξ′ ∈ oK が存在して,

γ = βξ′.

2番目の式を最初の式に代入すると,

γ = αξξ′.

ξξ′ ∈ oK であるから, α | γ.
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α, β ∈ oK とする. 一般には,

α | β かつ β | α (10)

であっても, α = β とは限らない. 条件 (10)が成り立つとき, α, β は同伴であるという.

［定理 7.2］K を代数体, oK をK の整数環とする. oK の元が同伴であるという関係は, oK にお

ける同値関係である.

［証明］(反射) 定理 7.1より, 任意の α ∈ oK に対して, α | α. これより, αは α自身に同伴で

ある.

(対称) 同伴の定義から明らか.

(推移) α, β, γ ∈ oK とし, α, β が同伴であり, かつ β, γ が同伴であるとする.

α, β が同伴であることから,

α | β かつ β | α.

また, β, γ が同伴であることから,

β | γ かつ γ | β.

ゆえに, 定理 7.1より,

α | γ かつ γ | α.

すなわち, α, γ は同伴である.

α ∈ K が単数であるとは, 2つの条件

(i) α ∈ oK .

(ii) ある α′ ∈ oK が存在して, αα′ = 1.

を満たすときにいう.

［定理 7.3］α, β ∈ oK とするとき, 次の 2つの条件は同値である.

(i) α, β は同伴.

(ii) K の単数 εが存在して, β = αε.

［証明］(i) ⇒ (ii) α | β かつ β | αより, ある ε, ε′ ∈ oK が存在して

β = αε, α = βε′. (11)

1番目の式を 2番目の式に代入すると,

α = αεε′.

両辺に −αを加えると,

0 = α(εε′ − 1).
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oK は整域なので α = 0または εε′ − 1 = 0である. α 6= 0のとき, εε′ = 1. ゆえに, εはK の単数

である. α = 0のとき, (11)の 1番目の式より β = 0. よって, α = β · 1.

(ii) ⇒ (i) α = βεより, β | α. また, εは単数だから, ある ε′ ∈ oK が存在して εε′ = 1. よって,

α = βεの両辺に ε′ を掛けると,

αε′ = βεε′ = β.

ゆえに, α | β.

［定理 7.4］K を代数体, oK をK の整数環, α, β ∈ oK とする.

(i) αが単数ならば, −αも単数である.

(ii) αが単数ならば, α−1 も単数である. ただし, α 6= 0を仮定する.

(iii) α, β が単数ならば, αβ も単数である.

［証明］(i) αを単数とする. 定義より, ある α′ ∈ oK が存在して αα′ = 1. このとき, −α, −α′ ∈

oK , (−α)(−α′) = 1. ゆえに, −αは単数である.

(ii) αを単数とする. 定義より, ある α′ ∈ oK が存在して αα′ = 1. α′ も単数である. 両辺に

α−1 を掛けると, α′ = α−1. ゆえに, α−1 は単数である.

(iii) α, βを単数とする. α, β ∈ oK より αβ ∈ oK . また, (ii)より α−1, β−1もまた単数であり,

(αβ)−1 = β−1α−1 ∈ oK . ゆえに, 積 αβ は単数である.

K における単数の全体を o×K と書く.

［定理 7.5］o×K は乗法に関してK× の部分群になる. ただし, K× = K \ {0}は代数体K の乗法

群であるとする. o×K をK の単数群という.

［証明］まず, 0 6∈ o×K , すなわち, 0は単数でない. なぜなら, 任意の α ∈ oK に対して 0 ·α = 0 6= 1

だからである. よって, o×K ⊆ K \ {0} = K×.

1 ∈ o×K は明らかなので, o×K は空集合でない. また, 定理 7.4より,

α ∈ o×K , α 6= 0 =⇒ α−1 ∈ o×K ,

α, β ∈ o×K =⇒ αβ ∈ o×K .

したがって, o×K はK× の部分群である.

［定理 7.6］Q ∩ o×K = {±1}. ただし, o×K は代数体K の単数群であるとする.

［証明］α ∈ Q ∩ o×K とする. α ∈ Q ∩ oK = Zより,

α−1 ∈ Q ∩ o×K ⊆ Q ∩ oK = Z.

ゆえに, αはQの単数である. すなわち, α ∈ {±1}. したがって, Q∩ o×K ⊆ {±1}. 逆の包含関係は

明らかである.
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8 2次体の単数

［定理 8.1］K を 2次体, oK をK の整数環, α ∈ oK とする. このとき, αが単数ならば, K にお

ける αの共役 ασ も単数である.

［証明］αを単数とすると,あるα′ ∈ oKが存在してαα′ = 1. このとき, ασ, α′σ ∈ oK , ασα′σ = 1.

ゆえに, ασ は単数である.

［定理 8.2］K を 2次体, oK を整数環, α, β ∈ oK とする. このとき, oK において αが β で割り

切れるならば, ZにおいてNKαは NKβ で割り切れる.

［証明］oK において αが β で割り切れるとすると, ある γ ∈ oK が存在して α = βγ. ノルムをと

ると,

NKα = NK(βγ) = NKβNKγ.

α, β, γ ∈ oK より, NKα, NKβ, NKγ ∈ Z. ゆえに, ZにおいてNKαはNKβで割り切れる.

［定理 8.3］K を 2次体, oK をK の整数環, ε ∈ K とする. このとき, εが単数であるための必要

十分条件は, ε ∈ oK かつ |NKε| = 1となることである.

［証明］(条件の必要性) εを単数とすると, ε ∈ oK であり, ある ε′ ∈ oK が存在して εε′ = 1. 定

理 8.2より, Zにおいて 1 = NK1は NKεで割り切れる. ゆえに, NKε = ±1.

(条件の十分性) ε ∈ oK かつ |NKε| = 1とすると, εσ ∈ oK かつ εεσ = ±1. よって, ε′ = ±εσ

とおくと, ε′ ∈ oK , εε′ = 1.

［注意 8.1］整数環の元でなくてもノルムの値が 1になるものは存在する. 例えば, K = Q(
√
−15),

α = (1 +
√
−15)/4とおくと, α 6∈ oK かつNKα = 1.

定理 8.3より, 2次体K の単数群 o×K は

o×K = {ε ∈ oK | |NKε| = 1}

と表せる. さらに, K が虚 2次体のとき, 0でない元のノルムの値は常に正なので, |NKε| = 1のと

ころはNKε = 1と書き換えられる.

［定理 8.4］K を虚 2次体とする.

(i) K = Q(
√
−1)のとき, K のすべての単数は ±1, ±

√
−1.
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(ii) K = Q(
√
−3)のとき, K のすべての単数は ±1, ±(1 −

√
−3)/2, ±(1 +

√
−3)/2.

(iii) それ以外のとき, K の単数は ±1のみ.

［証明］εをK の単数とする. K は虚 2次体なので, ある平方因子を含まない有理整数m > 0が

存在してK = Q(
√
−m). よって,

ε = a + b
√
−m, a, b ∈ Q

と表される. また, 定理 8.3の後に述べたことから, NKε = 1である.

b = 0のとき, ε = a ∈ Q. よって,

1 = NKε = NKa = a2 = ε2.

ゆえに,

ε = ±1. (12)

b 6= 0のとき, t = −TrKεとおくと, εは 2次方程式

X2 + tX + 1 = 0

の解であるから,

ε =
−t ±

√
t2 − 4

2
.

ε ∈ oK より, t ∈ Z. また, ε = a + b
√
−m 6∈ Rより上の方程式の判別式 t2 − 4は負なので,

(t − 2)(t + 2) = t2 − 4 < 0.

よって,

−2 < t < 2.

t ∈ Zであるから, t = 0, ±1. ゆえに,

ε = ±
√
−1, ±(1 −

√
−3)/2, ±(1 +

√
−3)/2. (13)

したがって, K の単数となりうる Cの元は (12), (13)がすべてである. K = Q(
√
−1)のとき, K

は±1, ±
√
−1のみを含む. K = Q(

√
−3)のとき, K は±1, ±(1−

√
−3)/2, ±(1 +

√
−3)/2のみを

含む. それ以外のとき, K は ±1のみを含む.

［補題 8.5］任意の θ ∈ Rと任意の n ∈ Z, n > 0に対して, ある x, y ∈ Zが存在して,

|yθ − x| <
1
n

, 1 ≤ y ≤ n

が成り立つ.
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［証明］y = 0, 1, . . ., nとすると, n + 1個の yθが得られる. x = byθcとおくと,

0 ≤ yθ − x < 1.

よって, yθ − xは次の n個の区間のいずれかに入る.[
0,

1
n

)
,

[
1
n

,
2
n

)
, . . . ,

[
n − 1

n
, 1

)
yθ − xは n + 1個あるので, 部屋割り論法により, 少なくとも 2つは同一の区間に入る. それらを

y1θ − x1, y2θ − x2 とし, y2 < y1 であるすると,

|(y1 − y2)θ − (x1 − x2)|

= |(y1θ − x1) − (y2θ − x2)| <
1
n

であるから, x′ = x1 − x2, y′ = y1 − y2 とおけば, x′, y′ ∈ Zかつ

|y′θ − x′| <
1
n

, 1 ≤ y′ ≤ n

となる.

［補題 8.6］Kを実 2次体, oK をKの整数環, dK をKの判別式とする. このとき, 任意の n ∈ Z,

n > 0に対して, ある α ∈ oK , α 6= 0が存在して,

|α| <
1
n

, |NKα| < 1 +
√

dK

が成り立つ.

［証明］1, ω をK の標準的整数底とする. 補題 8.5において θ = −ω とおくと, ある x, y ∈ Zが

存在して

|yω + x| <
1
n

, 1 ≤ y ≤ n.

α = x + yωとおくと, |α| < 1/n. また, y 6= 0より, α 6= 0.

一方, ω − ωσ =
√

dK より

ασ = x + yωσ

= (x + yω) − y(ω − ωσ)

= α + y
√

dK

なので,

|ασ| ≤ |α| + y
√

dK <
1
n

+ n
√

dK .
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したがって, NKα = αασ より,

|NKα| = |α||ασ|

<
1
n

(
1
n

+ n
√

dK

)
=

1
n2

+
√

dK

< 1 +
√

dK .

［定理 8.7］K を実 2次体とする. このとき, K の単数で ±1とは異なるものが存在する.

［証明］K を実 2次体, oK をK の整数環, dK をK の判別式とする. 補題 8.6より, 任意の n ∈ Z,

n > 0に対して, ある α ∈ oK , α 6= 0が存在して,

|α| <
1
n

, |NKα| < 1 +
√

dK . (14)

そこで, まず n1 = 1に対して, (14)を満たす αを α1 とおく. 次に, n2 > 1/|α1|なる n2 に対して,

(14)を満たす αを α2 とおくと,

|α2| <
1
n2

< |α1|.

同様の操作を続けると, d = b1 +
√

dKc + 1とおくとき,

|α1| > |α2| > · · · > |αd3 | > 0

なる oK の元 α1, α2, . . ., αd3 が定まる. 各 αi のノルムの絶対値は dより小さいので, 有理整数 c

で |NKαi| = cとなる αi が d2 個より多く存在するようなものが 1 ≤ c < dの範囲に存在する.

そこで, |NKαi| = cを満たす αi のすべてを β1, β2, . . ., βd′ (d′ > d2)とおく. ただし,

|β1| > |β2| > · · · > |βd′ |

が成り立つように番号を振る. 1, ωをK の標準的整数底とし, 各 i = 1, 2, . . ., d′ に対して

βi = ri + siω, ri, si ∈ Z

とおく. c < dより |Z/cZ × Z/cZ| < d2 であるから, 部屋割り論法により, ある番号 i < j が存在

して

ri ≡ rj (mod c), si ≡ sj (mod c).

ri − rj = cr, si − sj = csとおくと,

βi − βj = c(r + sω).

両辺を βj で割ると,

βiβ
−1
j − 1 = c(r + sω)β−1

j .
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ゆえに, ε = 1 + c(r + sω)β−1
j とおくと,

βiβ
−1
j = ε.

|NKβi| = |NKβj |なので,

|NKε| = |NK(βiβ
−1
j )| = |NKβiNKβ−1

j |

= |NKβi||NKβ−1
j | = |NKβi||NKβj |−1

= 1.

また,

βjβ
σ
j = NKβj = ±c

より

cβ−1
j = ±βσ

j ∈ oK

であるから, ε ∈ oK . したがって, εはK の単数である.

|βi| > |βj |より,

|ε| = |βi||βj |−1 > 1.

ゆえに, ε 6= ±1.

［定理 8.8］K を実 2次体とする. このとき, ε > 1を満たすK の単数 εが存在する. しかも, そ

の中に最小のもの ε0 が存在する. ε0 をK の基本単数という.

［証明］定理 8.7より, K の単数 εが存在して, ε 6= ±1. このとき, 次の 4通りが考えられる.

(i) ε > 1.

(ii) 0 < ε < 1.

(iii) −1 < ε < 0.

(iv) ε < −1.

(i)の場合, すべきことはない. (ii)の場合, εの代わりに ε−1 をとればよい. (iii)の場合, εの代わ

りに −εをとればよい. (iv)の場合, εの代わりに −ε−1 をとればよい. 以上より, 定理の前半が証

明された.

さて, ε > 1をK の単数, 1, ωをK の標準的整数底とする. これらの取り方はK にのみ依存す

ることに注意せよ. K の単数は oK の元なので, a + bω, a, b ∈ ZをK の単数とし,

1 < a + bω ≤ ε (15)

とする. NK(a + bω) = ±1より,

−1 < a + bωσ < 1. (16)
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(15), (16)より,

0 < b(ω − ωσ) < 1 + ε.

dK をK の判別式とすると, ω − ωσ =
√

dK > 0より,

0 < b <
1 + ε√

dK

. (17)

また, ω > 0, ωσ < 0だから, (15), (16)より,

εωσ ≤ aωσ + bωωσ ≤ ωσ,

−ω < aω + bωωσ < ω.

よって,

−(ω + ωσ) < a(ω − ωσ) < ω − εωσ.

ω − ωσ =
√

dK > 0より,

−ω + ωσ

√
dK

< a <
ω − εωσ

√
dK

. (18)

a, b ∈ Zであるから, (17), (18)より, (15)を満たす単数 a + bωは有限個しかない. したがって, そ

の中に最小のものが存在する. それを ε0とすれば, ε0は 1より大きいK の単数のうちで最小のも

のである.

［定理 8.9］K を実 2次体, ε0 をK の基本単数とする. このとき, すべての単数は

±εn
0 , n ∈ Z

の形で表される. 特に, 実 2次体の単数は無限にある.

［証明］K の単数 εを任意にとる.

ε > 0のとき, ε0 > 1より, ある n ∈ Zが存在して

εn
0 ≤ ε < εn+1

0 .

もし仮に ε 6= εn
0 とすると,

1 < εε−n
0 < ε0.

εε−n
0 もまた K の単数であるから, これは ε0 の最小性に反する. ゆえに, ε = εn

0 でなければなら

ない.

ε < 0のとき, −ε > 0なので, ある n ∈ Zが存在して −ε = εn
0 . よって, ε = −εn

0 .

最後の主張は, ε0 > 1より

1 < ε0 < ε2
0 < · · ·

であることからわかる.
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［定理 8.10］Kを実 2次体, ε0をKの基本単数, ηをKの単数とする. このとき, すべての単数が

±ηn, n ∈ Z

の形で表されるための必要十分条件は, η = ±ε0, ±ε−1
0 となることである.

［証明］(条件の必要性) まず, η > 0のときを考える. 仮定より,あるn1 ∈ Zが存在して ε0 = ±ηn1

となるが, ε0 > 0より ε0 = ηn1 . また, 定理 8.9より, ある n2 ∈ Zが存在して η = ±εn2
0 . これに前

式を代入すると, ε0 = εn1n2
0 . ゆえに, n1n2 = 1. したがって, n1 = ±1となり, η = ε0 または ε−1

0 .

同様の議論により, η < 0のとき, η = −ε0 または −ε−1
0 .

(条件の十分性) 定理 8.9より明らかである.

9 代数体のイデアル

K を代数体, oK をK の整数環とする.

K の部分集合 aが次の 3つの条件を満たすとき, aをK の分数イデアルあるいは単にK のイデ

アルという.

(i) aは加法に関してK の部分群である.

(ii) 任意の x ∈ oK , α ∈ aに対して, xα ∈ a.

(iii) ある c ∈ oK , c 6= 0が存在して, 任意の α ∈ aに対して, cα ∈ oK .

条件 (i), (ii)より, K の分数イデアル aは oK 加群である.

