
1 写像

定義 1.1. A, B を集合とする.
Aに属する各々の元に対して, B の元が一意的に対応している規則が与えられたとき, その規則

のことを集合 Aから集合 B への写像あるいは関数という.
つまり, Aの元に B の元を対応づけする規則 f が写像であるとは,

(i) Aの任意の元 xに対して, xに対応する B の元 yが必ず存在する.

(ii) Aの元 x1, x2 に対して, y1, y2 をそれぞれ x1, x2 に対応する B の元とする. このとき,
x1 = x2 ならば y1 = y2である.

という二つの条件を満たすことをいう.
f が Aから B への写像であることを

f : A −→ B

で表す.
Aから B への写像について, Aをその写像の始域, B をその写像の終域といい, それぞれ記号で

dom(f), cod(f)と書く.

注意 1.2. 集合Aから集合Bへの写像を, 直積集合A×Bの部分集合として定義する方法がある.
このように定義すると, 写像に関する議論をより厳密に行うことができる.
詳細については例えば, 松坂和夫著「集合・位相入門」(岩波書店)や, 彌永昌吉・彌永健一共著

「集合と位相 I」(岩波基礎数学講座)を参照せよ.

注意 1.3. 写像の定義では, 終域 Bのすべての元が始域 Aの元に対応することまでは要求してい

ない.

例 1.4. 各々の実数 xに対して x2 を対応させる規則は実数全体 Rから実数全体 Rへの写像であ

るが, x2は負にならないので, この写像の終域に属するすべての元が必ずしも始域に属する元に対
応しているわけではない.

例 1.5. 集合 A, B について,

(i) A = ∅ならば, Aから B への写像はただ一つ存在する.

(ii) A �= ∅, B = ∅ならば, Aから B への写像は存在しない.

ただし, ∅は空集合である.

定義 1.6. f を Aから B への写像とする. f によって x ∈ Aが y ∈ B に対応づけられていると

き, yを f による xの像といい, f(x)で表す.
また, yが f による xの像であることを記号で x �→ yと書く.

例 1.7. 集合 Aの元 xを x自身に対応させる規則は Aから Aへの写像である. これを Aの恒等

写像といい, idA で表す.

例 1.8. A, B を集合とする. Aが B の部分集合であるとき, 各々の x ∈ Aに対して x自身を対

応させる規則は Aから B への写像である. これを包含写像といい, 記号で A ↪→ B と書く.
特に A = B のとき, 包含写像は恒等写像にほかならない.
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例 1.9. Aを集合とし, P(A)を冪集合 (すなわちAの部分集合全体からなる集合族)とする. 各々
の x ∈ Aに対して一元集合 {x} ∈ P(A)を対応させる規則は AからP(A)への写像である.

例 1.10. A1, A2を集合とする. 各々の (x1, x2) ∈ A1 × A2 に対して

proj1(x1, x2) := x1

とおくことにより, 写像
proj1 : A1 × A2 → A1

が定まる.
これを第 1成分への射影といい, proj1で表す.
同様に, 各々の (x1, x2) ∈ A1 × A2に対して

proj2(x1, x2) := x2

とおくことにより, 第 2成分への射影

proj2 : A1 × A2 → A1

も定義できる.

例 1.11. 集合 A, B1, B2と写像

f1 : A −→ B1, f2 : A −→ B2

が与えられているとする. 各々の x ∈ Aに対して

(f1, f2)(x) := (f1(x), f2(x))

とおくことにより, 写像
(f1, f2) : A −→ B1 × B2

が定まる.
特に, A = B1 = B2のとき, 写像 (idA, idA)を Aの対角線写像という.

例 1.12. 集合 A1, A2, B1, B2と写像

f1 : A1 −→ B1, f2 : A2 −→ B2

が与えられているとする. 各々の (x1, x2) ∈ A1 × A2 に対して

(f1 × f2)(x1, x2) = (f1(x1), f2(x2))

によって写像

f1 × f2 : A1 × A2 −→ B1 × B2

が定まる. これを f1と f2との直積写像という.

例 1.13. Aを集合とする. Aを包む集合X が与えられたとき,

χA(x) :=

{
1, x ∈ Aのとき,

0, x ∈ X \ Aのとき

によって写像

χA : X −→ {0, 1}
が定まる. この写像 χA を Aの特性関数という.
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例 1.14. 各 xに対して 1/xを対応させる規則は, Rから Rへの写像ではない. なぜなら, x = 0
において 1/xが定義されないからである.

例 1.15. 各 nに対して n自身を対応させる規則は, Zから Nへの写像ではない. なぜなら, 任意
の n ≥ 1に対して −n �∈ Nだからである.