K の分数イデアル aが a ⊆ oK を満たすとき, aを oK のイデアルあるいはK の整イデアルとい

う. 一般に, K の部分集合 aについて, a ⊆ oK であることと条件 (iii)において c = 1が取れること

とは同値である. したがって, oK のイデアルとは, oK の部分集合 aで条件 (i), (ii)を満たすものの

ことである.

aをKの分数イデアルとすると, a∩ oK は整数環 oK の部分集合であり, かつ条件 (i), (ii)を満た

す. よって, a ∩ oK は oK のイデアルである. また, oK の任意の元 xに対して, xa = {xα | α ∈ a}

はK の分数イデアルである. 条件 (ii)より, xa ⊆ a. 特に, 条件 (iii)より, ある c ∈ oK , c 6= 0が存

在して, caは aに含まれる oK のイデアルになる.

［注意 9.1］代数体K 自身は, 条件 (i), (ii)を満たすので oK 加群であるが, 条件 (iii)を満たさな

いので分数イデアルにはならない.

α1, α2, . . ., αn ∈ K に対して,

oKα1 + oKα2 + · · · + oKαn = {x1α1 + x2α2 + · · · + xnαn | xi ∈ oK}
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はK の分数イデアルである. これを α1, α2, . . ., αn から生成されるイデアルといい,

(α1, α2, . . . , αn)

という記号で表す. また, α1, α2, . . ., αn をイデアル (α1, α2, . . . , αn)の生成元という. また, ただ

1つの元 α ∈ K から生成されるイデアル

(α) = oKα = {xα | x ∈ oK}

を単項イデアルという.

生成元がすべて oK の元であれば, 生成されるイデアルは oK のイデアルになる. 逆に, 生成元の

中に oK の元でないものが 1つでも含まれていれば, 生成されるイデアルは oK に含まれないので,

oK のイデアルではない.

0だけからなる集合 {0}は, 0から生成される oK の単項イデアルである. すなわち, {0} = (0).

これを零イデアルという. 任意の分数イデアルは零イデアルを含む.

また, oK 自身は, 1から生成される oK の単項イデアルである. すなわち, oK = (1).

［定理 9.1］K を代数体, (α), (β)をそれぞれ α, β ∈ K を生成元とする単項分数イデアルとする.

また, o×K をK の単数群とする. このとき,

(α) = (β) ⇐⇒ α = βε (∃ε ∈ o×K)

が成り立つ. 特に,

(α) = oK ⇐⇒ α ∈ o×K

である.

［証明］(⇒) (α) = (β)とする. β ∈ (α) = αoK より, ある ε ∈ oK が存在して, β = αε. 一方,

α ∈ (β) = βoK より, ある ε′ ∈ oK が存在して, α = βε′. ゆえに, α = αεε′. よって, α(εε′−1) = 0.

これより, α = 0または εε′ = 1となる. α = 0の場合は, β = 0となるので, α = β · 1である.

εε′ = 1の場合は, ε ∈ o×K である.

(⇐) γ ∈ (α) = αoK とすると, ある γ′ ∈ oK が存在して, γ = αγ′. 一方, α = βεであるから,

γ = βεγ′ ∈ βoK = (β). よって, (α) ⊆ (β)である. β = αε−1 を用いれば, 逆の包含関係も同様に

して示せる.

後半の主張は, oK = (1)であることから, 前半の主張を β = 1の場合に適用することにより得ら

れる:

(α) = oK ⇐⇒ (α) = (1) ⇐⇒ α = ε (∃ε ∈ o×K) ⇐⇒ α ∈ o×K .

［定理 9.2］K を代数体とし, a, bをK の分数イデアルとする.
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(i) a ∩ bはK の分数イデアルである.

(ii) a + b = {α + β | α ∈ a, β ∈ b} はK の分数イデアルである. これを a, bの和という.

(iii) ab = {
∑

i αiβi (有限和) | αi ∈ a, βi ∈ b} は K の分数イデアルである. これを a, bの積と

いう.

［証明］a, bが oK 加群のとき, a ∩ b, a + b, abが oK 加群であることはすぐに確かめられる. 以

下, イデアルの定義の条件 (iii)が成り立つことを確かめる.

a, bはKの分数イデアルだから,イデアルの定義の条件 (iii)が成り立つ. すなわち,ある c1 ∈ oK ,

c1 6= 0が存在して, 任意の α ∈ aに対して, c1α ∈ oK . 同様に, ある c2 ∈ oK , c2 6= 0が存在して,

任意の β ∈ bに対して, c2β ∈ oK .

(i) a ∩ b ⊆ aだから, 任意の α ∈ a ∩ bに対して, c1α ∈ oK .

(ii) 任意の α ∈ a, β ∈ bに対して,

c1c2(α + β) = c2(c1α) + c1(c2β) ∈ oK .

ここで, c1c2 6= 0であり, c1c2 は α, β には依存しない.

(iii) 任意の
∑

i αiβi ∈ abに対して,

c1c2

∑
i

αiβi =
∑

i

(c1αi)(c2βi) ∈ oK .

ここで, c1c2 6= 0であり, c1c2 は abの元には依存しない.

［例 9.1］K を 2次体, oK をK の整数環, aをK の分数イデアル, γ ∈ K とする. このとき,

(γ)a = γa

が成り立つ. 実際,
∑

i(γxi)αi, xi ∈ oK , αi ∈ aを aの任意の元とすると,

∑
i

(γxi)αi = γ

(∑
i

xiαi

)
∈ γa.

ゆえに, (γ)a ⊆ γa. 逆に, γα, α ∈ aを γaの任意の元とすると, 明らかに γα ∈ (γ)aである. ゆえ

に, γa ⊆ (γ)a.

［定理 9.3］K を代数体, α1, α2, . . ., αr, β1, β2, . . ., βs ∈ K とし,

a = (α1, α2, . . . , αr), b = (β1, β2, . . . , βs)

とおく.

(i) a + b = (α1, α2, . . ., αr, β1, β2, . . ., βs).
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(ii) ab = (α1β1, α1β2, . . ., α1βs, . . ., αrβ1, αrβ2, . . ., αrβs).

［証明］(i) a + b = oKα1 + · · · + oKαr + oKβ1 + · · · + oKβr.

(ii) c = (α1β1, α1β2, . . ., α1βs, . . ., αrβ1, αrβ2, . . ., αrβs)とおく.∑
i ξiηi, ξi ∈ a, ηi ∈ bを abの任意の元とする. 各 ξi, ηi は

ξi = x
(i)
1 α1 + x

(i)
2 α2 + · · ·x(i)

r αr, x
(i)
j ∈ oK ,

ηi = y
(i)
1 β1 + y

(i)
2 β2 + · · · y(i)

s βs, y
(i)
k ∈ oK

と表せるから, ∑
i

ξiηi =
∑

i

∑
j,k

x
(i)
j y

(i)
k αjβk

 ∈ c.

ゆえに, ab ⊆ c. 逆に,

c =
∑
i,j

oKαiβj ⊆ ab.

したがって, ab = c.

K の任意の分数イデアル a, bに対して,

a ∩ b ⊆ a ⊆ a + b, (a ∩ b)(a + b) ⊆ ab

が成り立つことはすぐにわかる. また, a, bがともに oK のイデアルであるとき,

ab ⊆ a ∩ b

が成り立つ.

［注意 9.2］整数環のイデアルではない分数イデアル a, bに対しては ab ⊆ a ∩ b が一般には成立

しない. 例えば, K = Q, oK = Zのとき,

1
2

Z · 1
4

Z =
1
8

Z )
1
4

Z =
1
2

Z ∩ 1
4

Z

となる.

代数体K の整数環 oK のイデアル a, bが互いに素であるとは, a + b = oK が成り立つときにい

う. a, bが互いに素であることを, 記号 (a, b) = 1で表す. a, bが互いに素になるための必要十分

条件は, ある α ∈ a, β ∈ bが存在して 1 = α + β が成り立つことである.

［定理 9.4］K を代数体, oK をK の整数環, a, bを oK のイデアルとし, (a, b) = 1であるとする.

このとき, ab = a ∩ bが成り立つ.
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［証明］ab ⊆ a ∩ bは明らかなので, 逆の包含関係を示す.

1 ∈ oK = a + bより,

1 = α + β, α ∈ a, β ∈ b

と表せる. よって, 任意の γ ∈ a ∩ bに対して,

γ = γ(α + β) = αγ + γβ ∈ ab.

ゆえに, a ∩ b ⊆ ab.

［定理 9.5］K を代数体, a, b, cをK の分数イデアルとする.

(i) a + b = b + a.

(ii) ab = ba.

(iii) (ab)c = a(bc).

(iv) (a + b)c = ab + ac.

［証明］(i) αi + βi, αi ∈ a, βi ∈ bを a + bの任意の元とすると,

αi + βi = βi + αi ∈ b + a.

ゆえに, a + b ⊆ b + a. 逆の包含関係も同様にして示せる.

(ii)
∑

i αiβi, αi ∈ a, βi ∈ bを abの任意の元とすると,∑
i

αiβi =
∑

i

βiαi ∈ ba.

ゆえに, ab ⊆ ba. 逆の包含関係も同様にして示せる.

(iii)
∑

i ξiγi, ξi ∈ ab, γi ∈ cを (ab)cの任意の元とする. 各 ξi は

ξi =
ri∑

j=1

α
(i)
j β

(i)
j , α

(i)
j ∈ a, β

(i)
j ∈ b

のように表せるから,

∑
i

ξiγi =
∑

i

 ri∑
j=1

α
(i)
j β

(i)
j

 γi =
∑

i

 ri∑
j=1

α
(i)
j (β(i)

j γi)

 ∈ a(bc).

ゆえに, (ab)c ⊆ a(bc). 逆の包含関係も同様にして示せる.

(iv)
∑

i ξiγi, ξi ∈ a + b, γi ∈ cを (a + b)cの任意の元とする. 各 ξi は

ξi = αi + βi, αi ∈ a, βi ∈ b
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と表せるから, ∑
i

ξiγi =
∑

i

(αi + βi)γi

=
∑

i

αiγi +
∑

i

βiγi

∈ ab + ac.

ゆえに, (a + b)c ⊆ ab + ac.

逆に, ξ + η, ξ ∈ ac, η ∈ bcを ac + bcの任意の元とする. ξ, ηは

ξ =
∑

i

αiγi, αi ∈ a, γi ∈ c,

η =
∑

j

βjγ
′
j , βj ∈ b, γ′

j ∈ c

と表せるから,

ξ + η =
∑

i

αiγi +
∑

j

βjγ
′
j

=
∑

i

(αi + 0)γi +
∑

j

(0 + βj)γ′
j

∈ (a + b)c.

ゆえに, 逆の包含関係もいえる.

［定理 9.6］K を代数体, a, bをK の分数イデアルとし, a 6= (0)とする. このとき,

b : a = {γ ∈ K | γa ⊆ b}

はK の分数イデアルである. b : aを bの aによる商イデアルという.

［証明］c = b : aとおく.

α, β ∈ c =⇒ αa ⊆ b, βa ⊆ b

=⇒ (α − β)a ⊆ b

=⇒ α − β ∈ c,

α ∈ c, x ∈ oK =⇒ xαa ⊆ xb ⊆ b

=⇒ xα ∈ c.

よって, cは oK 加群である.

a 6= (0)より, aは 0でない元 αをもつ. aは分数イデアルだから, ある c1 ∈ oK , c1 6= 0が存在し

て, c1α ∈ oK となる. またこのとき, c1α ∈ a, c1α 6= 0である. 一方, bは分数イデアルだから, あ

る c2 ∈ oK , c2 6= 0が存在して, c2b ⊆ oK . ゆえに, 任意の γ ∈ cに対して,

c2(c1α)γ = c2γ(c1α) ∈ c2b ⊆ oK .
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すなわち, c = c2(c1α)とおけば, c ∈ oK , c 6= 0であり, 任意の γ ∈ cに対して cγ ∈ oK が成り立つ.

K の分数イデアル a 6= (0)に対して, oK の aによる商イデアル

oK : a = {γ ∈ K | γa ⊆ oK}

を aの逆イデアルといい, a−1 で表す.

［定理 9.7］K を代数体, a, bをK の (0)でない分数イデアルとする.

(i) a−1 6= (0).

(ii) a ⊆ b =⇒ b−1 ⊆ a−1.

(iii) a−1a ⊆ oK .

(iv) ab = oK =⇒ a = b−1.

［証明］(i) aは分数イデアルだから, ある c ∈ oK , c 6= 0が存在して ca ⊆ oK . よって, c ∈ a−1

であるから, a−1 6= (0).

(ii) γ ∈ b−1 =⇒ γb ⊆ oK =⇒ γa ⊆ oK =⇒ γ ∈ a−1.

(iii) a−1aの元
∑

i α′
iαi, αi ∈ a, α′

i ∈ a−1 を任意にとると, 各 iについて α′
iαi ∈ α′

ia ⊆ oK . ゆ

えに,
∑

i α′
iαi ∈ oK . したがって, a−1a ⊆ oK .

(iv) 任意の α ∈ aに対して, αb ⊆ ab = oK より α ∈ b−1. ゆえに, a ⊆ b−1. 逆に, b−1b ⊆ oK

より,

b−1 = oKb−1 = abb−1 ⊆ aoK = a.

［例 9.2］K を代数体とし, α ∈ K, α 6= 0とする.

(α)(α−1) = (αα−1) = (1) = oK

であるから, (α)の逆イデアルは (α−1)である.

10 2次体のイデアル

K を 2次体, oK をK の整数環, aをK の分数イデアルとする. ω1, ω2 ∈ K が aの基底であると

は, 任意の α ∈ aが

α = aω1 + bω2, a, b ∈ Z
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と一意的に表されるときにいう. ω1, ω2 が aの基底であることを, 記号で

a = [ω1, ω2]

と表す.

［補題 10.1］Kを 2次体, oKをKの整数環, aをKの分数イデアルとする. このとき, ω1, ω2 ∈ K

が aの基底であるための必要十分条件は, 次の 2つの条件を満たすことである.

(i) a = Zω1 + Zω2.

(ii) ω1, ω2 は Z上 1次独立である.

［証明］補題 5.1と同様にして証明できる.

イデアルの基底は生成元である. 実際, aを 2次体Kの分数イデアルとし, a = [ω1, ω2]とすると,

a = Zω1 + Zω2 ⊆ oKω1 + oKω2 ⊆ a

より,

a = oKω1 + oKω2 = (ω1, ω2).

しかし, 逆は必ずしも成立しない. 例えば, 1は oK の生成元であるが基底ではない.

aが oK のイデアルであれば, その基底は oK の元である.

oK 自身は oK のイデアルであるが, oK の基底とはまさにK の整数底のことである.

［補題 10.2］2次体K の任意の分数イデアル a 6= (0)は, ある 0でない有理整数を含む.

［証明］aをK の (0)でない分数イデアルとする. a ∩ oK は aに含まれる oK のイデアルであり,

これが 0でない有理整数を含むことをいえばよい. したがって, aが oK のイデアルである場合を証

明すれば十分である.

a 6= (0)より, aは 0でない元 αをもつ. a ⊆ oK より α ∈ oK , したがって ασ ∈ oK であるから,

NKα = αασ ∈ a.

一方, α ∈ oK , α 6= 0より, NKαは 0でない有理整数である.

［補題 10.3］K を 2次体, aを K の分数イデアル, a0 を aに含まれる最小正の有理整数とする.

このとき, 任意の b ∈ Zに対して,

b ∈ a ⇐⇒ bは a0 の Zにおける倍数

が成り立つ.
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［証明］(⇒) 有理整数における除法の原理より, ある q, r ∈ Zが存在して,

b = a0q + r, 0 ≤ r < a0.

b, a0q ∈ aより,

r = b − a0q ∈ a.

a0 の最小性より, r = 0. すなわち, bは a0 の倍数である.

(⇐) bは a0 の Zにおける倍数だから, ある x ∈ Zが存在して, b = a0x. 有理整数はすべて oK

の元だから, b = a0x ∈ a.

［定理 10.4］K を 2次体, aをK の (0)でない分数イデアルとする. このとき, aに含まれる最小

正の有理整数 a0が存在して, Z∩ a = a0Zが成り立つ. したがって特に, Z∩ aは Zの (0)でないイ

デアルである.

［証明］補題 10.2より, ある a ∈ Z, a 6= 0が存在して, a ∈ a. このとき, −a ∈ aでもある. ±aの

一方は正だから, aは正の有理整数を含む. 自然数の整列性により, aに含まれる最小正の有理整数

a0 が存在する.

補題 10.3より,

x ∈ Z ∩ a ⇐⇒ x ∈ Zかつ x ∈ a

⇐⇒ xは a0 の Zにおける倍数

⇐⇒ x ∈ a0Z.

ゆえに, Z ∩ a = a0Z.

［例 10.1］K を 2次体, oK をK の整数環, a ∈ Z, a > 0とする. このとき, (a) = aoK に含まれ

る最小正の有理整数は aである. 定理 10.4より, aoK ∩ Z = aZ. したがって, 2つの有理整数 a, b

について, bが oK における aの倍数ならば, bは Zにおける aの倍数である.

aが aoK に含まれる最小正の有理整数であることは次のようにして示される. aoK に含まれる

正の有理整数 bを任意にとるると, ある x ∈ oK が存在して, b = ax. すると, x = b/a ∈ Q. よって,

x ∈ Q ∩ oK = Z. さらに, a > 0, b > 0より x > 0. ゆえに, a ≤ ax = bとなる.

［補題 10.5］K を 2次体, oK をK の整数環, 1, ωをK の標準的整数底, a 6= (0)をK の分数イ

デアルとする. このとき,

Ia = {c ∈ Z | b + cω ∈ a (∃b ∈ Z)}

は Zの (0)でないイデアルである. さらに, c0 を Ia の生成元, すなわち Ia = c0Zであるとすれば,

任意の b, c ∈ Zに対して,

b + cω ∈ a =⇒ c0 | b, c0 | c
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が成り立つ. 特に, aに含まれるすべての有理整数は c0 の倍数である.

［証明］Iaは Zの部分集合である. また, 0 + 0 · ω = 0 ∈ aより 0 ∈ Iaであるから, Iaは空集合で

ない.

c, c′ ∈ Ia, r ∈ Zを任意にとる. ある b, b′ ∈ Zが存在して, b + cω, b′ + c′ω ∈ a. このとき,

(b − b′) + (c − c′)ω = (b + cω) − (b′ + c′ω) ∈ a,

(rb) + (rc)ω = r(b + cω) ∈ a.

ゆえに, b− b′, rb ∈ Ia. したがって, Iaは Zのイデアルである. a 6= (0)だから, 補題 10.2より aに

含まれる有理整数 aが存在する. ω ∈ oK より, aω ∈ a. ゆえに, a ∈ Ia. したがって, Ia 6= (0).

Z は単項イデアル整域なので, Ia はただ 1 つの元から生成される. c0 を Ia の生成元とする.

Ia 6= (0)だから, c0 6= 0である.

b, c ∈ Zとし, b + cω ∈ aとする. c ∈ Ia = c0Zだから, c0 | cとなる.

さて, K = Q(
√

m)と表す. ただし, m 6= 0, 1は平方因子を含まない有理整数である.

m ≡ 1 (mod 4)のとき, ω = (1 +
√

m)/2だから,

a 3 (b + cω)ω =
1 − m

4
c + (b + c)ω.

よって, (b + c) ∈ Ia = c0Z. ゆえに, c0 | (b + c). 先に c0 | cを示したから, c0 | b.

m ≡ 2, 3 (mod 4)のとき, ω =
√

mだから,

a 3 (b + cω)ω = cm + bω.

よって, b ∈ Ia = c0Z. ゆえに, c0 | b.

特に, c = 0の場合を考えれば, aに含まれるすべての有理整数が c0で割れることがわかる.

［定理 10.6］K を 2次体, oK をK の整数環, 1, ωをK の標準的整数底, a 6= (0)を oK のイデア

ルとする. さらに, a0 を aに含まれる最小正の有理整数, c0 を補題 10.5における Zのイデアル Ia

の生成元のうち正であるものとする. このとき, b + c0ω ∈ aであるような任意の b ∈ Zに対して,

a = [a0, b + c0ω]

が成り立つ. また, b + c0ω ∈ aであるような b ∈ Zは必ず存在する.

a0, b + c0ωを aの標準的基底という.

［証明］定理 10.4より, aに含まれる最小正の有理整数 a0が存在して, Z ∩ a = a0Zとなる. Iaを

補題 10.5における Zのイデアルとすると, ある正の有理整数 c0 によって Ia = c0Zと表せる. ま

た, Ia の定義より, ある b0 ∈ Zが存在して, b0 + c0ω ∈ aとなる.
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b ∈ Z, b + c0ω ∈ aとすると, Za0 + Z(b + c0ω) ⊆ aである.

逆に, α ∈ aとすると, a ⊆ oK = [1, ω]より, α = u + vω, u, v ∈ Zと表せる. Ia の定義より

v ∈ Ia = c0Zだから, ある y ∈ Zが存在して, v = c0y. よって,

α − y(b + c0ω) = (u + vω) − (by + vω) = u − by ∈ Z.

一方, α − y(b + c0ω) ∈ aでもあるから,

α − y(b + c0ω) ∈ Z ∩ a = a0Z.

したがって, a ⊆ Za0 + Z(b + c0ω)もいえる.

oK = [1, ω], a0 6= 0, c0 6= 0より, 任意の x, y ∈ Zに対して,

xa0 + y(b + c0ω) = 0

=⇒ xa0 + yb = c0y = 0

=⇒ x = y = 0.

よって, a0, b + c0ωは Z上 1次独立である.

したがって, 補題 10.1より, a = [a0, b + c0ω]が成り立つ.

［定理 10.7］Kを 2次体, oK をKの整数環, a 6= (0)を oK のイデアルとする. また, a0, b0 + c0ω

を aの標準的基底とする. このとき, 任意の b ∈ Zに対して,

b + c0ω ∈ a ⇐⇒ b ≡ b0 (mod a0)

が成り立つ.

［証明］(⇒) b + c0ω ∈ aであるとする. 除法の原理により, ある q, r, q0, r0 ∈ Zが存在して,

b = a0q + r, 0 ≤ r < a0,

b0 = a0q0 + r0, 0 ≤ r0 < a0.

このとき,

r − r0 = b − b0 − a0(q − q0)

= (b + c0ω) − (b0 + c0ω) − a0(q − q0) ∈ a.

ゆえに, |r − r0| = ±(r − r0) ∈ aとなる. 0 ≤ |r − r0| < a0であるから, a0の最小性より, r = r0と

なる. したがって, b ≡ b0 (mod a0).

(⇐) b ≡ b0 (mod a0)とすると, ある s ∈ Zが存在して, b = b0 + a0s. このとき,

b + c0ω = a0s + (b0 + c0ω) ∈ a.

となる.
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［定理 10.8］Kを 2次体, oK をKの整数環, 1, ωをKの標準的整数底, a, b, c ∈ Z, a > 0, c > 0

とする. このとき,

a = Za + Z(b + cω)

が oK のイデアルならば,

Z ∩ a = aZ, Ia = cZ

であり, a, b + cωは aの標準的基底である. また,

NK(b + cω) ∈ aZ

が成り立つ.

［証明］aを oK のイデアルとする. 任意の r ∈ Z ∩ aに対して, ある s, t ∈ Zが存在して,

r = sa + t(b + cω) = (sa + tb) + ctω.

oK = [1, ω]だから,

r = sa + tb, ct = 0.

c 6= 0より, t = 0. よって, r = sa ∈ aZ. ゆえに, Z ∩ a ⊆ aZ. 逆の包含関係は明らかだから,

Z ∩ a = aZとなる.

また, b + cω ∈ aより c ∈ Iaだから, cZ ⊆ Ia. 逆に, α ∈ aを任意にとると, ある x, y ∈ Zが存在

して,

α = xa + y(b + cω) = (xa + yb) + cyω.

この表し方は αに対して一意的である. ゆえに, Ia ⊆ cZ. したがって, Ia = cZ.

定理 10.6より, a, b + cωは aの標準的基底である.

さらに, b + cω ∈ a, (b + cω)σ ∈ oK より,

NK(b + cω) = (b + cω)(b + cω)σ ∈ Z ∩ a = aZ

となる.

OK のイデアル aが

a = [a, b + cω], a, b, c, ∈ Z, a > 0, c > 0

と表されているとき, 定理 10.8より, a, b + cωは必ず aの標準的基底になる.

［定理 10.9］K を代数体, a 6= (0)をK の分数イデアルとする. このとき, ある ω1, ω2 ∈ K が存

在して, a = [ω1, ω2]となる.
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［証明］aは分数イデアルだから, ある c ∈ oK , c 6= 0が存在して, caは oK のイデアルになる. 定

理 10.6より, ある α1, α2 ∈ oK が存在して, cα = [α1, α2]が成り立つ. ω1 = α1/c, ω2 = α2/cとお

くと, a = Zω1 + Zω2 となる. また, 任意の x, y ∈ Zに対して,

xω1 + yω2 = 0 =⇒ 1
c
(xα1 + yα2) = 0

=⇒ xα1 + yα2 = 0

=⇒ x = y = 0.

よって, ω1, ω2 は Z上 1次独立である. ゆえに, 補題 10.1より, a = [ω1, ω2].

［定理 10.10］K を 2次体, aをK の分数イデアルとする. このとき, ある c ∈ Z, c > 0が存在し

て, ca ⊆ oK となる.

［証明］定理 10.9より, aは基底 ω1, ω2 ∈ K をもつ. ω1, ω2 は代数的数だから, ある c1, c2 ∈ Z,

c > 0が存在して, c1ω1, c2ω2は代数的整数となる. このとき, c = c1c2とおくと, c ∈ Z, c > 0かつ

ca = c1c2(ω1, ω2)

= (c1c2ω1, c1c2ω2)

⊆ K ∩ Z = oK .

［定理 10.11］K を 2次体, a 6= (0)をK の分数イデアルとし, a = [ω1, ω2]であるとする. この

とき, 任意の γ ∈ K, γ 6= 0に対して, γa = [γω1, γω2]となる.

［証明］γa = γ(Zω1 + Zω2) = Zγω1 + Zγω2. また, 任意の x, y ∈ Zに対して,

xγω1 + yγω2 = 0 =⇒ γ(xω1 + yω2) = 0

=⇒ xω1 + yω2 = 0

=⇒ x = y = 0.

ゆえに, 補題 10.1より, γa = [γω1, γω2].

［定理 10.12］K を 2次体, oK をK の整数環, aをK の分数イデアル, ω1, ω2を aの基底とする.

また, p, q, r, s ∈ Zとし, ps − qr = ±1を満たすとする. このとき,

µ1 = pω1 + qω2,

µ2 = rω1 + sω2

とおけば, µ1, µ2 もまた aの基底である.

48



［証明］定理 5.4と同様にして証明できる.

［定理 10.13］Kを 2次体, oK をKの整数環, aをKの分数イデアルとする. ω1, ω2, µ1, µ2 ∈ K,

p, q, r, s ∈ Zとし,

µ1 = pω1 + qω2,

µ2 = rω1 + sω2

を満たすとする. このとき, a = [ω1, ω2] = [µ1, µ2]ならば ps − qr = ±1が成り立つ.

［証明］定理 5.7と同様にして証明できる.

K を 2次体, a 6= (0)をK の分数イデアルとし, ω1, ω2 を aの基底とするとき,

d(a) = dK(ω1, ω2) =

∣∣∣∣∣∣ω1 ω2

ωσ
1 ωσ

2

∣∣∣∣∣∣
2

を aの判別式という.

oK のイデアルとしての基底とはまさにK の整数底のことなので, d(oK)とK の判別式 dK とは

同一のものである.

［定理 10.14］d(a)の値は aの基底の選び方によらない.

［証明］定理 6.4と同様にして証明できる.

11 イデアルのノルム

［定理 11.1］K を 2次体, oK をK の整数環, aをK の分数イデアルとする. このとき,

aσ = {ασ | α ∈ a}

もまたK の分数イデアルである. aσ を aの共役イデアルという.

aが oK のイデアルならば, aσ も oK のイデアルである.

［証明］0 = 0σ ∈ aσ より, aσ は空集合でない.

α, β ∈ a, x ∈ oK を任意にとる. α − β ∈ aより,

ασ − βσ = (α − β)σ ∈ aσ.

また, xσ ∈ oK より xσα ∈ aだから,

xασ = (xσα) ∈ aσ.
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さらに, aは分数イデアルだから, ある c ∈ oK , c 6= 0が存在して, 任意の α ∈ aに対して cα ∈ oK

となる. よって, 任意の α ∈ aに対して,

cσασ = (cα)σ ∈ oK , cσ ∈ oK .

ここで, cσ は αに依存しない. ゆえに, aσ はK の分数イデアルである.

aが oK のイデアルならば, a ⊆ oK より, 任意の α ∈ aに対して, ασ ∈ oK となる. したがって,

aσ ⊆ oK .

［定理 11.2］K を 2次体とし, a, bをK の分数イデアルとする.

(i) (a + b)σ = aσ + bσ.

(ii) (ab)σ = aσbσ.

［証明］(i) 任意の α ∈ a, β ∈ bに対して

(α + β)σ = ασ + βσ

が成り立つことから明らか.

(ii) 任意の有限和
∑

i αiβi, αi ∈ a, βi ∈ bに対して(∑
i

αiβi

)σ

=
∑

i

ασ
i βσ

i

が成り立つことから明らか.

［定理 11.3］K を 2次体とし, α1, α2, . . ., αs ∈ K とする. このとき,

(α1, α2, . . . , αs)σ = (ασ
1 , ασ

2 , . . . , ασ
s )

が成り立つ.

［証明］任意の x1, x2, . . ., xs ∈ oK に対して,(
s∑

i=1

xiαi

)σ

=
s∑

i=1

xσ
i ασ

i =
s∑

i=1

xiα
σ
i .

これより, 求める等式が成り立つことは明らかである.

［定理 11.4］K を 2次体, oK をK の整数環, aをK の分数イデアル, aσ を aの共役イデアルと

する. このとき, ある u ∈ Q, u > 0がただ 1つ存在して,

aaσ = (u)

が成り立つ. aが oK のイデアルならば, u ∈ Zである.
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［証明］定理 10.10より, ある v ∈ Z, v > 0が存在して, vaは oK のイデアルになる. α, βを vaの

基底とすれば,

va = (α, β), α, β ∈ oK .

定理 11.3より,

vaσ = (va)σ = (ασ, βσ).

よって,

v2aaσ = (αασ, αβσ, ασβ, ββσ).

a = αασ, b = αβσ + ασβ, c = ββσ とおくと, a, b, c ∈ Zである. g = gcd(a, b, c)とおくと, g > 0

であり,

g = ax + by + cz, x, y, z ∈ Z

と表せる. よって, g ∈ v2aaσ となり, (g) ⊆ v2aaσ がいえる. 逆に,

αασ = a = g · a

g
∈ (g),

ββσ = a = g · b

g
∈ (g).

さらに,

TrK
αβσ

g
=

αβσ

g
+

ασβ

g
=

b

g
∈ Z,

NK
αβσ

g
=

αβσ

g
· ασβ

g
=

ac

g2
∈ Z.

よって, αβσ/g, ασβ/g ∈ oK . ゆえに,

αβσ = g · αβσ

g
∈ (g),

ασβ = g · ασβ

g
∈ (g).

したがって, v2aaσ ⊆ (g)もいえる.

以上より, v2aaσ = (g)が成り立つ. u = g/v2 とおくと, u ∈ Q, u > 0, aaσ = (u)となる.

aが oK のイデアルであるときは, 上の議論を v = 1の場合に行えばよいから, u = g ∈ Zとなる.

u, u′ ∈ Q, u > 0, u′ > 0とし,

aaσ = (u) = (u′)

であるとすると, ある ε ∈ oK が存在して, u = u′εとなる. ところが, ε ∈ Q ∩ o×K = {±1}である

から ε = ±1であり, u > 0, u′ > 0より ε = 1. したがって, u = u′.

2次体K の分数イデアル a 6= (0)に対して, 定理 11.4における uを aのノルムといい, Naで表

す. Naは常に正の有理数である. aが整数環 oK のイデアルならば, Naは有理整数である.
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［定理 11.5］K を 2次体, α ∈ K, α 6= 0とする. このとき, 単項分数イデアル (α) = αoK につ

いて,

N(α) = |NKα|

が成り立つ.

［証明］イデアルのノルムの定義と定理 11.3より,

(N(α)) = (α)(α)σ = (α)(ασ) = (αασ) = (NKα).

ゆえに, ある ε ∈ o×K が存在して,

N(α) = NKα · ε.

N(α), NKα ∈ Qより, ε ∈ Q ∩ o×K = {±1}. イデアルのノルムは常に正だから,

N(α) = |N(α)| = |NKα||ε| = |NKα|.

［例 11.1］K を 2次体, a ∈ Qとするとき, NKa = a2 より, N(a) = |NKa| = a2.

［定理 11.6］K を 2次体, oK をK の整数環, a, bをK の (0)でない分数イデアルとする. この

とき,

N(ab) = NaNb

が成り立つ.

［証明］イデアルのノルムの定義と定理 11.2より,

(N(ab)) = (ab)(ab)σ = abaσbσ

= aaσbbσ = (Na)(Nb)

= (NaNb).

よって, ある ε ∈ o×K が存在して,

N(ab) = NaNb · ε.

N(ab), Na, Nb ∈ Zであるから, ε ∈ Q ∩ o×K = {±1}. また, N(ab), Na, Nbはすべて正であるか

ら, ε = 1. したがって, 求める等式が得られる.
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［定理 11.7］K を 2次体, a 6= (0)をK の分数イデアル, γ 6= 0をK の元とする. このとき,

N(γa) = NKγ · Na

が成り立つ.

［証明］定理 11.2, 定理 11.3を用いて計算すると,

N(γa) = (γa)(γa)σ = (γ)a((γ)a)σ = (γ)a(γ)σaσ

= (γ)a(γσ)aσ = (γ)(γσ)aaσ = (γγσ)aaσ = γγσaaσ

= NKγ · Na.