例 1.16. 各 x ∈ [0, ∞)に対して, x = y2となる y ∈ Rを対応させる規則は, [0, ∞)から Rへの

写像ではない. なぜなら, 例えば x = 1に対して, x = y2を満たす y は 1, −1であり, xに対して

二つの元が対応するからである.

例 1.17. 各 x ∈ [−1, 1]に対して, x = sin yとなる y ∈ Rを対応させる規則は, [−1, 1]から Rへ

の写像ではない. なぜなら, 例えば x = 0に対して, x = sin yを満たす yは nπ (n ∈ Z)であり, x

に対して無数の元が対応するからである.

定義 1.18. 二つの写像 f , gが,

(i) dom(f) = dom(g),

(ii) cod(f) = cod(g),

(ii) すべての x ∈ Aに対して f(x) = g(x)

という三つの条件を満たすとき, f と gとは等しいといい, このことを f = gで表す.

注意 1.19. 二つの写像が等しいかどうかを議論する場合, 終域まで一致することを要求する立場
とそうでない立場と二通りある. このことについての詳細は, 松坂和夫著「集合・位相入門」(岩
波書店 )第 1章 §4 E)を参照せよ.
上の定義では前者の立場をとった.

2 像, 逆像

定義 2.1. Aの部分集合 A′ に対して, B の部分集合

f(A′) := {y ∈ B |ある x ∈ A′ が存在して, y = f(x)となる }

を f による A′ の像という.
特に, f による始域 Aの像 f(A)を, f の像と呼ぶ.

例 2.2. Aを集合とする. 対角線写像 (idA, idA) : A → A × Aの像

∆A := (idA, idA)(A) = {(x, x) | x ∈ A}

を A × Aの対角線集合という.

定理 2.3. A, Bを集合とし, f : A → Bを写像とする. Aの部分集合 A1, A2に対して, 次の等式
が成り立つ.

(i) A1 ⊆ A2 =⇒ f(A1) ⊆ f(A2),

(ii) f(A1 ∪ A2) = f(A1) ∪ f(A2),
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(iii) f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2),

(iv) f(A1) \ f(A2) ⊆ f(A1 \ A2).

証明. (i)を示すためには, A1 ⊆ A2を仮定して, y ∈ f(A1) =⇒ y ∈ f(A2)を示せばよい.
y ∈ f(A1)とすると, ある x ∈ A1が存在して y = f(x)となる. A1 ⊆ A2という仮定から, x ∈ A2

である. よって y ∈ f(A2)がいえる.
(ii)～(iv)については, 例えば, 内田伏一著「集合と位相」(裳華房 ) 18ページ定理 5.2を参照.

例 2.4. f(x) = x2 によって写像 f : R → R を定める. R の部分集合 A1, A2 として, 閉区間
A1 = [−2, 1], A2 = [−1, 3]を考える. このとき,

f(A1 ∪ A2) = [0, 9], f(A1) ∪ f(A2) = [0, 9],

f(A1 ∩ A2) = [0, 1], f(A1) ∩ f(A2) = [0, 4],

f(A1) \ f(A2) = ∅, f(A1 \ A2) = (1, 4]

となる.

定義 2.5. A, B を集合, f : A → B を写像とする. B の部分集合 B′に対して, Aの部分集合

f−1(B′) = {x ∈ A | f(x) ∈ B′}

を f による B′ の逆像という.

例 2.6. A, B を集合, f : A → B, g : A → Bを写像とする. B の対角線集合∆B の (f, g) : A →
B × B による逆像

(f, g)−1(∆B) = {x ∈ A | f(x) = g(x)}
を f , gの差核という. (例 1.11, 例 2.2を参照)

定理 2.7. A, B を集合とし, f : A → B を写像とする. B の部分集合 B1, B2 に対して, 次の等
式が成り立つ.

(i) B1 ⊆ B2 =⇒ f−1(B1) ⊆ f−1(B2),

(ii) f−1(B1 ∪ B2) = f−1(B1) ∪ f−1(B2),

(iii) f−1(B1 ∩ B2) = f−1(B1) ∩ f−1(B2),

(iv) f−1(B1) \ f−1(B2) = f−1(B1 \ B2),

(v) A1 ⊆ f−1(f(A1)),

(vi) f(f−1(B1)) ⊆ B1.

証明. (i)は明らかである. 実際, B1 ⊆ B2 を仮定すれば,

x ∈ f−1(B1) =⇒ f(x) ∈ B1 =⇒ f(x) ∈ B2 =⇒ x ∈ f−1(B2)

となる.
(ii)～(vi)については, 例えば, 内田伏一著「集合と位相」(裳華房 ) 18ページ定理 5.2を参照.
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例 2.8. f(x) = x2 によって写像 f : R → R を定める. R の部分集合 A1, B1 として, 閉区間
A1 = [−3, 1], B1 = [−1, 2]を考える. このとき,

f−1(f(A1)) = [−3, 3],

f(f−1(B1)) = [0, 2]

となる.