［定理 11.8］K を 2次体, a 6= (0)をK の分数イデアル, aσ を aの共役イデアル, a−1を aの逆イ

デアル, Naを aのノルムとする. このとき,

b =
1

Na
aσ

とおくと, ab = oK , a−1 = bが成り立つ.

［証明］イデアルのノルムの定義より,

aaσ = (Na).

両辺に 1/Naを掛けることにより, ab = oK が得られる. さらに, 定理 9.7より, a−1 = b.

［定理 11.9］K を 2次体, oK をK の整数環, a 6= (0)をK の分数イデアル, a−1を aの逆イデア

ルとする. このとき,

Na−1 = (Na)−1

が成り立つ.

［証明］定理 11.8より aa−1 = oK であるから,

NaNa−1 = N(aa−1) = NoK = 1.

これより, 求める等式が得られる.
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［定理 11.10］K を 2次体, oK をK の整数環, a 6= (0)を oK のイデアル, a0, b + c0ωを aの標準

的基底とする. このとき, 加法群として

oK/a ∼= Z/a0Z ⊕ Z/c0Z.

したがって,

[oK : a] = a0c0

が成り立つ. 特に, 剰余環 oK/aの元の個数は有限である.

［証明］定理 15.5より b ∈ c0Zなので, b = c0b
′, ω′ = b′ + ωとおくと,

a = Za0 + Zc0ω
′

となる. 一方, oK = [1, ω′]なので, 写像

f : oK −→ Z/a0Z ⊕ Z/c0Z, u + vω′ 7−→ (u + a0Z, v + c0Z)

が定まる. ただし, u, v ∈ Zとする.

任意の u1, u2, v1, v2 ∈ Zに対して,

f
(
(u1 + v1ω

′) + (u2 + v2ω
′)

)
= f

(
(u1 + u2) + (v1 + v2)ω′)

=
(
(u1 + u2) + a0Z, (v1 + v2) + c0Z

)
=

(
(u1 + a0Z) + (u2 + a0Z), (v1 + c0Z) + (v2 + c0Z)

)
= (u1 + a0Z, v1 + c0Z) + (u2 + a0Z, v2 + c0Z)

= f(u1 + v1ω
′) + f(u2 + v2ω

′).

よって, f は加法群の準同型写像である.

任意の x ∈ Z/a0Z ⊕ Z/c0Zに対して, ある u, v ∈ Zが存在して, x = (u + a0Z, v + a0Z). この

とき, u + vω′ ∈ oK かつ f(u + vω′) = x. よって, f は全射である.

u, v ∈ Zとすると,

u + vω′ ∈ Ker f ⇐⇒ (u + a0Z, v + c0Z) = 0

⇐⇒ u ∈ a0Z, v ∈ c0Z.

u = a0u
′, v = c0v

′, u′, v′ ∈ Zであるとすると,

u + vω′ = u′a0 + v′(b + c0ω) ∈ Za0 + Z(b + c0ω) = a.

逆に,

u + vω′ ∈ a = Za0 + Zc0ω
′
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であるとすると, oK の元を基底 1, ω′ の Z係数の 1次結合で表す仕方は一意的だから, u ∈ a0Z,

v ∈ c0Zが得られる. したがって, Ker f = a.

準同型定理により, 同型

oK/a ∼= Z/a0Z × Z/c0Z, (u + vω′) + a 7−→ (u + a0Z, v + c0Z)

が得られる. ゆえに, [oK : a] = a0c0.

［定理 11.11］K を 2次体, oK を K の整数環, a 6= (0)を oK のイデアル, aσ を aの共役イデア

ルとする. このとき,

Na = [oK : a]

が成り立つ.

［証明］a0, b + c0ωを aの標準的基底とする. 定理 15.5より, a0, b ∈ c0Zであり,

a0 = c0a
′
0, b = c0b

′, ω′ = b′ + ω

とおくと,

a = c0a0, a0 = [a′
0, ω′]

となる. a′
0, ω′ は a0 の標準的基底であるから, Z ∩ a0 = a′

0Zが成り立つ.

NKω′ = ω′ω′σ ∈ Z ∩ a0 = a′
0Z

より, ある q ∈ Zが存在して, NKω′ = ω′ω′σ = a′
0qとなる.

さて, イデアルの基底は生成元なので,

a = (a0, b + c0ω).

定理 11.3より,

aσ = (a0, b + c0ω
σ).

これらの積を計算すると,

aaσ = (a0, b + c0ω)(a0, b + c0ω
σ)

= c2
0(a

′
0, ω′)(a′

0, ω′σ)

= c2
0(a

′2
0 , a′

0ω
′, a′

0ω
′σ, ω′ω′σ)

= a′
0c

2
0(a

′
0, ω′, ω′σ, q).

定理 11.10より a′
0c

2
0 = a0c0 = [oK : a]であるから,

aaσ = a0c0(a′
0, ω′, ω′σ, q)

= [oK : a] · (a′
0, ω′, ω′σ, q).
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定理 11.4より, ある u ∈ Z, u > 0が存在して,

(u) = [oK : a] · (a′
0, ω′, ω′σ, q).

uは, 右辺の元になるので, [oK : a]の倍数である. ここで, u, [oK : a]はともに有理整数なので, u

が oK における [oK : a]の倍数であれば, Zにおいても倍数であることに注意せよ. u = [oK : a] ·u′,

u′ ∈ Zとおくと, u′ > 0であり,

(u′) = (a′
0, ω′, ω′σ, q).

ω′ ∈ (u′)であり, oK = [1, ω]だから, ある x, y ∈ Zが存在して,

b′ + ω = ω′ = u′(x + yω) = (b′ + u′x) + u′yω.

よって, u′y = 1となり, u′ = ±1が得られる. u′ > 0だったから, u′ = 1. ゆえに, u = [oK : a]と

なる.

［例 11.2］Kを 2次体, oK をKの整数環, a 6= (0)を oK のイデアルとする. このとき, 定理 11.11

より,

Na = 1 ⇐⇒ [oK : a] = 1 ⇐⇒ a = oK

が成り立つ.

一般の分数イデアルの場合には, イデアルのノルムの値が 1であっても oK に一致するとは限ら

ない. 例えば, K = Q(
√
−15), α = (1 +

√
−15)/4とおくと, 定理 11.5より,

N(α) = |NKα| = 1.

しかし, α 6∈ oK なので, (α) 6= oK .

［定理 11.12］K を代数体, 1, ωをK の標準的整数底, a 6= (0)をK の分数イデアルとする. この

とき, 任意の u1, u2, v1, v2 ∈ Qに対して,

a = [u1 + v1ω, u2 + v2ω] =⇒ Na = |u1v2 − v1u2|

が成り立つ.

［証明］cu1, cu2, cv1, cv2 ∈ Zとなる c ∈ Z, c > 0をとると,

ca = [cu1 + cv1ω, cu2 + cv2ω], cu1 + cv1ω, cu2 + cv2ω ∈ oK

となるから, caはK の整数環 oK のイデアルである. a0, b + c0ωを caの標準的基底とすると,

cu1 + cv1ω = pa0 + q(b + c0ω), p, q ∈ Z,

cu2 + cv2ω = ra0 + s(b + c0ω), r, s ∈ Z
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と表せるから, cu1 cv1

cu2 cv2

1

ω

 =

p q

r s

a0 0

b c0

 1

ω

 .

補題 5.5より, cu1 cv1

cu2 cv2

 =

p q

r s

a0 0

b c0

 .

一方, 定理 10.13より, ∣∣∣∣∣∣p q

r s

∣∣∣∣∣∣ = ps − qr = ±1.

ゆえに, 定理 11.10より,

c2(u1v2 − v1u2) =

∣∣∣∣∣∣cu1 cv1

cu2 cv2

∣∣∣∣∣∣ =

∣∣∣∣∣∣p q

r s

∣∣∣∣∣∣
∣∣∣∣∣∣a0 0

b c0

∣∣∣∣∣∣
= ±a0c0 = ±N(ca).

一方, 定理 11.7より,

N(ca) = NKc · Na = c2Na.

ゆえに, Na = |u1v2 − v1u2|が得られる.

［定理 11.13］K を 2次体, a 6= (0)をK の分数イデアルとする. このとき,

d(a) = dK · (Na)2

が成り立つ.

［証明］まず, aがK の整数環 oK のイデアルである場合を証明する.

1, ωをK の標準的整数底, α, β を aの基底とするとき,

α = u1 + v1ω, u1, v1 ∈ Z,

β = u2 + v2ω, u2, v2 ∈ Z

と表せる. 定理 11.12より, Na = |u1v2 − v1u2|. また,

ασ = u1 + v1ω
σ, βσ = u2 + v2ω

σ

であるから, ∣∣∣∣∣∣ α β

ασ βσ

∣∣∣∣∣∣ =

∣∣∣∣∣∣1 ω

1 ωσ

∣∣∣∣∣∣
∣∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣∣ .
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したがって,

d(a) = dK(α, β) = dK(1, ω) · (u1v2 − v1u2)2

= dK · (Na)2

となる.

次に, aがK の分数イデアルであるとき, ある c ∈ oK , c 6= 0が存在して, caは oK のイデアルに

なる. よって,

d(ca) = dK · (N(ca))2.

α, β を aの基底とすると, cα, cβ は caの基底である. よって,

d(ca) =

∣∣∣∣∣∣ cα cβ

cσασ cσβσ

∣∣∣∣∣∣
2

= (ccσ)2

∣∣∣∣∣∣ α β

ασ βσ

∣∣∣∣∣∣
2

= (NKc)2d(a).

また, 定理 11.7より, N(ca) = NKc · Na. ゆえに,

(NKc)2d(a) = dK · (NKc · Na)2

= (NKc)2 · dK · (Na)2.

c 6= 0よりNKc 6= 0であるから, 分数イデアルの場合にも求める等式が得られる.

12 イデアルの整除

K を 2次体, oK をK の整数環とする.

oK のイデアル a, bに対して, ある oK のイデアル tが存在して b = atが成り立つとき, aは bを

割るといい, bは aで割り切れるという. このことを記号で a | bと書く. またこのとき, aを bの約

イデアル, bを aの倍イデアルという.

oK のイデアル aがいくつかの oK のイデアル b1, b2, . . ., bs の約イデアルであるとき, aをそれ

らの公約イデアルという. また, aがそれらの最大公約イデアルであるとは, 2つの条件

(i) aは b1, b2, . . ., bs の公約イデアルである.

(ii) b1, b2, . . ., bs の任意の公約イデアルは aの約イデアルである.

を満たすときにいう. 「約イデアル」を「倍イデアル」に書き換えれば, 公倍イデアル, 最小公倍イ

デアルも同様に定義できる.

［定理 12.1］K を 2次体, a, b, cをK の分数イデアルとし, a 6= (0)とする. このとき,

ab = ac =⇒ b = c

が成り立つ.
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［証明］a 6= (0)をK の分数イデアルとする. 定理 11.4より, ある u ∈ Qが存在して,

aaσ = (u), u > 0.

これと ab = acより,

ub = (u)b = aσab = aσac = (u)c = uc.

u 6= 0より, b = cとなる. 実際,

β ∈ b =⇒ uβ ∈ ub = uc

=⇒ uβ = uγ (∃γ ∈ c)

=⇒ β = γ ∈ c

より, b ⊆ c. 逆の包含関係も同様にして示せる.

［定理 12.2］K を 2次体, oK をK の整数環, a, bをK の分数イデアルとする. このとき, 次の 2

つの条件は同値である.

(i) ある oK のイデアル tが存在して, b = at.

(ii) b ⊆ a.

［証明］(i)⇒(ii) tを oK のイデアルで b = atを満たすものとすると,

b = at ⊆ aoK = a.

(ii)⇒(i) b ⊆ aとする. a = (0)のとき, b = (0)だから, t = (0)とすれば b = atとなる.

a 6= (0)のとき, 定理 11.4より, ある a ∈ Q, a > 0が存在して,

baσ ⊆ aaσ = (a).

ところで,定理 10.9より, baσは基底ω1, ω2をもつ. 基底は生成元になる. すなわち, baσ = (ω1, ω2)

が成り立つ. ω1, ω2 ∈ (a) = aoK なので, ある ω′
1, ω′

2 ∈ oK が存在して, ω1 = aω′
1, ω2 = aω′

2. よっ

て, t = (ω′
1, ω′

2)とおくと, tは oK のイデアルである. さらに,

baσ = (a)t = aaσt = ataσ.

ゆえに, 定理 12.1より, b = at.

［定理 12.3］K を 2次体, oK をK の整数環, a, bをK の分数イデアルとする.

(i) a + bは a, bを両方含む分数イデアルのうちで最小のものである.

(ii) a ∩ bは a, bの両方に含まれる分数イデアルのうちで最大のものである.
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また, a, bが oK のイデアルであるとき, a, bの最大公約イデアル, 最小公倍イデアルは, それぞれ

a, bに対してただ 1つである. 一方,

(i) a + bは a, bの最大公約イデアルである.

(ii) a ∩ bは a, bの最小公倍イデアルである.

イデアルが 3つ以上の場合にも同様のことが成り立つ.

［証明］2つのイデアルの場合についてのみ証明する. 3つ以上の場合についても同様である.

(前半の (i)) 任意の α ∈ aに対して, α + 0 ∈ a + b. ゆえに, a ⊆ a + b. 同様に, b ⊆ a + b.

K の分数イデアルで a, b の両方を含むものを任意にとると, 任意の α ∈ a, β ∈ b に対して,

α + β ∈ c. よって, a + b ⊆ c.

(前半の (ii)) a ∩ bは集合として a, bの両方に含まれる最大のものである. そして, a ∩ b自身

がK の分数イデアルである.

定理 12.2より, 最大公約イデアルが 2つあれば, 互いにもう一方を含むので, 両者は一致する. 最

小公倍イデアルについても同様である.

(後半の (i)) a, bが oK のイデアルならば, a + bも oK のイデアルである. よって, 前半の (i)と

定理 12.2より, a + bは a, bの最大公約イデアルである.

(後半の (ii)) a, bが oK のイデアルならば, a ∩ bも oK のイデアルである. よって, 前半の (ii)

と定理 12.2より, a ∩ bは a, bの最小公倍イデアルである.

［定理 12.4］K を 2次体, oK をK の整数環, a, bを oK の (0)でないイデアルとする. このとき,

a ⊆ b, Na = Nb =⇒ a = b

が成り立つ.

［証明］a ⊆ bだから, 定理 12.2より, ある oK のイデアル cが存在して,

a = bc.

両辺のノルムをとると,

Na = NbNc.

Na = Nbより, Nc = 1が得られる. cは oK のイデアルだから, c = oK . したがって, a = b.

［定理 12.5］K を 2次体, oK をK の整数環, a, b, cを oK のイデアルとする. このとき, 次の 2

つの条件は同値である.

(i) (a, c) = 1かつ (b, c) = 1.
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(ii) (ab, c) = 1.

［証明］(i)⇒(ii) (a, c) = 1, すなわち a + c = oK より,

1 = α + γ, α ∈ a, γ ∈ c

と表せる. 同様に, (b, c) = 1より,

1 = β + γ′, β ∈ b, γ′ ∈ c

と表せる. ゆえに,

1 = 1 · 1 = (α + γ)(β + γ′)

= αβ + (αγ′ + βγ + γγ′)

∈ ab + c.

したがって, (ab, c) = 1.

(ii)⇒(i) ab ⊆ aなので,

oK = ab + c ⊆ a + c.

逆の包含関係は明らかだから, a + c = oK . したがって, (a, c) = 1となる. (b, c) = 1も同様にして

示せる.

［定理 12.6］K を 2次体, oK をK の整数環, a, b, cを oK のイデアルとする. このとき,

a | bc, (a, b) = 1 =⇒ a | c

が成り立つ.

［証明］a | bc, (a, b) = 1であるとする. 前者の条件と定理 12.2より, bc ⊆ a. また, 後者の条件,

すなわち a + b = oK より,

1 = α + β, α ∈ a, β ∈ b

と表せる. ゆえに, 任意の γ ∈ cに対して,

γ = γ(α + β) = γα + βγ ∈ a + bc ⊆ a.

したがって, c ⊆ a. 定理 12.2より, a | c.
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［定理 12.7］K を 2次体, oK をK の整数環とし,

a1 ⊆ a2 ⊆ a3 ⊆ · · ·

を oK のイデアルの無限列とする. このとき, ある番号 i0 が存在して,

ai0 = ai0+1 = · · ·

となる.

［証明］a =
⋃∞

j=1 ajとおくと, aは oK のイデアルになる. 実際, α, β ∈ a, x ∈ oKを任意にとると,

ある番号 j1, j2が存在して, α ∈ aj1 , β ∈ aj2 である. このとき, α ∈ aj1 ⊆ oK . また, xα ∈ aj1 ⊆ a.

さらに, j0 = max{j1, j2}とすると, α ⊆ aj1 ⊆ aj0 , β ∈ aj2 ⊆ aj0 だから, α − β ∈ aj0 ⊆ a. ゆえ

に, aは oK のイデアルである.

ω1, ω2を aの基底とする. ある番号 i1, i2が存在して, ω1 ∈ ai1 , ω2 ∈ ai2となる. i0 = max{i1, i2}

とすると, ω1, ω2 ∈ ai0 . ゆえに, a = (ω1, ω2) ⊆ ai0 . 逆の包含関係は明らかだから, a = ai0 . した

がって, 任意の番号 i ≥ i0 に対して,

a = ai0 ⊆ ai ⊆ a

より, ai = ai0 = a.

［注意 12.1］定理 12.7は, 分数イデアルの無限列に対しては一般には成り立たない. 例えば,(
1
2

)
(

(
1
22

)
(

(
1
23

)
( · · ·

である.

13 素イデアル

K を 2次体, oK をK の整数環とする. oK のイデアル pが極大イデアルであるとは, p 6= oK で

あって, oK の任意のイデアル aに対して

a | p =⇒「a = pまたは a = oK」 (19)

が成り立つときにいう. 条件 (19)は, 定理 12.2より,

p ⊆ a =⇒「a = pまたは a = oK」

と同値である.
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［補題 13.1］Rを可換環, aをRのイデアルとする. aを含むRのイデアルと, R/aのイデアルと

は 1対 1に対応し, その対応は包含関係を変えない.

［証明］aを含む Rのイデアル全体の集合を Ωとし, R/aのイデアル全体の集合を Ω′ とする. ま

た, π : R −→ R/aを自然な全射準同型とする.

任意の b ∈ Ωに対して, πは全射だから, π(b) ∈ Ω′. また, 任意の b′ ∈ Ω′に対して, π−1(b′) ∈ Ω

となる. よって, 2つの写像

Ω −→ Ω′, b 7−→ π(b),

Ω′ −→ Ω, b′ 7−→ π−1(b)

が定まる. π は全射だから, π(π−1(b′)) = b′. 一方, a = Ker π かつ a ⊆ bだから, π−1(π(b)) = b.

したがって, 上の 2つの写像は互いに他の逆写像であり, Ωと Ω′とは 1対 1に対応する. この対応

が包含関係を変えないことは, 写像の定め方から明らかである.

［補題 13.2］Rを可換環とする. このとき,

Rは体⇐⇒ Rのイデアルは (0)と Rのみ

が成り立つ.

［証明］(⇒) aを Rのイデアルとし, a 6= (0)であるとすると, x ∈ aで x 6= 0なるものが存在す

る. Rは体なので, ある y ∈ Rが存在して, 1 = xy. 一方, aは Rのイデアルなので, xy ∈ a. ゆえ

に, 1 ∈ a. よって, R = (1) ⊆ a. 逆の包含関係は明らかだから, R = aとなる.

(⇐) x ∈ R, x 6= 0とする. 仮定より (x) = Rとなり, 1 ∈ (x)となる. よって, ある y ∈ Rが存

在して xy = 1. したがって, Rの 0でないすべての元は逆元をもつ. ゆえに, Rは体である.

［定理 13.3］K を 2次体, oK をK の整数環, pを oK のイデアルとする. このとき, 次の 2つの

条件は同値である.

(i) pは極大イデアル.

(ii) 剰余環 oK/pは体.

［証明］定理 12.2より,

pは極大イデアル

⇐⇒ pを含む oK のイデアルは pと oK のみ.
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補題 13.1より,

pを含む oK のイデアルは pと oK のみ

⇐⇒ oK/pのイデアルは零イデアルと oK/pのみ.

補題 13.2より,

oK/pのイデアルは零イデアルと oK/pのみ

⇐⇒ oK/pは体.

ゆえに, (i), (ii)は同値である.

［定理 13.4］K を 2次体, oK をK の整数環, aを oK のイデアルとし, a 6= oK とする. このとき,

aを含む極大イデアルが存在する.

［証明］背理法で証明する. aを含む極大イデアルは存在しないと仮定する.

a1 = aとおく. 定理 11.10より [oK : a1]は有限である. これを lとおく.

背理法の仮定より a1 自身は極大イデアルではないので, ある oK のイデアル a2 が存在して,

a1 ( a2 ( oK .

同様に, a2 も極大イデアルではないので, ある oK のイデアル a3 が存在して,

a2 ( a3 ( oK .

こうして, oK のイデアルの列

a1 ( a2 ( · · · ( al ( oK

ができる. ところが,

[a2 : a1] ≥ 2, . . . , [al : al−1] ≥ 2, [oK : al] ≥ 2

であるから,

l = [oK : a1] = [oK : al][al : al−1] · · · [a2 : a1] ≥ 2l+1.

これは不可能である.

2次体K の整数環 oK のイデアル pが素イデアルであるとは, p 6= oK であって, oK の任意のイ

デアル a, bに対して

p | ab =⇒「p | aまたは p | b」 (20)

が成り立つときにいう. 条件 (20)は, 定理 12.2より,

ab ⊆ p =⇒「a ⊆ pまたは b ⊆ p」

と同値である.
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［定理 13.5］K を 2次体, oK を整数環, pを oK のイデアルとし, p 6= oK とする. このとき, 次の

3つの条件は同値である.

(i) pは素イデアル.

(ii) 任意の x, y ∈ oK に対して,

αβ ∈ p =⇒「α ∈ pまたは β ∈ p」

が成り立つ.

(iii) oK/pは整域.

［証明］(i)⇒(ii) pが素イデアルであるとすれば,

αβ ∈ p =⇒ (α)(β) = (αβ) ⊆ p

=⇒ (α) ⊆ pまたは (β) ⊆ p

=⇒ α ∈ pまたは β ∈ p.

(ii)⇒(i) ab ⊆ p, a 6⊆ p, b 6⊆ pと仮定すると, α ∈ a, β ∈ bが存在して, αβ ∈ p, α 6∈ p, β 6∈ p.

ところが, 仮定より α ∈ pまたは β ∈ pとなって矛盾が生じる. ゆえに, ab ⊆ pならば, a ⊆ pまた

は b ⊆ pが成り立つ.

(ii)⇔(iii) π : oK → oK/pを自然な全射準同型とすると, oK/p = π(oK), p = Kerπであるから,

(ii) ⇐⇒ αβ ∈ Kerπならば, α ∈ Ker πまたは β ∈ Kerπ (∀α, β ∈ oK)

⇐⇒ π(α)π(β) = π(0)ならば, π(α) = π(0)または π(β) = π(0) (∀α, β ∈ oK)

⇐⇒ (iii).

［補題 13.6］有限個の元からなる整域は体である.

［証明］Rを有限個の元からなる整域とし, a ∈ R, a 6= 0を任意にとる. 写像

fa : R −→ R, x 7−→ ax

を考えると, 任意の x, x′ ∈ Rに対して, Rは整域かつ a 6= 0より,

f(x) = f(x′) =⇒ ax = ax′ =⇒ a(x − x′) = 0

=⇒ x − x′ = 0 =⇒ x = x′.

よって, faは単射であり, |R| = |fa(R)|. ところが, fa(R) ⊆ RかつRは有限集合だから, fa(R) = R

でなければならない. ゆえに, 1 ∈ Rに対して, ある a′ ∈ Rが存在して, fa(a′) = 1となる. すなわ

ち, aa′ = 1. したがって, 0以外の元はすべて逆元をもつから, Rは体である.
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［定理 13.7］K を 2次体, oK をK の整数環, aを oK のイデアルとし, a 6= (0)であるとする. こ

のとき, 次の 2つの条件は同値である.

(i) aは素イデアル.

(ii) aは極大イデアル.

［証明］定理 11.10, 定理 13.3, 定理 13.5, 補題 13.6より得られる.

14 素イデアル分解

以下に述べる定理 14.1, 定理 14.2は, いわゆるイデアル論の基本定理と呼ばれるものである.

［定理 14.1］K を 2次体, oK を K の整数環, aを oK のイデアルとし, a 6= (0), oK であるとす

る. このとき, aは素イデアルの積で表される.

［証明］a1 = aとおく. 定理 13.4より, a1 はある極大イデアル p1 に含まれる. 定理 10.2より, あ

る oK のイデアル a2 が存在して, a1 = p1a2 となる. p 6= oK より, a1 ( a2. さらに, a1 が極大イデ

アルでなければ, a2 ( oK .

以上の議論をまとめると, a1が極大イデアルでないと仮定すれば, ある極大イデアル p1と oK の

イデアル a2 が存在して,

a1 = p1a2, a1 ( a2 ( oK .

同様に, a2 が極大イデアルでないと仮定すれば, ある極大イデアル p2 と oK のイデアル a3 が存

在して,

a2 = p2a3, a2 ( a3 ( oK .

これを続けると,

a1 = p1a2, a2 = p2a3, . . . , al−1 = pl−1al

と, oK のイデアルの列

a1 ( a2 ( · · · ( al ( oK , l = [oK : a1]

が得られる. ここで, 定理 11.10より [oK : a1]は有限である. ところが,

[a2 : a1] ≥ 2, . . . , [al : al−1] ≥ 2, [oK : al] ≥ 2

であるから,

l = [oK : a1] = [oK : al][al : al−1] · · · [a2 : a1] ≥ 2l+1.

これは不可能である. ゆえに, a1, a2, . . ., al のうちのどれかは極大イデアルである. ai が極大イデ

アルであるような番号 iを rとおき, pr = ar とおけば, 極大イデアルの積への分解

a = a1 = p1p2 · · · pr
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が得られる. 定理 13.7より, 各 pi は素イデアルである.

［定理 14.2］K を 2次体, oK を K の整数環, aを oK のイデアルとし, a 6= (0), oK であるとす

る. このとき, aの素イデアルの積による表し方は順序を除いて一意的である.

［証明］a = p1p2 · · · pr = q1q2 · · · qsのように素イデアルの積として 2通りに表されたとき, r = s

かつ適当に番号を付け替えることにより pi = qi (i = 1, 2, . . ., r)となることを, rに関する数学的

帰納法により証明する.

r = 1のとき,

a = p1 = q1q2 · · · qs.

もし仮に s ≥ 2とすると, q1 ( oK , q2 · · · qs ⊆ q2 ( oK より,

p1 = q1q2 · · · qs ( q1oK = q1 ( oK .

これは p1 が極大イデアルであることに反する. よって, s = 1となり, p1 = q1 となる.

r > 1のとき, r − 1のときは素イデアルによる表し方の一意性が成り立つとする.

a = p1p2 · · · pr = q1q2 · · · qs

とすれば, q1 | p1p2 · · · prである. q1は素イデアルであるから, いずれかの piを割るが, q1 | p1であ

るとしても一般性を失わない. 定理 13.7より p1は極大イデアルだから, p1 = q1となる. 定理 12.1

より,

p2 · · · pr = q2 · · · qs.

帰納法の仮定から, r = sかつ番号を適当に付け替えれば pi = qi (i = 2, 3, . . ., r)となる. よって,

rのときも素イデアルによる表し方の一意性が成り立つ.

［定理 14.3］K を 2次体, oK をK の整数環, a, bをK の (0)でない分数イデアルとする. また,

a−1, b−1 をそれぞれ a, bの逆イデアルとする.

(i) (ab)−1 = b−1a−1.

(ii) (ae)−1 = (a−1)e. ただし, e > 0は有理整数.

［証明］(i) 定理 11.8より,

ab(ab)−1 = oK .

両辺に b−1a−1 を掛けると,

b−1a−1ab(ab)−1 = b−1a−1.
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一方, 定理 11.8より,

a−1a = b−1b = oK .

ゆえに, 求める等式が得られる.

(ii) (i)より, (a2)−1 = (a−1)2 が成り立つ. e > 2の場合は数学的帰納法により示せる.

イデアル aと有理整数 e > 0に対して, a−e = (a−1)e と定義する.

［定理 14.4］2次体K の分数イデアル a 6= (0), oK は, 相異なる oK の素イデアルの冪積で順序を

除いて一意的に表される:

a = pe1
1 pe2

2 · · · per
r p

er+1
r+1 p

er+2
r+2 · · · per+s

r+s ,

ただし, e1, . . ., er は正, er+1, . . ., er+s は負であるとし, i 6= j ならば pi 6= pj とする.

［証明］(表されること) a 6= (0)を分数イデアルとする. ある c ∈ oK , c 6= 0が存在して,

(c)a = ca ⊆ oK .

(c)aに対して定理 14.1を適用すると,

(c)a = p1p2 · · · pr.

一方, (λ) ⊆ oK だから, 定理 14.1により,

(c) = pr+1pr+2 · · · pr+s.

ゆえに,

pr+1pr+2 · · · pr+sa = p1p2 · · · pr.

両辺に p−1
r+s · · · p−1

r+2p
−1
r+1 を掛けると, 定理 11.8より p−1

i pi = oK であるから,

a = p−1
r+s · · · p−1

r+2p
−1
r+1p1p2 · · · pr

となる. ここからさらに p−1
i pi = oK によって素イデアルとその逆イデアルを消去していけば, 定

理で述べたような形で表される.

(表し方の一意性) aが 2通りに表されたとする:

a = pe1
1 pe2

2 · · · per
r p

er+1
r+1 p

er+2
r+2 · · · per+s

r+s

= qf1
1 qf2

2 · · · qfr′
r′ q

fr′+1
r+1 q

fr′+2
r′+2 · · · qfr′+s′

r′+s′

ただし, e1, . . ., er, f1, . . ., fr′ は正, er+1, . . ., er+s, fr′+1, . . ., fr′+s′ は負であるとし, i 6= j なら

ば pi 6= pj , qi 6= qj とする. 定理 11.8を用いると,

pe1
1 pe2

2 · · · per
r q

−fr′+1
r+1 q

−fr′+2
r′+2 · · · q−fr′+s′

r′+s′

= qf1
1 qf2

2 · · · qfr′
r′ p

−er+1
r+1 p

−er+2
r+2 · · · p−er+s

r+s .
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pi 同士は互いに異なり, qi 同士も互いに異なるから, 定理 14.2より, 番号を適当に付け替えれば

pi = qi, ei = fi, r = r′, s = s′ (i = 1, 2, . . . , r + s)

となる.

K を 2次体, oK をK の整数環とする. K の分数イデアル a 6= (0), oK は, 定理 14.4より, 相異

なる oK の素イデアル pi の積に分解する:

a = pe1
1 pe2

2 · · · per
r , ei ∈ Z.

この表示を aの素イデアル分解といい, 各々の素イデアル piを aの素イデアル因子という. 分解の

一意性により, 各 ei は aと pi に対して一意的に定まる. そこで, oK の素イデアル pに対して,

ordp(a) =

ei, p = pi のとき

0, p - aのとき

と定める. また, a = oK または a = (0)のときは, それぞれ ordp(oK) = 0, ordp((0)) = ∞と定め

る. ordp(a)を aの p指数という.

a, bを 2次体K の分数イデアルとする.

すべての素イデアル pに対して

ordp(a) = ordp(b)

が成り立つことは, a = bであるための必要十分条件である.

すべての素イデアル pに対して

ordp(a) ≤ ordp(b)

が成り立つことは, ある oK のイデアル tが存在して b = atとなるための必要十分条件である. こ

のことは, 定理 12.2より, b ⊆ aと同値である.

特に, すべての素イデアル pに対して

ordp(a) ≥ 0

が成り立つことは, aが oK のイデアルであるための必要十分条件である. なぜなら, aが oK のイ

デアルであることは a ⊆ oK と同値であり, すべての素イデアル pに対して ordp(oK) = 0だからで

ある.

a, bの積 abについて, すべての素イデアル pに対して

ordp(ab) = ordp(a) + ordp(b)

が成り立つ. また, 和 a + bと共通部分 a ∩ bについて, 定理 12.3より, すべての素イデアル pに対

して

ordp(a + b) = min{ordp(a), ordp(b)}

ordp(a ∩ b) = max{ordp(a), ordp(b)}
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が成り立つ. なお, a, bが oK のイデアルであるとき, a + b, a ∩ bはそれぞれ a, bの最大公約イデ

アル, 最小公倍イデアルである.

a, bが oK のイデアルであるとき, (a, b) = 1であること, すなわち a + b = oK が成り立つため

の必要十分条件は, すべての素イデアル pに対して

ordp(a + b) = 0

が成り立つことである. これは, ordp(a) ≥ 0, ordp(b) ≥ 0より, 任意の素イデアル pに対して

ordp(a) = 0 または ordp(b) = 0

が成り立つことと同値である. それは, aと bが共通の素イデアル因子を持たないことを意味する.

［定理 14.5］K を 2次体, oK をK の整数環とする. K の任意の分数イデアル a 6= (0)に対して,

oK のイデアル b, cが一意的に存在して,

a = bc−1, (b, c) = 1

が成り立つ.