定義 2.9. f : A → B, f ′ : A′ → B を写像とし, A′ ⊆ Aとする. A′ のすべての元 xに対して

f(x) = f ′(x)が成り立っているとき, f ′を f の A′への制限といい, 逆に, f を f ′の Aへの延長と

いう.
写像 f : A → B と Aの部分集合 A′ が与えられたとき, f の A′ への制限はただ一つ定まる. そ

れを f | A′と表す.

注意 2.10. 写像 f ′ : A′ → B と A′ ⊆ Aなる集合 Aが与えられたとき, f の Aへの延長は, 一般
には多数存在する.

定義 2.11. A, B, Cを集合とし, f : A → B, g : B → Cを写像とする. このとき, h(x) = g(f(x))
によって定まる写像 h : A → C を f と gとの合成写像といい, g ◦ f で表す.

注意 2.12. 二つの写像 f と gとの合成写像は, cod(f) = dom(g)のときに限り, 定義する.

定理 2.13. A, B, C, D を集合とし, f : A → B, g : B → C, h : C → D を写像とする. この
とき,

h ◦ (g ◦ f) = (h ◦ g) ◦ f

が成り立つ.

証明. h ◦ (g ◦ f)と (h ◦ g) ◦ f とが, AからDへの写像として等しいことを示す.
x ∈ Aに対して,

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) = ((h ◦ g) ◦ f)(x).

したがって両者は写像として等しい.

定理 2.14. A, B を集合とし, f : A → B を写像とする. このとき

(i) f ◦ idA = f ,

(ii) idB ◦ f = f

が成り立つ.

証明. 三つの写像 f , f ◦ idA, idB ◦ f の始域はすべて等しく Aである. さらに,

(i) 任意の x ∈ Aに対して, f ◦ idA(x) = f(idA(x)) = f(x). よって (i)が成り立つ.

(ii) 任意の x ∈ Aに対して, idB ◦ f(x) = idB(f(x)) = f(x). よって (ii)が成り立つ.
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3 全写像, 単写像

集合 Aから集合 B への写像 f が全写像であることを, f の像が f の終域に一致することと定義

します.
すなわち, 集合 Aから集合 B への写像 f が全写像であるとは, f(A) = B が成り立つことです.

注意 3.1. 「全写像」の代わりに, 「全射」という言葉が一般には用いられる.

注意 3.2. f が全写像ならば, 定理 2.7 (vi)において等号が成立する.

注意 3.3. 写像 f : A → B が与えられたとき, 各 x ∈ Aに対して f ′(x) = f(x)とおくことによ
り, 全写像 f ′ : A → f(A)が定まる.

注意 3.4. 写像 f : A → B, g : B → C がともに全写像ならば, それらの合成写像 g ◦ f : A → C

もまた全写像である.

例 3.5. A1, A2 を集合とする. 射影

proj1 : A1 × A2 → A1, proj2 : A1 × A2 → A2

は全写像である. (例 1.10参照)

定理 3.6. f が全写像であるということは, すべての y ∈ B に対して, ある x ∈ Aが存在して

y = f(x)となることと同値である.

注意 3.7. 上に述べた同値条件は, 結局のところ f(A) ⊇ B という条件を書き換えただけである.
これでピンときた読者は, 以下の証明を読む必要ははい.

証明. 「すべての y ∈ Bに対して, ある x ∈ Aが存在して y = f(x)となる」という条件を (P)と
おく.
示すべきことは, f が全写像ならば条件 (P)が成り立つことと, 条件 (P)が成り立つならば f が

全写像であることである.
前者を示すためには, f(A) = B が成り立つという仮定の下で, すべての y ∈ B に対して, ある

x ∈ Aが存在して y = f(x)となることを示せばよい. f(A) = B という条件のうち, 証明に必要な
情報は f(A) ⊇ B だけである. ところが, f(A) ⊇ B であれば, 条件 (P)が成り立つ.
後者を示すためには,条件 (P)を仮定したとき, f(A) = Bが成り立つことを示せばよい. f(A) ⊆ B

が成り立つことは条件 (P)に無関係に示すことができる. 実際, f(A)の定義から明らかである. 一
方, 条件 (P)が成り立てば, f(A) ⊇ Bが成り立つ. したがって f(A) ⊆ Bかつ f(A) ⊇ B であるこ

とより, f(A) = B がいえる.