［証明］a = oK のときは, b = c = oK とすればよい. a 6= oK のときは, 定理 14.4の素イデアルの

積による表示において

b = pe1
1 pe2

2 · · · per
r ,

c = p
−er+s

r+s · · · p−er+2
r+2 p

−er+1
r+1

とおけばよい. (b, c) = 1であることは, p1, p2, . . ., pr+sが相異なる素イデアルであることによる.

b, cの一意性は, aを素イデアルの積で表示する仕方の一意性からわかる.

K を 2次体, oK を K の整数環, pを oK の素イデアルとする. 各 α ∈ K に対して, αの p指数

ordp(α)を, 単項イデアル (α)の p指数 ordp((α))によって定義する. そうすると, 写像

ordp : K −→ R ∪ {∞}, α 7−→ ordp(α)

が定まる. これを p進付値という.

［定理 14.6］K を 2次体, oK をK の整数環, pを oK の素イデアル, α, β ∈ K とする.

(i) ordp(αβ) = ordp(α) + ordp(β).

(ii) ordp(α + β) ≥ min{ordp(α), ordp(β)}. さらに, ordp(α) 6= ordp(β)ならば等号が成り立つ.
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［証明］(i) ordp((αβ)) = ordp((α)(β)) = ordp((α)) + ordp((β))よりわかる.

(ii) α + β ∈ (α) + (β)より, (α + β) ⊆ (α) + (β). よって, (α) + (β) | (α + β). これより, 求め

る不等式が得られる.

さらに, ordp(α) < ordp(β)ならば,

ordp(α + β) ≥ min{ordp(α), ordp(β)}

= ordp(α) = ordp

(
(α + β) − β

)
≥ min{ordp(α + β), ordp(β)}.

最後の式がもし仮に ordp(β)に等しいとすると, ordp(α) ≥ ordp(β)となり矛盾が生じる. よって,

最後の式は ordp(α + β) でなければならない. ゆえに, ordp(α + β) = ordp(α) となる. 同様に,

ordp(β) < ordp(α)ならば, ordp(α + β) = ordp(β)となる.

［定理 14.7］K を 2次体, oK を K の整数環, a, bを oK の (0)でないイデアルとし, b ⊆ aであ

るとする. このとき, ある µ ∈ aが存在して,

b + (µ) = a

が成り立つ.

［証明］まず, bの素イデアル分解を

b =
r∏

i=1

pfi

i , fi ≥ 1

とする. b ⊆ aより a | b. よって, aを

a =
r∏

i=1

pei
i , 0 ≤ ei ≤ fi

と表すことができる. m = ap1p2 · · · pr =
∏r

i=1 pei+1
i とおく. さらに, 各 iについて mi = mp−1

i と

おく. mi は oK のイデアルである. また, mi | mかつ mi 6= mであるから, m ( mi. よって, 各 iに

対して, µi ∈ mi で µi 6∈ mとなるものが存在する. (µi) ⊆ mi より mi | (µi)であるから,

ordpj
(µi)

≥ ei, j = iのとき

≥ ej + 1, j 6= iのとき

である. 一方, もし仮に ordpi(µi) ≥ ei + 1 とすると, m | (µi) となって µi 6∈ m に反するから,

ordµi(βi) ≤ ei. したがって,

ordpj (µi)

= ei, j = iのとき

> ej , j 6= iのとき
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が成り立つ. µ =
∑r

i=1 µi とおく. 各 iについて, mi の定め方より a | mi, よって mi ⊆ aであるか

ら, µi ∈ a. ゆえに, µ ∈ a. また,

ordp1(µ2 + · · · + µr) ≥ min{ordp1(µ2), . . . , ordp1(µr)} > e1

であるから, 定理 14.6より, ordp1(µ) = ordp1(µ1) = e1 となる. i = 2, 3, . . ., r の場合も同様な

ので,

ordpi(µ) = ordpi(µi) = ei, (i = 1, 2, . . . , r)

がいえる. ゆえに,

ordpi(b + (µ)) = min{ordpi(b), ordpi(µ)}

= min{fi, ei} = ei.

一方, p 6= p1, p2, . . ., prなる素イデアル pに対しては, ordp(b) = 0であり, µ ∈ oKより ordpi(µ) ≥ 0

であるから,

ordp(b + (µ)) = min{ordp(b), ordp(µ)}

= ordp(b) = 0.

以上より, oK のすべての素イデアル pに対して,

ordp(b + (µ)) = ordp(a)

が示された. したがって, b + (µ) = aとなる.

［定理 14.8］K を 2次体, oK をK の整数環とする. このとき,

oK が素元分解整域 =⇒ oK が単項イデアル整域

が成り立つ.

［証明］(0)と oK はもともと単項イデアルであり, それ以外の oK の任意のイデアルは素イデアル

の積に表されるから, 任意の (0)でない素イデアルが単項イデアルであることを示せば十分である.

p 6= (0)を oK の素イデアルとする. α ∈ p, α 6= 0をとれば, p 6= oK より αは単元でない. よっ

て, 仮定より αは

α =
r∏

i=1

pei
i , ei ≥ 1

のように素元 pi の積に表される. pは素イデアルだから,

r∏
i=1

pei
i ∈ p =⇒ある iが存在して pi ∈ p.
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ゆえに,

(pi) ⊆ pi ( oK .

一方, pi は素元だから (pi)は素イデアルになる. oK において素イデアルは極大イデアルだから,

(pi) = p. したがって, pは単項イデアルである.

［注意 14.1］定理 14.8は, 一般に, イデアル論の基本定理が成り立つ整域, いわゆる Dedekind整

域において成り立つ. 一方, 定理 14.8の逆, すなわち単項イデアル整域ならば素元分解整域である

ことは, イデアル論の基本定理を仮定しなくても成り立つ.

15 原始イデアル

K を 2次体, oK をK の整数環とする. oK のイデアル a0が原始イデアルであるとは, a0に含ま

れるすべての元の公約数で有理整数であるものが ±1のみであるときにいう.

［補題 15.1］K を 2次体, oK をK の整数環, ω1, ω2 をK の整数底, a, b, c ∈ Zとする. このと

き, cが oK における aω1 + bω2 の約数ならば, cは Zにおける a, bの公約数である.

［証明］仮定より, ある x ∈ oK が存在して, aω1 + bω2 = cxとなる. ω1, ω2は整数底だから, ある

a′, b′ ∈ Zが存在して, x = a′ω1 + b′ω2. ゆえに,

aω1 + bω2 = c(a′ω1 + b′ω2) = ca′ω1 + cb′ω2.

整数底の Z係数の 1次結合で表す仕方は一意的だから,

a = ca′, b = cb′.

すなわち, cは a, bの公約数である.

［定理 15.2］K を 2次体, oK をK の整数環, 1, ωをK の標準的整数底, aを oK のイデアルとす

る. このとき, ある b ∈ Zが存在して b + ω ∈ aならば, aは原始イデアルである.

［証明］d ∈ Zを aのすべての元の公約数とすると, dは oK における b + ω の約数である. 補題

15.1より, dは Zにおいて 1を割る. ゆえに, d = ±1. したがって, aは原始イデアルである.

［補題 15.3］Kを 2次体, oK をKの整数環, 1, ωをKの標準的整数底とする. また, ω1, ω2 ∈ K

とし,

a = Zω1 + Zω2
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とおく. このとき, ωω1, ωω2 ∈ aならば,

a = oKω1 + oKω2

が成り立つ. したがって, aは ω1, ω2から生成されるK の分数イデアルである. 特に, ω1, ω2 ∈ oK

であれば, aは oK のイデアルである.

［証明］α ∈ oKω1 + oKω2 とすると,

α = xω1 + yω2, x, y ∈ oK

と表される. oK = [1, ω]より,

x = x1 + x2ω, x1, x2 ∈ Z,

y = y1 + y2ω, y1, y2 ∈ Z

と表される. よって,

α = (x1 + x2ω)ω1 + (y1 + y2ω)ω2

= x1ω1 + x2ωω1 + y1ω2 + y2ωω2.

ωω1, ωω2 ∈ aより,

ωω1 = u1ω1 + u2ω2, u1, u2 ∈ Z,

ωω2 = v1ω1 + v2ω2, v1, v2 ∈ Z

と表される. ゆえに,

α = x1ω1 + x2(u1ω1 + u2ω2)

+ y1ω2 + y2(v1ω1 + v2ω2)

= (x1 + x2u1 + y2v1)ω1

+ (x2u2 + y1 + y2v2)ω2

∈ a.

したがって, oKω1 + oKω2 ⊆ a. 逆の包含関係は明らかである.

［定理 15.4］K を 2次体, oK をK の整数環, 1, ωをK の標準的整数底, a, b ∈ Z, a > 0とする.

このとき,

NK(b + ω) ∈ aZ

ならば,

a = Za + Z(b + ω)

は oK の原始イデアルであり, a, b + ωは aの標準的基底である.
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［証明］aが oK のイデアルであることをいうためには a = oKa + oK(b + ω)となることをいえば

よいが, 補題 15.3より, aω, (b + ω)ω ∈ aをいえば十分である.

まず,

aω = −ba + a(b + ω) ∈ a.

次に, ω2 − (TrKω)ω + NKω = 0より, v = TrKω = ω + ωσ, −u = NKω = ωωσ とおくと,

ω2 = u + vω, u, v ∈ Z.

NK(b + ω) ∈ aZより, ある s ∈ Zが存在して,

sa = NK(b + ω) = (b + ω)(b + ω)σ

= b2 + vb − u.

ゆえに,

(b + ω)ω = bω + (u + vω)

= −(b2 + vb − u) + (b + v)(b + ω)

= −sa + (b + v)(b + ω) ∈ a.

以上より, aが oK のイデアルであることが証明された.

b + ω ∈ aであるから, 定理 15.2より, aは原始イデアルである.

定理 10.8より, a, b + ωは aの標準的基底である.

［定理 15.5］K を 2次体, oK をK の整数環, a 6= (0)を oK のイデアル, a0, b + c0ωを aの標準

的基底とする. このとき, c0 は Zにおける a0, bの公約数である. したがって,

a0 = Za′
0 + Z(b′ + ω), a0 = c0a

′
0, b = c0b

′

とおけば, a = c0a0 となる. a0 は原始イデアルであり, a′
0, b′ + ωは a0 の標準的基底である.

［証明］補題 10.5より, c0 は Zにおける a0, bの約数である. よって, a = c0a0 となる. このと

き, a0 = c−1
0 aなので, a0 はK の分数イデアルである. a0 ⊆ oK より, a0 は oK のイデアルである.

b′ + ω ∈ a0であるから, 定理 15.2より, a0は原始イデアルである. 定理 10.8より, a′
0, b′ + ωは a0

の標準的基底である.

［例 15.1］oKを 2次体Kの整数環, 1, ωをKの標準的整数底とする. oKについては, a0 = c0 = 1

となる. したがって, 任意の b ∈ Zに対して, 1, b + ωは oK の標準的基底である. また, oK は原始

イデアルである.
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K を 2次体, oK をK の整数環, aを oK の原始イデアルとする. このとき, 原始イデアルの定義

より, 定理 15.5において c0 = 1となり,

a = [a, b + ω], a, b ∈ Z, a > 0

と表される. ここで, 定理 10.8, 定理 15.2より, 一般の oK のイデアル aがこの形で表されれば, a

は原始イデアルであり, a, b + ωは必ず aの標準的基底であることに注意しておく. 定理 11.10, 定

理 11.11より,

Na = a

が成り立つ.

［定理 15.6］Kを 2次体, oK をKの整数環, a = [a, b+ω]を oK の原始イデアルとする. i = 1, 2

に対して,

ai = Zai + Z(b + ω), ai ∈ Z

とおく. このとき, a = a1a2 ならば, a1, a2 も原始イデアルで a = a1a2 が成り立つ.

［証明］定理 10.8より

N(b + ω) ∈ aZ ⊆ aiZ

だから, 定理 15.4より ai は原始イデアルであり, ai, b + ωは ai の標準的基底である. よって,

a1a2 = (a1, b + ω)(a2, b + ω)

= (a1a2, a1(b + ω), a2(b + ω), (b + ω)2)

= (a, a1(b + ω), a2(b + ω), (b + ω)2)

⊆ (a, b + ω) = a.

一方,

Na = a = a1a2 = Na1Na2.

定理 12.4より, a = a1a2.

16 素数の2次体での分解

K を 2次体, oK を K の整数環, pを素数とする. イデアル論の基本定理により, 単項イデアル

(p) = poK は素イデアルの積に順序を除いて一意的に分解される:

(p) = pe1
1 pe2

2 · · · peg
g , ei ≥ 1, g ≥ 1.

これを pのK での素イデアル分解という. 両辺のノルムをとると,

p2 = Npe1
1 Npe2

2 · · ·Npeg
g .
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i = 1, 2, . . ., gに対して, Npi = [oK : pi] ∈ Zなので, Zにおける素因数分解の一意性により,

Npi = pfi

の形になる. pi ( oK よりNpi > 1なので, fi ≥ 1である. よって,

2 = e1f1 + e2f2 + · · · + egfg, ei ≥ 1, fi ≥ 1, g ≥ 1

が成り立つ. したがって, 次の 3つの場合が可能である:

(D1) g = 2, e1 = e2 = 1, f1 = f2 = 1.

(D2) g = 1, e1 = 1, f1 = 2.

(D3) g = 1, e1 = 2, f1 = 1.

それぞれの場合に, pのK での素イデアル分解は次のようになる:

(D1) (p) = p1p2, p1 6= p2, Np1 = Np2 = p.

(D2) (p) = p1, Np1 = p2.

(D3) (p) = p2
1, Np1 = p.

(D1)の場合, pはK/Qで完全分解するという. (D2)の場合, pはK/Qで惰性するという. (D3)の

場合, pは K/Qで完全分岐するという. また, すべての iについて ei = 1のとき, すなわち, いま

の場合でいえば完全分解か惰性のどちらかであるとき, pはK/Qで不分岐であるという.

eiを piのK/Qにおける分岐指数といい, fiを piのK/Qにおける相対次数という. また, fi = 1, 2

のそれぞれの場合に応じて, pi を 1次の素イデアル, 2次の素イデアルという.

［定理 16.1］K を 2次体, oK をK の整数環, p 6= (0)を oK の素イデアル, pを pに含まれる最小

正の有理整数とする.

(i) pは素数である.

(ii) pに含まれる素数は pのみである.

(iii) Np = pまたは p2. もっと詳しくいうと,

Np =

p, p 6= (p)のとき

p2, p = (p)のとき

が成り立つ.

［証明］定理 10.4より, pに含まれる最小正の有理整数 pが存在して, Z ∩ p = pZとなる.

(i) もし仮に pが素数でなければ, ある a, b ∈ Zが存在して,

p = ab, 1 < a < p, 1 < b < p.
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ところが, pは素イデアルであるから,

ab ∈ p =⇒ a ∈ pまたは b ∈ p.

これは pの最小性に反する. ゆえに, pは素数でなければならない.

(ii) pに含まれるすべての有理素数は, Z ∩ p = pZの元, したがって pの倍数である. よって, p

以外の素数は pに含まれない.

(iii) p ∈ pより, (p) ⊆ p. ゆえに, p | (p). すなわち, ある oK のイデアル aが存在して,

(p) = pa.

よって,

NpNa = N(p) = |NKp| = p2.

p = (p)のとき, Np = N(p) = p2.

p 6= (p)のとき, a ( oK であるから,

Na = [oK : a] > 1.

pは素イデアルなので, 定義より p ( oK . よって,

Np = [oK : p] > 1.

ゆえに, Np = pとなる.

定理 16.1によれば, 任意の素イデアル pに対して, ある素数 pがただ 1つ存在して, p | (p). した

がって, pは, pの素イデアル分解にのみ現れ, p以外の素数の素イデアル分解には現れない.

さて, K を 2次体, oK をK の整数環, pを素数, pを pのK での素イデアル分解に現れる素イデ

アルとする. このとき, oK/pは整域である. 元の個数が有限なので, oK/pは体になるのであった.

環の準同型写像

ϕp : Z −→ oK/p, x 7−→ x + p

を考えると, Kerϕp = pZとなる. 実際,

x ∈ Ker ϕp ⇐⇒ x ∈ Z, ϕp(x) = p

⇐⇒ x ∈ Z, x + p = p

⇐⇒ x ∈ Z, x ∈ p

⇐⇒ x ∈ p ∩ Z.

定理 16.1より pは pに含まれる最小の有理整数なので, p ∩ Z = pZ. ゆえに, Ker ϕp = pZとなる.

したがって, 準同型定理により, 体から体の中への単射準同型

Z/pZ ∼= oK/p, x + pZ 7−→ x + p
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が得られる. これによって, Fp = Z/pZを oK/pの部分体とみなすことができ, oK/pは Fp 上のベ

クトル空間になる.

［定理 16.2］K を 2次体, oK をK の整数環, pを素数とする. また, pを単項イデアル (p) = poK

の素イデアル因子, f を pの K/Qにおける相対次数とする. このとき, 体の拡大次数 [oK/p : Fp]

は f に一致する.