注意 3.8. 写像 f : A → Bについて, 「任意の y ∈ Bに対して, 一元集合 {y}の逆像 f−1({y})が
空でない」という定理も, f が全写像であるための必要十分条件である.

定理 3.9. 写像 f : A → B について, 次の二つの条件は同値である.

(i) 写像 f は全写像である.

(ii) 任意の集合 C と任意の写像 g : B → C, h : B → C に対して,

g ◦ f = h ◦ f =⇒ g = h

が成り立つ.
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証明. (i)⇒(ii) g ◦ f = h ◦ f と仮定する. このとき, 任意の x ∈ Aに対して

g ◦ f(x) = h ◦ f(x).

一方, f は全写像だから, 任意の y ∈ B に対して, ある x ∈ Aが存在して, y = f(x)と書ける. ゆ
えに

g(y) = g ◦ f(x) = h ◦ f(x) = h(y).

ゆえに g = hとなる.
(ii)⇒(i) C = {z1, z2}, z1 �= z2とし, 写像 g : B → C, h : B → C を各々の y ∈ B に対して,

g(y) = z1, h(y) =

{
z1, y ∈ f(A)のとき,

z2, y /∈ f(A)のとき

によって定める.
いま, f が全射ではないと仮定すると, f(A) �= B であるから, g, hは異なる写像になる.
一方, 任意の x ∈ Aに対して

g(f(x)) = z1 = h(f(x)),

すなわち g ◦ f = h ◦ f . (ii)から g = hでなければならない. これは矛盾である.
したがって f は全写像である.

定義 3.10. 写像 f : A → B が単写像であるとは, 任意の x1, x2 ∈ Aに対して, f(x1) = f(x2)な
らば常に x1 = x2 となることをいう.
別の言い方をすれば, f が単写像であることは, 各々の y ∈ B に対して, y = f(x)となる x ∈ A

は存在しないか, もしくは, 存在するならばそのような Aの元は xしかないことを意味する.

注意 3.11. 「単写像」の代わりに, 「単射」という言葉が一般には用いられる.

注意 3.12. f が単写像ならば, 定理 2.3 (iii), (iv), 定理 2.7 (v)において等号が成立する.

注意 3.13. 写像 f : A → B, g : B → C がともに単写像ならば, それらの合成写像 g ◦ f : A → C

もまた単写像である.

例 3.14. 集合 A, B について,

(i) A = ∅ならば, Aから B への写像はただ一つ存在する. その写像は単写像である. その写
像がさらに全写像であるための必要十分条件は B = ∅となることである.

(ii) A �= ∅, B = ∅ならば, Aから B への写像は存在しない.

(例 1.5参照)

例 3.15. 包含写像は単写像である. (例 1.8参照)

例 3.16. Aを集合, P(A)を冪集合とする. 各々の x ∈ Aに対して一元集合 {x} ∈ P(A)を対応
させる写像は AからP(A)への単写像である. (例 1.9参照)

例 3.17. 任意の集合 Aに対して, Aの対角線写像 (idA, idA)は単写像である. (例 1.11参照)

定理 3.18. A, B を集合とし, f : A → B, g : B → Aを写像とする. このとき, g ◦ f = idA なら

ば, gは全写像かつ f は単写像である.
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証明. g が全写像であること: x ∈ Aに対して, y = f(x)とおくと, g ◦ f = idA という仮定から,
g(y) = xとなる.

f が単写像であること: x1, x2 ∈ Aに対して, f(x1) = f(x2)と仮定すると, g ◦ f(x1) = g ◦ f(x2)
である. したがって仮定 g ◦ f = idA より, x1 = x2 を得る.

例 3.19. A = {1, 2}, B = {1, 2, 3}とし, 写像 f : A → B, g : B → Aをそれぞれ

f(1) = 1, f(2) = 2; g(1) = 1, g(2) = 2, g(3) = 2

によって定める. このとき g ◦ f = idA であるが, f は全写像ではなく, gは単写像ではない.

定理 3.20. 写像 f : A → B について, 次の二つの条件は同値である.

(i) 写像 f は単写像である.

(ii) 任意の集合 C と任意の写像 g : C → A, h : C → Aに対して,

f ◦ g = f ◦ h =⇒ g = h

が成り立つ.

証明. (i)⇒(ii) f ◦ g = f ◦ hと仮定する. このとき, 任意の x ∈ C に対して

f ◦ g(x) = f ◦ h(x),

すなわち

f(g(x)) = f(h(x)).

f は単写像だから, 任意の x ∈ C に対して

g(x) = h(x).

ゆえに g = hとなる.
(ii)⇒(i) x, y ∈ Aとする. C = {z}とし, 写像 g : C → A, h : C → Aを

g(z) = x, h(z) = y

によって定める.
f(x) = f(y)と仮定すると,

f ◦ g(z) = f ◦ h(z).

よって f ◦ g = f ◦ h. ゆえに (ii)より g = hとなり, x = yが得られる.
したがって f は単写像である.

定義 3.21. 写像 f が全写像かつ単写像であるとき, f は全単写像であるという.
すなわち, 写像 f : A → B が全単写像であるとは, 任意の y ∈ B に対して, x ∈ Aがただ一つ存

在して y = f(x)となることを意味する.

注意 3.22. 「全単写像」の代わりに, 「全単射」という言葉が一般には用いられる.

注意 3.23. 写像 f : A → B, g : B → Cがともに全単写像ならば, それらの合成写像 g◦f : A → C

もまた全単写像である.
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例 3.24. A, B をともに空でない集合とする.
x ∈ A, y ∈ B に対して, A1 := A \ {x}, B1 := B \ {y}とおく.
このとき, もし全単写像 f : A → B が存在すれば, f から全単写像 f1 : A1 → B1 を次のように

して作ることができる.
f は全単写像なので, y = f(x1)となる x1 ∈ Aがただ一つ存在する. 各々の z ∈ A1 に対して

f1(z) =

{
f(z), z �= x1 のとき,

f(x), z = x1 のとき

とおくことにより, 全単写像 f1 : A1 → B1が定まる.

定義 3.25. A, Bを集合とし, 写像 f : A → Bが与えられているとする. このとき, 写像 g : B → A

が f の逆写像であるとは, 任意の x ∈ A, y ∈ B について

f(x) = y ⇐⇒ x = g(y)

が成り立つときにいう. f の逆写像 gを f−1で表す.

注意 3.26. 写像 f , gについて, gが f の逆写像ならば, 逆に, f は gの逆写像である.

例 3.27. 集合 Aの恒等写像 idA の逆写像は idA 自身である.

定理 3.28. A, B を集合とし, f : A → B, g : B → Aを写像とする. 次の二つの条件は同値で
ある.

(i) gは f の逆写像である.

(ii) g ◦ f = idA, f ◦ g = idB.

証明. (i)⇒(ii) 任意の x ∈ Aに対して, y = f(x)とおけば, x = g(y)である. よって任意の
x ∈ Aに対して

g ◦ f(x) = g(y) = x.

ゆえに g ◦ f = idA.
逆に, f は gの逆写像なので, 上と同様にして f ◦ g = idB も示せる. (ii)⇒(i) x ∈ A, y ∈ B と

し, f(x) = yと仮定する. g ◦ f = idA より,

x = g ◦ f(x) = g(y).

ゆえに任意の x ∈ A, y ∈ B について

f(x) = y =⇒ x = g(y).

逆も同様にして示すことができる.

定理 3.29. 写像 f : A → B に対して, 逆写像 g : A → B は, もし存在するならば一意的である.

証明. g, g′ を f の逆写像とする. y ∈ B とし, x := g(y)とおく. 逆写像の定義より f(x) = y

となる. ところが g′ もまた f の逆写像であるから, f(x) = y ならば x = g′(y)である. ゆえに
g(y) = g′(y).
したがって任意の y ∈ B に対して g(y) = g′(y)が成り立つ. すなわち g = g′.
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注意 3.30. 合成写像の性質を用いて, 次のように証明することもできる.
g, g′を f の逆写像とする. f ◦ g′ = idB, g ◦ f = idA より,

g = g ◦ idB = g ◦ (f ◦ g′) = (g ◦ f) ◦ g′ = idA ◦ g′ = g′.

定理 3.31. 写像 f : A → B について, 次の二つの条件は同値である.

(i) f は全単写像である.

(ii) f の逆写像 g : B → Aが存在する.

証明. (i)⇒(ii) f は全写像なので, 任意の y ∈ B に対して, ある x ∈ Aが存在して y = f(x)と
なる.
そこで各 y ∈ B に対して g(y) = xと定めると, f が単写像であることから gは写像になる.
しかも gの定め方から, g ◦ f = idA かつ f ◦ g = idB となることは明らかである.
したがってこの写像 gが f の逆写像である (定理 3.28).
(ii)⇒(i) 定理 3.28と定理 3.18より明らか.

注意 3.32. A, Bを集合とし, f : A → B, g :→ Aを写像とする. このとき, 次のことが成り立つ.

(i) g ◦ f = idA かつ gが単写像ならば, gは全単写像となり, f = g−1が成り立つ.

(ii) g ◦ f = idA かつ f が全写像ならば, f は全単写像となり, g = f−1が成り立つ.