［証明］oK/pは Fp の拡大体なので, Fp 上のベクトル空間になる. d = dimFp oK/pとおくと, 体

の拡大次数の意味から [oK/p : Fp] = dである. また, ベクトル空間としての同型

oK/p ∼=
d︷ ︸︸ ︷

Fp ⊕ Fp ⊕ · · · ⊕ Fp,

が成り立つ. |Fp| = pであるから,

|oK/p| = pd.

一方,

|oK/p| = [oK : p] = NKp = pf .

ゆえに, f = d = [oK/p : Fp]となる.

［定理 16.3］K を 2次体, oK をK の整数環, a 6= (0)を oK のイデアルとする. このとき, aのノ

ルムNaが素数ならば, aは素イデアルである.

［証明］もし仮に aが素イデアルでないとすると, イデアル論の基本定理より,

a = p1p2 · · · pr, r ≥ 2

のように素イデアル分解できる. 両辺のノルムをとると,

Na = Np1Np2 · · ·Npr.

ところが, 各 iについて, p ( oK だから,

Np = [oK : p] > 1.

これはNaが素数であることに反する. したがって, aは素イデアルである.

［定理 16.4］K を 2次体, oK をK の整数環, pを oK の素イデアルとする. このとき, pの共役イ

デアル pσ もまた oK の素イデアルである.
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［証明］pσ ⊆ oK は明らかであるが, もし仮に pσ = oK とすれば,

p = (pσ)σ = oσ
K = oK

となり矛盾が生じる. よって, pσ 6= oK . また, 任意の x, y ∈ oK に対して,

xy ∈ pσ =⇒ xσyσ = (xy)σ ∈ (pσ)σ = p

=⇒ xσ ∈ pまたは yσ ∈ p

=⇒ x = (xσ)σ ∈ pσ または y = (yσ)σ ∈ pσ.

ゆえに, pσ は oK の素イデアルである.

(D1)の場合, Np1 = pより (p) = (Np1) = p1p
σ
1 . 定理 16.4より pσ

1 もまた素イデアルだから, 分

解の一意性により, p2 = pσ
1 となる. 同様に, (p) = p2p

σ
2 から p1 = pσ

2 が得られる.

(D2)の場合, pσ
1 = (pσ) = (p) = p1 である.

(D3)の場合, Np1 = pより (p) = (Np1) = p1p
σ
1 . 定理 16.4より pσ

1 もまた素イデアルだから, 分

解の一意性により, p1 = pσ
1 となる.

以上の議論より, (D1), (D2), (D3)のそれぞれについて, pのK での素イデアル分解を共役イデ

アルによって表すと次のようになる:

(D1) (p) = ppσ, p 6= pσ, Np = Npσ = p.

(D2) (p) = p = pσ, Np = p2.

(D3) (p) = p2 = ppσ, p = pσ, Np = p.

［補題 16.5］K を 2次体, oK をK の整数環, pを oK の素イデアル, p ∈ pを素数とする.

(i) Np = pのとき, ある b ∈ Zが存在して, p, b + ωは pの標準的基底である.

(ii) Np = p2 のとき, ある b ∈ Zが存在して, p, b + pωは pの標準的基底である.

［証明］a0, b0 + c0ωを pの標準的基底とする. 定理 16.1より, pは pに含まれる最小正の有理整数

である. よって, a0 = p. また, c0は Zにおいて a0を割るから, c0 = 1または pである. Np = a0c0

より, Np = pのとき c0 = 1となり, Np = p2 のとき c0 = pとなる.

［補題 16.6］K = Q(
√

m)を 2次体とする. ただし, m 6= 0, 1は平方因子を含まない有理整数と

する. oK をK の整数環, 1, ωをK の標準的整数底, b ∈ Qとする.

m ≡ 1 (mod 4)のとき,

NK(b + ω) = b2 + b +
1 − m

4

=
1
4
(
(2b + 1)2 − m

)
.

80



m ≡ 2, 3 (mod 4)のとき,

NK(b + ω) = b2 − m.

［証明］b ∈ Qより bσ = bだから,

NK(b + ω) = (b + ω)(b + ω)σ

= (b + ω)(b + ωσ)

= b2 + (ω + ωσ)b + ωωσ.

m ≡ 1 (mod 4)のとき,

ω + ωσ =
1 +

√
m

2
+

1 −
√

m

2
= 1,

ωωσ =
1 +

√
m

2
· 1 −

√
m

2
=

1 − m

4

より,

NK(b + ω) = b2 + b +
1 − m

4

=
1
4
(4b2 + 4b + 1 − m)

=
1
4
(
(2b + 1)2 − m

)
.

m ≡ 2, 3 (mod 4)のとき,

ω + ωσ =
√

m −
√

m = 0,

ωωσ =
√

m · (−
√

m) = −m

より,

NK(b + ω) = b2 − m.

［補題 16.7］K = Q(
√

m)を 2次体とする. ただし, m 6= 0, 1は平方因子を含まない有理整数と

する. pを素数とし, K/Qにおいて (p) = ppσ と素イデアル分解するものとする.

(i) m ≡ 1 (mod 4)のとき, 合同方程式 (2X + 1)2 ≡ m (mod 4p)は有理整数解をもつ.

(ii) m ≡ 2, 3 (mod 4)のとき, 合同方程式X2 ≡ m (mod p)は有理整数解をもつ.

［証明］(p) = ppσ より, NKp = pである. 補題 16.5より, ある b ∈ Zが存在して, p, b + ωは pの

標準的基底になる. 特に p = Zp + Z(b + ω)だから, 定理 10.8より, NK(b + ω) ∈ pZ.
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m ≡ 1 (mod 4)のとき, 補題 16.6より,

4NK(b + ω) = (2b + 1)2 − m.

ゆえに,

(2b + 1)2 − m ∈ 4pZ.

すなわち,

(2b + 1)2 ≡ m (mod 4p).

m ≡ 2, 3 (mod 4)のとき, 補題 16.6より,

NK(b + ω) = b2 − m.

ゆえに,

b2 ≡ m (mod p).

［定理 16.8］K = Q(
√

m)を 2次体とする. ただし, m 6= 0, 1は平方因子を含まない有理整数と

する. oK をK の整数環, pを奇素数とする.

(i) p - mのとき.

(a)
(

m

p

)
= 1のとき, pはK/Qで完全分解する:

(p) = ppσ, p 6= pσ, Np = p.

(b)
(

m

p

)
= −1のとき, pはK/Qで惰性する:

(p) = p, Np = p2.

(ii) p | mのとき, pはK/Qで完全分岐する:

(p) = p2, Np = p.

［証明］(i) (a) m ≡ 1 (mod 4)のとき. 仮定より, a2 ≡ m (mod p)かつ gcd(a, p) = 1なる a ∈ Z

が存在する.

b =

a, aが奇数のとき

a + p, aが偶数のとき

とおくと, b2 ≡ m (mod p)かつ gcd(b, p) = 1である. pは奇素数なので, bは奇数である. そこで,

p = Zp + Z(b′ + ω), b = 2b′ + 1, b′ ∈ Z
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とおく. 補題 16.6より,

NK(b′ + ω) =
(2b′ + 1)2 − m

4
=

b2 − m

4
.

bは奇数だから b2 ≡ 1 ≡ m (mod 4)であり, gcd(4, p) = 1より b2 ≡ m (mod 4p)が成り立つ. ゆ

えに,

NK(b′ + ω) ∈ pZ.

定理 15.4より, pは oK のイデアルであり, p, b′ + ωは pの標準的基底である. Np = pなので,

(p) = (Np) = ppσ.

また, 定理 16.3より, pは素イデアルである. さらに, 定理 16.4より, pσ も素イデアルである.

p = (p, b′ + ω), pσ = (p, b′ + ωσ), ω + ωσ = 1

より,

p + pσ = (p, b′ + ω, b′ + ωσ)

= (p, (b′ + ω) + (b′ + ωσ), b′ + ωσ)

= (p, 2b′ + 1, b′ + ωσ)

= (p, b, b′ + ωσ).

gcd(b, p) = 1より, ある x, y ∈ Zが存在して,

1 = bx + py ∈ (p, b, b′ + ωσ) = p + pσ.

ゆえに, p + pσ = oK . もし仮に p = pσ ならば p + pσ = p 6= oK となり矛盾が生じる. したがって,

p 6= pσ であり, pはK/Qで完全分解する.

m ≡ 2, 3 (mod 4)のとき. 仮定より, b2 ≡ m (mod p)かつ gcd(b, p) = 1なる b ∈ Zが存在する.

p = Zp + Z(b + ω)

とおく. 補題 16.6と bの定め方より,

NK(b + ω) = b2 − m ∈ pZ.

定理 15.4より, pは oK のイデアルであり, p, b + ωは pの標準的基底である. Np = pなので,

(p) = (Np) = ppσ.

また, 定理 16.3より, pは素イデアルである. さらに, 定理 16.4より, pσ も素イデアルである.

p = (p, b + ω), pσ = (p, b + ωσ), ω + ωσ = 0
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より,

p + pσ = (p, b + ω, b + ωσ)

= (p, (b + ω) + (b + ωσ), b + ωσ)

= (p, 2b, b + ωσ).

gcd(2b, p) = 1より, ある x, y ∈ Zが存在して,

1 = 2bx + py ∈ (p, 2b, b + ωσ) = p + pσ.

ゆえに, p + pσ = oK . したがって, p 6= pσ であり, pはK/Qで完全分解する.

(i) (b) 仮定より合同方程式X2 ≡ m (mod p)は有理整数解をもたないので, 補題 16.7より pは

K/Qで完全分解も完全分岐もしない. したがって, 惰性する.

(ii) m ≡ 1 (mod 4)のとき. b = (m − 1)/2とおき,

p = Zp + Z(b + ω)

とおく. 補題 16.6と bの定め方より,

NK(b + ω) =
(2b + 1)2 − m

4
=

m2 − m

4

=
m(m − 1)

4
∈ pZ.

定理 15.4より, pは oK のイデアルであり, p, b + ωは pの標準的基底である. Np = pなので,

(p) = (Np) = ppσ.

また, 定理 16.3より, pは素イデアルである.

pσ = (p, b + ωσ) =
(

p,
m −

√
m

2

)
=

(
p,

√
m − m

2

)
=

(
p,

√
m − m

2
+ m

)
=

(
p,

m +
√

m

2

)
= (p, b + ω)

= p

より, (p) = p2. したがって, pはK/Qで完全分岐する.

m ≡ 2, 3 (mod 4)のとき.

p = Zp + Zω

とおく. ω =
√

mより,

NKω = −m ∈ pZ.
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定理 15.4より, pは oK のイデアルであり, p, ωは pの標準的基底である. Np = pなので,

(p) = (Np) = ppσ.

また, 定理 16.3より, pは素イデアルである.

pσ = (p, ωσ) = (p, −
√

m)

= (p,
√

m) = (p, ω)

= p

より, (p) = p2. したがって, pはK/Qで完全分岐する.

［定理 16.9］K = Q(
√

m)を 2次体とする. ただし, m 6= 0, 1は平方因子を含まない有理整数と

する. oK をK の整数環とする.

(i) m ≡ 1 (mod 8)のとき, 2はK/Qで完全分解する:

(2) = ppσ, p 6= pσ, Np = 2.

(ii) m ≡ 5 (mod 8)のとき, 2はK/Qで惰性する:

(2) = p, Np = 4.

(iii) m ≡ 2, 3 (mod 4)のとき, 2はK/Qで完全分岐する:

(2) = p2, Np = 2.

［証明］m ≡ 1 (mod 8)のとき.

p = Z · 2 + Zω

とおく. ω = (1 +
√

m)/2より,

NKω =
1 − m

4
∈ 2Z.

定理 15.4より, pは oK のイデアルであり, 2, ωは pの標準的基底である. Np = 2なので,

(2) = (Np) = ppσ.

また, 定理 16.3より, pは素イデアルである. さらに, 定理 16.4より, pσ も素イデアルである.

p = (2, ω), pσ = (2, ωσ), ω + ωσ = 1

より,

p + pσ = (2, ω, ωσ) = (2, ω + ωσ, ωσ)

= (2, 1, ωσ) = oK .
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もし仮に p = pσ ならば p + pσ = p 6= oK となり矛盾が生じる. したがって, p 6= pσ であり, 2は

K/Qで完全分解する.

m ≡ 5 (mod 8)のとき. 合同方程式 (2X + 1)2 ≡ 5 (mod 8)は有理整数解をもたないので, 補題

16.7より, 2はK/Qで完全分解も完全分岐もしない. したがって, 惰性する.

m ≡ 2 (mod 4)のとき.

p = Z · 2 + Zω

とおく. ω =
√

mより,

NKω = −m ∈ 2Z.

定理 15.4より, pは oK のイデアルであり, 2, ωは pの標準的基底である. Np = 2なので,

(2) = (Np) = ppσ.

また, 定理 16.3より, pは素イデアルである.

pσ = (2, ωσ) = (2, −
√

m)

= (2,
√

m) = (2, ω)

= p

より, (2) = p2. したがって, 2はK/Qで完全分岐する.

m ≡ 3 (mod 4)のとき.

p = Z · 2 + Z(1 + ω)

とおく. ω =
√

mより,

NK(1 + ω) = (1 +
√

m)(1 −
√

m) = 1 − m ∈ 2Z.

定理 15.4より, pは oK のイデアルであり, 2, ωは pの標準的基底である. Np = 2なので,

(2) = (Np) = ppσ.

また, 定理 16.3より, pは素イデアルである.

pσ = (2, 1 + ωσ) = (2, 1 −
√

m)

= (2,
√

m − 1) = (2, (
√

m − 1) + 2)

= (2, 1 +
√

m) = (2, 1 + ω)

= p

より, (2) = p2. したがって, 2はK/Qで完全分岐する.
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K を 2次体とし, dK をK の判別式とする. pが奇素数のとき,

χdK
(p) =


(

dK

p

)
, p - dK のとき

0, p | dK のとき

と定める. ただし,
(∗
∗

)
は Legendre記号である. また, p = 2のとき,

χdK
(2) =


1, m ≡ 1 (mod 8)のとき

−1, m ≡ 5 (mod 8)のとき

0, m ≡ 2, 3 (mod 4)のとき

と定める. χdK (p)をKronecker記号という. p = 2の場合も含めて, χdK (p)は記号
(

dK

p

)
で表

されることがある. これも Kronecker記号と呼ばれる.

Kronecker記号を用いると, 定理 16.8, 定理 16.9は次のように統一的に述べられる.

［定理 16.10］K を 2次体, dK をK の判別式, pを素数とする.

(i) χdK
(p) = 1のとき, pはK/Qで完全分解する.

(ii) χdK
(p) = −1のとき, pはK/Qで惰性する.

(iii) χdK (p) = 0のとき, pはK/Qで完全分岐する.

［証明］平方因子を含まない有理整数m 6= 0, 1によってK = Q(
√

m)と表す.

pが奇素数かつ p - mのとき, Legendre記号の性質より(
4m

p

)
=

(
4
p

)(
m

p

)
=

(
m

p

)
であるから,

χdK (p) =
(

dK

p

)
=

(
m

p

)
となる. よって, (i), (ii)が得られる.

残りの場合は, Kronecker記号の定義から明らかである.

dK は, m ≡ 1 (mod 4)のときはmであり, m ≡ 2, 3 (mod 4)のときは 4mである. したがって,

任意の素数 pに対して,

χdK (p) = 0 ⇐⇒ p | dK

が成り立つ. このことと定理 16.10から, 次のいわゆる判別定理が得られる.

［定理 16.11］K を 2次体, dK をK の判別式, pを素数とする. このとき,

pがK/Qで完全分岐する⇐⇒ p | dK

が成り立つ.
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17 イデアル類群

K を 2次体, oK をK の整数環とする.

oK の (0)でないイデアルの全体を IK で表す. IK における 2項関係 ∼を, a, bに対して

a ∼ b ⇐⇒ある γ ∈ K, γ 6= 0が存在して, a = γb

によって定める. a ∼ bが成り立つとき, aと bは対等であるという.

［定理 17.1］K を 2次体, oK をK の整数環, a, b ∈ IK とする. このとき, 次の 2つの条件は同

値である.

(i) aと bは対等.

(ii) ある α, β ∈ oK , α 6= 0, β 6= 0が存在して, αa = βb.

［証明］(i)⇒(ii) aと bが対等であるとすると, ある γ ∈ K, γ 6= 0が存在して, a = γb. 一方,

γ ∈ Qだから, ある有理整数 a > 0が存在して, aγ ∈ Z ∩ K = oK . このとき, aa = aγb. そこで,

α = a, β = aγ とおくと, αa = βb, α, β ∈ oK , α 6= 0, さらに γ 6= 0より β 6= 0.

(ii)⇒(i) α 6= 0より, αa = βbの両辺に α−1 を掛けると, a = α−1βb. そこで, γ = α−1β とお

くと, a = γbとなり, β 6= 0より γ 6= 0.