定理 3.33. 二つの単写像 f1 : A1 → B, f2 : A2 → B について,

(i) ある写像 g1 : A1 → A2が存在して, f1 = f2 ◦ g1.

(ii) ある写像 g2 : A2 → A1が存在して, f2 = f1 ◦ g2.

であるとする. このとき g1, g2は全単写像になり, g1 = g−1
2 が成り立つ.

証明. f1 = f2 ◦ g1に f2 = f1 ◦ g2を代入すると,

f1 = (f1 ◦ g2) ◦ g1 = f1 ◦ (g2 ◦ g1).

ゆえに, 任意の x ∈ Aに対して

f1(x) = f1(g1 ◦ g2(x)).

f1は単写像だから, 任意の x ∈ Aに対して

x = g2 ◦ g1(x).

すなわち

g2 ◦ g1 = idA1 .

逆に, f2 = f1 ◦ g2に f1 = f2 ◦ g1を代入すると, 同様にして

g1 ◦ g2 = idA2

が得られる. したがって g1, g2は全単写像になり, g1 = g−1
2 となる.

定理 3.34. 任意の単写像 f : A → B に対して, ある写像 r : B → Aが存在して r ◦ f = idA と

なる.
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証明. f の終域を f(A)に変えた写像 f1 : A → f(A)は全単写像である.
x0 ∈ Aを一つ固定し, 写像 r : B → Aを, 各 y ∈ B に対して

r(y) :=

{
f−1
1 (y), y ∈ f(A)のとき,

x0, y �∈ f(A)のとき

によって定義すれば, r ◦ f = idA が成り立つ.

定理 3.35. A, Bを集合とする. Aから Bへの単写像が存在すれば, Bから Aへの全写像が存在

する.

証明. 単写像 f : A → B が存在すれば, ある写像 r : B → Aが存在して, r ◦ f = idA となる. こ
のとき rは全写像である.

4 集合の元の系

定義 4.1. X, Λを集合とし，Λは空でないとする．ΛからX への写像

x : Λ −→ X, λ �−→ x(λ)

を集合X の元の系という．

このとき，写像 xによる Λの元 λの像 x(λ)を

xλ

と書き，写像 xを

(xλ | λ ∈ Λ)

で表す．

Λの元 λを添数といい，集合 Λを (xλ | λ ∈ Λ)の添数集合という．
とくに Λを強調するときには「Λを添数集合とする，集合X の元の系」という言い方をする．

定義 4.2. 正の整数全体の集合 Z+ を添数集合とする，集合X の元の系

(xn | n ∈ Z+)

をX の元の列あるいは点列という．X の元の列は

(x1, x2, . . . , xn, . . .)

あるいは

x1, x2, . . . , xn, . . .

と表されることもある．

Z+ の各々の元 nに対して，(xn | n ∈ Z+)による nの像 xn を (xn | n ∈ Z+)の第 n項という．

また，(xn | n ∈ Z+)による Z+ の像

x(Z+) = {y ∈ X |ある n ∈ Z+ が存在して y = xn}

を

{xn | n ∈ Z+}
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で表す．{xn | n ∈ Z+}は xの部分集合である．

さらに，正の整数 nに対して，{1, 2, . . ., n}を添数集合とする，集合 X の元の系を X の元の

有限列といい，これを

(xi | i = 1, 2, . . . , n)

あるいは

(x1, x2, . . . , xn)

あるいは

x1, x2, . . . , xn

で表す．

例 4.3. X を集合とし，m, nを正の整数とする．直積

Λ := {1, 2, . . . , m} × {1, 2, . . . , n}

を添数集合とする，X の元の系 (xλ | λ ∈ Λ)をm行 n列の行列という．

Λの各元 (i, j)に対して，a(i,j) を第 (i, j)成分といい

aij

と書く．また，行列 (xλ | λ ∈ Λ)を

(aij | 1 ≤ i ≤ m, 1 ≤ j ≤ n)

あるいは

(aij)

あるいは 


a11 · · · a1n

...
. . .

...
am1 · · · amn




で表す．

例 4.4. 集合X として複素数全体の集合 Cの部分集合 (例えば, 自然数全体の集合 N，整数の全

体の集合 Z，有理数全体の集合Q，実数全体の集合 R，そして C自身など)をとったとき，集合X

の元の列を数列という．

例 4.5. 整数の列，すなわち整数全体の集合 Zの元の列 (xn | n ∈ Z+)の第 n項を

xn = (−1)n

で与えるとき

{xn | n ∈ N} = {1,−1}
である．
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5 集合系

定義 5.1. Λを空でない集合とし，Aを集合族とする．Λから Aへの写像

A : Λ −→ A, λ �−→ A(λ)

を集合系といい

(Aλ | λ ∈ Λ)

で表す．すなわち (Aλ | λ ∈ Λ) := Aである．また写像 Aによる Λの元 λの像 A(λ)を

Aλ

と書く．このとき λを Aλ の添数といい，集合 Λを (Aλ | λ ∈ Λ)の添数集合という．

注意 5.2. 集合族とは，どの元も集合であるような集合のことである．したがって集合系とは，集

合族の元の系のことである．

注意 5.3. 集合系を与えることは，有限個の集合を与えることの一般化になっている．

実際, 有限集合
Λ = {1, 2, . . . , n}

を添数集合とする集合系 A = (Aλ | λ ∈ Λ)が与えられれば，Λの各元に対応する Aの像

A1, A2, . . . , An

が定まる．

つまり「有限個の集合が与えられた」ということは，「ある有限集合から，ある集合族への写像

が与えられた」ということ，すなわち「有限集合を添数集合とする集合系が与えられた」というこ

とであると考えられる．

定義 5.4. 集合系

(Aλ | λ ∈ Λ) : Λ −→ A, λ �−→ Aλ

が与えられたとき，Aの元の中で少なくとも 1つのAλに属するもの全体の集合を集合系 (Aλ | λ ∈ Λ)
の和集合といい ⋃

λ∈Λ

Aλ

で表す．式で定義を書けば⋃
λ∈Λ

Aλ := {x ∈ A |ある λ ∈ Λが存在して, x ∈ Aλ}

となる．

また，Aの元の中で任意のAλに属するもの全体の集合を集合系 (Aλ | λ ∈ Λ)の共通部分といい⋂
λ∈Λ

Aλ

で表す．式で定義を書けば⋂
λ∈Λ

Aλ := {x ∈ A |任意の λ ∈ Λに対して, x ∈ Aλ}
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となる．

とくに，集合系 (An | n ∈ Z+)の和集合，共通部分をそれぞれ

∞⋃
n=1

An,

∞⋂
n=1

An

で表す．ただし Z+ は正の整数全体の集合である.
また，添数集合を I = {1, 2, . . ., n}としたとき，集合系 (Ai | i ∈ I)の和集合，共通部分をそれ

ぞれ
n⋃

i=1

An,

n⋂
i=1

An

で表す．

注意 5.5. 明らかに

n⋃
i=1

An = A1 ∪ A2 ∪ · · · ∪ An

n⋂
i=1

An = A1 ∩ A2 ∩ · · · ∩ An

が成り立つ．

定義 5.6. 集合族 Aに対して, Λ := Aとおき, 各々の λ ∈ Λに対してAλ := λとおくことにより,
集合系 (Aλ | λ ∈ Λ)が定まる. この集合系を

(A | A ∈ A)

と書く.
さらに, (A | A ∈ A)の和集合および共通部分をそれぞれ⋃

A∈A

A,
⋂

A∈A

A

あるいは ⋃
A,

⋂
A

と書く.

定理 5.7. (Aλ | λ ∈ Λ)を集合系とし, B を集合とする.

(i) (
⋃

λ∈Λ Aλ) ∩ B =
⋃

λ∈Λ(Aλ ∩ B),

(ii) (
⋂

λ∈Λ Aλ) ∪ B =
⋂

λ∈Λ(Aλ ∪ B).

証明. 内田伏一著「集合と位相」(裳華房)問 5.2参照.

定義 5.8. X を集合とする. 集合系 (Aλ | λ ∈ Λ) の各集合 Aλ が X の部分集合であるとき,
(Aλ | λ ∈ Λ)をX の部分集合系という.

定理 5.9. X を集合とし, (Aλ | λ ∈ Λ)をX の部分集合系とする.

(i) X \ (
⋃

λ∈Λ Aλ) =
⋂

λ∈Λ(X \ Aλ),
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(ii) X \ (
⋂

λ∈Λ Aλ) =
⋃

λ∈Λ(X \ Aλ).

証明. 内田伏一著「集合と位相」(裳華房)問 5.3参照.

定理 5.10. X, Y を集合, f : X → Y を写像, (Aλ | λ ∈ Λ)をX の部分集合系とする.

(i) f(
⋃

λ∈Λ Aλ) =
⋃

λ∈Λ f(Aλ),

(ii) f(
⋂

λ∈Λ Aλ) ⊆ ⋂
λ∈Λ f(Aλ).

証明. 内田伏一著「集合と位相」(裳華房)問 5.4参照.

定理 5.11. X, Y を集合, f : X → Y を写像, (Bλ | λ ∈ Λ)を Y の部分集合系とする.