［定理 17.2］対等であるという関係 ∼は IK における同値関係である.

［証明］a, b, c ∈ IK とする.

(反射) a = 1 · aより, a ∼ a.

(対称) a ∼ bとすると, ある γ ∈ K, γ 6= 0が存在して, a = γb. よって,

γ−1a = γ−1γb = b.

ゆえに, b ∼ a.

(推移) a ∼ bかつ b ∼ cとする. a ∼ bより, ある γ ∈ K, γ 6= 0が存在して, a = γb. 同様に,

b ∼ cより, ある γ′ ∈ K, γ′ 6= 0が存在して, b = γ′c. ゆえに,

a = γb = γγ′c, γγ′ 6= 0.

したがって, a ∼ c.

IK の ∼による商集合 IK/ ∼を CK で表す. また, CK に属する各同値類をイデアル類という.

a ∈ IK を代表元とするイデアル類を [a]で表す:

[a] = {b ∈ IK | b ∼ a}.

oK の (0)でない元から生成される単項イデアルの全体を PK とおく.
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［定理 17.3］PK は 1つのイデアル類になる. ただし, K を 2次体とする.

［証明］任意の単項イデアル (α) = αoK 6= (0)は明らかに oK と対等である. よって, PK ⊆ [oK ].

また, a ∈ IK , a ∼ oK とすると, ある γ ∈ K, γ 6= 0が存在して,

a = γoK = (γ).

a ⊆ oK より,

γ ∈ (γ) ⊆ oK .

ゆえに, a ∈ PK . したがって, [oK ] ⊆ PK .

［定理 17.4］CK は Abel群になる. CK をイデアル類群という.

［証明］まず, イデアル類の積を, 各 a, b ∈ IK に対して,

[a][b] = [ab]

によって定義する.

積が well-definedであること, すなわち, 代表元 a, b ∈ IK の選び方によらないことは次のよう

にして示される: a, a′, b, b′ ∈ IK とし, a ∼ a′, b ∼ b′ とする. a ∼ a′ より, ある γ1 ∈ K, γ1 6= 0

が存在して, a = γ1a
′. 同様に, b ∼ b′ より, ある γ2 ∈ K, γ2 6= 0が存在して, b = γ2b

′. ゆえに,

ab = γ1γ2a
′b′, γ1γ2 6= 0. したがって, ab ∼ a′b′.

任意の a, b, c ∈ IK に対して, (ab)c = a(bc)より,

([a][b])[c] = ([ab])[c] = [(ab)c]

= [a(bc)] = [a][bc]

= [a]([b][c]).

よって, 積は結合法則を満たす. また, ab = baより,

[a][b] = [ab] = [ba] = [b][a].

よって, 積は可換である.

単位元は [oK ]である. 実際, 任意の a ∈ IK より,

[a][oK ] = [aoK ] = [a].

任意の a ∈ IK に対して, aaσ = (Na)より,

[a][aσ] = [aaσ] = [(Na)] = [oK ].

したがって, [a]の逆元は存在し, それは [aσ]である.

以上より, CK が Abel群になることが証明された.
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2次体K の (0)でない分数イデアルの全体を I∗
K で表す. また, K の (0)でない単項分数イデア

ルの全体を P∗
K で表す.

［定理 17.5］K を 2次体とする.

(i) I∗
K は Abel群になる.

(ii) P∗
K は I∗

K の部分群になる.

［証明］(i) I∗
K の積をイデアルの積で定義する. そうすると, 結合法則, 交換法則が成り立つこと

は明らかである. 単位元はK の整数環 oK である. 定理 11.8より, 各 a ∈ I∗
K に対して, その逆元

は逆イデアル a−1 である.

(ii) oK ∈ P∗
K より, P∗

K は空集合でない. さらに, 任意の (α), (β) ∈ P∗
K に対して,

(α)(β)−1 = (α)(β−1) = (αβ−1) ∈ P∗
K .

ゆえに, P∗
K は I∗

K の部分群である.

I∗
K の P∗

K による剰余群 I∗
K/P∗

K を C∗
K で表す.

［定理 17.6］P∗
K ∩ IK = PK . ただし, K を 2次体とする.

［証明］a ∈ P∗
K ∩ IK とする. a ∈ P∗

K より, ある α ∈ K, α 6= 0が存在して, a = (α)となる. 一

方, a ∈ IK より, aは oK のイデアルなので, (α) ⊆ oK である. α ∈ (α)より, α ∈ oK . したがって,

a = (α) ∈ PK となり, P∗
K ∩ IK ⊆ PK . 逆の包含関係は明らか.

［定理 17.7］K を 2次体とする. このとき, C∗
K は CK に同型である. 特に, |C∗

K | = |CK |が成り立

つ. C∗
K のこともまたイデアル類群という.

［証明］写像

f : IK −→ I∗
K/P∗

K , a 7−→ aP∗
K

を考える. a, a′ ∈ I∗
K に対して,

f(aa′) = aa′P∗
K = (aP∗

K)(a′P∗
K) = f(a)f(a′)

より, f は準同型写像である. また, 任意の分数イデアル bに対して, ある c ∈ OK , c 6= 0が存在し

て, cb ∈ IK となる. このとき,

f(cb) = cbP∗
K = bP∗

K .
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ゆえに, f は全射である. さらに,

a ∈ Ker f ⇐⇒ a ∈ IK , f(a) = P∗
K

⇐⇒ a ∈ IK , aP∗
K = P∗

K

⇐⇒ a ∈ IK , a ∈ P∗
K

⇐⇒ a ∈ P∗
K ∩ IK .

定理 17.6より P∗
K ∩ IK = PK だから, Ker f = PK . 準同型定理より,

IK/PK
∼= I∗

K/P∗
K , [a] 7−→ aP∗

K

が得られる.

［定理 17.8］K を 2次体, oK をK の整数環, a, m ∈ IK とする. このとき, ある b ∈ IK が存在

して, ab ∼ oK かつ (b, m) = 1が成り立つ.

［証明］c = amとすると, c ⊆ aである. 定理 14.7より, ある µ ∈ aが存在して, a = c + (µ)とな

る. (µ) ⊆ aから, ある b ∈ IK が存在して, (µ) = ab. したがって, ab ∼ oK . さらに,

a = c + (µ) = am + ab = a(m + b).

a 6= (0)より, oK = m + bとなる. すなわち, (b, m) = 1.

［定理 17.9］K を 2次体, C > 0を実数とする. このとき, a ∈ IK で Na ≤ C を満たすものは有

限個しかない.

［証明］まず, Na = 1であるような oK のイデアルは oK のみである.

a 6= oK とする. イデアル論の基本定理により,

a = p1p2 · · · pr

と素イデアルの積で表される. ノルムをとると,

Na = Np1Np2 · · ·Npr.

Na ≤ C より,

Np1Np2 · · ·Npr ≤ C.

よって, 各 iについてNpi ≤ C. 一方, Npi = [oK : p] ≥ 2であるから,

2r ≤ Np1Np2 · · ·Npr ≤ C.
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よって, r ≤ log2 C となる. ゆえに, aは blog2 Cc個以下の素イデアルの積である. したがって,

Np ≤ C となる素イデアル pが有限個しかなことを示せばよい.

pをNp ≤ C なる素イデアルとする. 定理 16.1より, ある素数 pが存在して, Np = pまたは p2.

いずれにせよ, p ≤ C である. さらに, p | (p). すなわち, pは pのK における素イデアル分解に現

れる. C 以下の素数は高々C 個であり, 素数の K における素イデアル分解に現れる素イデアルは

高々2個で, しかも 1つの素イデアルが 2つ以上の異なる素数の素イデアル分解に現われることは

ないから, pの個数は 2C 個以下である.

以上より, aの個数は (2C)blog2 Cc + 1を超えない. したがって, 有限個である.

［定理 17.10］Kを 2次体, oK をKの整数環, dK をKの判別式とする. このとき, Kのイデアル

類群 CK に属する任意のイデアル類は, その代表元としてNa ≤ MK を満たす原始イデアル a ∈ IK

を選べる. ただし,

M ′
K =


√

dK/2, K が実 2次体のとき√
−dK/3, K が虚 2次体のとき

とおく.

［証明］イデアル類を任意にとり, その類に属するイデアルのうちノルムが最小のものを aとする.

定理 15.5より, ある有理整数 c0 > 0と原始イデアル a0 が存在して,

a = c0a0.

両辺のノルムをとると, 定理 11.7より,

Na = c2
0 · Na0.

よって, Na0 ≤ Na. ところが, a ∼ a0 であるから, Naの最小性より Na = Na0 でなければなら

ない. ゆえに, c0 = 1. したがって, a = a0 となり, aは原始イデアルである. その標準的基底は

a, r + ωなる形であり, Na = aである. 定理 10.7より,

−a

2
≤ r <

a

2
(21)

としてよい. 定理 10.8よりNK(r + ω) ∈ aZであるから,

NK(r + ω) = ac, c ∈ Z (22)

とおく. (r + ω) ⊆ aだから, a | (r + ω). すなわち, ある b ∈ IK が存在して,

(r + ω) = ab.

ノルムをとると,

N(r + ω) = NaNb.
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また,

N(r + ω) = |NK(r + ω)| = |ac| = a|c|.

ゆえに,

NaNb = a|c|.

これより, Nb = |c|が得られる. よって,

bbσ = (Nb) = (c).

ゆえに,

(r + ω)bσ = abbσ = a(c) = ca.

したがって, a ∼ bσ である. Naの最小性より,

Na ≤ Nbσ = Nb.

すなわち, a ≤ |c|. 一方,

b = TrK(r + ω) = (r + ω) + (r + ωσ) (23)

とおくと, 平方因子を含まない有理整数m 6= 0, 1によってK = Q(
√

m)と表せば, m ≡ 1 (mod 4)

のときは ω + ωσ = 1より b = 2r + 1となり, m ≡ 3 (mod 4)のときは ω + ωσ = 0より b = 2rと

なる. よって, いずれの場合も, (21)より |b| ≤ a. したがって,

|b| ≤ a ≤ |c|. (24)

さて, r + ωは 2次方程式

X2 − (TrK(r + ω))X + NK(r + ω) = 0

の解だから, 式 (22), 式 (23), 定理 6.3, 定理 6.6より,

b2 − 4ac = TrK(r + ω)2 − 4 · NK(r + ω)

= dK(r + ω) = dK .

K が実 2次体のとき, すなわちm > 0のとき, dK > 0であるから, (24)より

4ac < dK + 4ac = b2 ≤ a|c|.

よって, 4c < |c|. もし仮に c ≥ 0とすると, 4c < cとなって矛盾が生じる. ゆえに, c < 0. した

がって,

dK = b2 − 4ac = b2 + 4a|c| ≥ 4a2

となり,

Na = a ≤
√

dK

2
= M ′

K
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が成り立つ.

K が虚 2次体のとき, すなわちm < 0のとき, dK = b2 − 4ac < 0である. a > 0, b2 ≥ 0より,

c > 0となる. (24)より,

4a2 ≤ 4ac = b2 − dK ≤ a2 − dK .

よって,

3a2 ≤ −dK .

ゆえに,

Na = a ≤
√

−dK

3
= M ′

K

が成り立つ.

［注意 17.1］定理 17.10のM ′
K は, Minkowskiの定数と呼ばれているものと少し異なる. n次代

数体K に対して,

MK =
n!
nn

(
4
π

)r2 √
|dK |

をMinkowskiの定数という. ただし, 2r2は虚の共役体の個数, dK はK の判別式である. K が実

2次体のときは, r2 = 0なので,

MK =
2!
22

√
dK =

√
dK

2

となり, M ′
K と一致する. 一方, K が虚 2次体のときは, r2 = 1なので,

MK =
2!
22

· 4
π
·
√

−dK =
2
√
−dK

π

となる. 2/π = 0.6366 · · · , 1/
√

3 = 0.5773 · · · だから, M ′
K < MK である.

［例 17.1］oK を 2次体K の整数環とする. 単項イデアルの類 PK に属するイデアルでノルムが

最小のものは oK である. oK はK の標準的整数底 1, ωを基底とする原始イデアルである.

［定理 17.11］2次体K のイデアル類群 CK は有限 Abel群である. CK に属するイデアル類の個

数, すなわち |CK |をK の類数といい, hK で表す.

［証明］Abel群であることは定理 17.4においてすでに示した.

ノルムがM ′
K 以下のイデアルからなる IK の部分集合を Ωとする. Ωに属する任意のイデアル

は, 必ずいずれかのイデアル類に属し, 2つ以上の異なるイデアル類には属さない. このことは, Ω

から CK への写像が定まることを意味する. 定理 17.9より, ノルムがM ′
K 以下のイデアルは有限個

しかない. すなわち, Ωは有限集合である. 定理 17.10より, 任意のイデアル類はノルムがM ′
K 以

下のイデアルを代表元として選べる. このことは, Ωから CK への全射が存在することを意味する.

ゆえに, CK もまた有限集合である.
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［定理 17.12］K を 2次体, hK を K の類数とする. このとき, 任意の K の分数イデアル aに対

して, ahK は単項イデアルである.

［証明］aをK の分数イデアルとする. a = (0)のときは明らかなので, a 6= (0)のときを考える.

一般に, 有限群Gの元の位数は, Gの位数の約数である. 定理 17.7, 定理 17.11より, イデアル類

群 C∗
K は有限群であり, hK は C∗

K の位数である. ゆえに, 任意の a ∈ I∗
K に対して,

ahKP∗
K = (aP∗

K)hK = P∗
K .

よって, ahK ∈ P∗
K . すなわち, ahK は単項イデアルである.

［定理 17.13］K を 2次体, oK をK の整数環, hK をK の類数とする. このとき, 次の 3つの条

件は同値である.

(i) hK = 1.

(ii) 任意のK の分数イデアル aは単項イデアル.

(iii) oK は単項イデアル整域.

［証明］hK の定義と定理 17.7より,

hK = 1 ⇐⇒ |CK | = 1 ⇐⇒ IK = PK

⇐⇒ |C∗
K | = 1 ⇐⇒ I∗

K = P∗
K .

したがって, (i), (ii), (iii)は同値である.

以下, 参考までに, (iii)から |C∗
K | = 1を直接的に導く証明を述べる.

a ∈ I∗
K とする. 分数イデアルの定義より, ある c ∈ oK , c 6= 0が存在して, caは oK のイデアル

になる. 仮定より, caは単項イデアルである. ca = (α), α ∈ oK , α 6= 0とおけば, a = (c−1α)とな

る. よって, a ∈ P∗
K . ゆえに, I∗

K ⊆ P∗
K となり, 逆の包含関係は明らかだから, I∗

K = P∗
K . したがっ

て, hK = 1.

2次体K の類数 hK を, 定理 17.10に基づいて計算する手順は以下のとおりである.

1. イデアル a ∈ IK でNa ≤ M ′
K を満たすものをすべて求める.

2. 1.で求めたイデアルが互いに対等かどうかを調べる.

3. 対等でないものの個数が hK である.

ここで, 手順 1.は, p ≤ M ′
K なる素数 pの K での素イデアル分解に現れる素イデアルを求めるこ

とに帰着する. なぜなら, a ∈ IK で 2 ≤ Na ≤ M ′
K を満たすものは, そのような素イデアルの積と

して表されるからである (定理 17.9の証明). そのうち, pがK/Qで惰性して (p)が oK の素イデア

ルである場合は (p) ∈ PK が最初から分かっている. したがって, K/Qで惰性しない素数 pの素イ

デアル分解を考えれば十分である.
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［例 17.2］K = Q(
√

m), m = 5とする. m ≡ 1 (mod 4)より, dK = 5. このとき,

M ′
K =

√
5

2
= 1.1180 · · · < 2.

IK に属するイデアルでノルムが 1以下のものは oK のみであるから, Q(
√

5)の類数は 1である.

［例 17.3］K = Q(
√

m), m = −5とする. m ≡ 3 (mod 4)より, dK = 4 · (−5) = −20. このとき,

M ′
K =

√
20
3

= 2.5819 · · · < 3.

1, ωをK の標準的整数底とすると, ω =
√
−5.

2のK での分解について考える. m ≡ 3 (mod 4)より, 2はK/Qで完全分岐する.

p = Z · 2 + Z(1 + ω)

とおくと, pは素イデアルであり,

(2) = p2, Np = 2

が成り立つ.

もし仮に pが単項イデアルならば,

p = (a + bω), a, b ∈ Z

と表せる. すると,

2 = Np = |NK(a + bω)| = a2 + 5b2.

ところが, この方程式の解になる有理整数の組 (a, b)は存在しない. 実際, そのような (a, b)が存在

すれば, a2 ≡ 2 (mod 5)が成り立たなければならないが, 2はmod5で平方非剰余なので, 不可能で

ある. よって, pは単項イデアルではない. すなわち, p 6∼ oK .

IK に属するイデアルでノルムが 2以下のものは oK , pのみであるから, Q(
√
−5)の類数は 2で

ある.
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