(i) f−1(
⋃

λ∈Λ Bλ) =
⋃

λ∈Λ f−1(Bλ),

(ii) f−1(
⋂

λ∈Λ Bλ) =
⋂

λ∈Λ f−1(Bλ).

証明. 内田伏一著「集合と位相」(裳華房)問 5.4参照.

6 集合系の直積

定義 6.1. (Aλ | λ ∈ Λ)を, Λを添数集合とする集合系とし，
⋃

λ∈Λ Aλ を (Aλ | λ ∈ Λ)の和集合
とする．Λから

⋃
λ∈Λ Aλ への写像

a : Λ −→
⋃
λ∈Λ

Aλ, λ �−→ a(λ)

のうちで，Λのどの元 λに対しても

a(λ) ∈ Aλ

が成り立つようなもの全体の集合を集合系 (Aλ | λ ∈ Λ)の直積といい

∏
λ∈Λ

Aλ

で表す．

注意 6.2. 定義からわかるように，集合系 (Aλ | λ ∈ Λ)の直積
∏

λ∈Λ Aλ の元 aは (Aλ | λ ∈ Λ)
の和集合

⋃
λ∈Λ Aλ の元の系である．

そこで再び aによる λの像 a(λ)を
aλ

と書き，直積の元 aを

(aλ | λ ∈ Λ)

と書くことにする．

とくに Λ = Nのとき，直積は
∞∏

n=1

An

と表される．
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注意 6.3. 添数集合 Λとして
Λ = {1, 2}

をとれば，直積 ∏
λ∈{1,2}

Aλ

は
⋃

λ∈{1,2} Aλ の元の有限列

a = (aλ | λ ∈ {1, 2}) = (a1, a2)

のうちで

a1 ∈ A1, a2 ∈ A2

をみたすもの全体の集合である．直積の元は写像であり，a1, a2 はその写像による像なので

(a1, a2) = (b1, b2) =⇒ a1 = b1, a2 = b2

を満たす．よって，この (a1, a2)は, 直積集合 A1 × A2 の元 (a1, a2)と同一視することができる．
すなわち, ∏

λ∈{1,2}
Aλ = A1 × A2

と考えることができる．

注意 6.4. 添数集合 Λが
Λ = {1, 2, . . . n}

のとき，直積 ∏
λ∈{1,2,...n}

Aλ

は
⋃

λ∈{1,2,...n} Aλ の元の有限列

a = (aλ | λ ∈ {1, 2, . . . n}) = (a1, a2, . . . , an)

のうちで

a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An

をみたすもの全体の集合である．このとき

(a1, a2, . . . , an) = (b1, b2, . . . , bn) =⇒ a1 = b1, . . . , an = bn

が成り立つ．よって (a1, a2, . . . , an)は A1 × · · · × An の元とみなすことができて∏
λ∈{1,2,...n}

Aλ = A1 × A2 × · · · × An

と考えることができる．

定理 6.5. (Aλ | λ ∈ Λ)を集合系とする. 直積
∏

λ∈Λ Aλ が空でなければ, 任意の λ ∈ Λに対して
Aλ は空でない.
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証明.
∏

λ∈Λ Aλ が空でなければ, 写像

a : Λ −→
⋃
λ∈Λ

Aλ

が存在して, 任意の λ ∈ Λに対して a(λ) ∈ Aλ が成り立つ.
よって任意の λ ∈ Λに対して Aλ �= ∅.

定義 6.6. (Aλ | λ ∈ Λ)を集合系とし, 直積 A :=
∏

λ∈Λ Aλは空集合でないとする.
λ ∈ Λを一つ固定したとき, Aの元 a := (aλ | λ ∈ Λ)に対して, aλ を aの λ-成分あるいは λ-座

標と呼ぶ.

定義 6.7. (Aλ | λ ∈ Λ)を集合系とし, 直積 A :=
∏

λ∈Λ Aλは空集合でないとする.
λ ∈ Λを一つ固定したとき, 各々の元 (aλ | λ ∈ Λ) ∈ Aに対して

projλ(aλ | λ ∈ Λ) := aλ

とおくことにより, 写像
projλ : A −→ Aλ

が定まる. この projλ を Aから Aλへの射影という.

定理 6.8. (Aλ | λ ∈ Λ)を集合系とし, 直積 A :=
∏

λ∈Λ Aλは空集合でないとする.
任意の λ ∈ Λに対して, 射影 projλ : A → Aλ は全写像である.

証明. λ ∈ Λを一つ固定する. x ∈ Aλ とする.
A �= ∅と仮定しているので, (aµ | µ ∈ Λ) ∈ Aが存在する. このとき, b := (bµ | µ ∈ Λ) ∈ Aを

bµ :=

{
x, µ = λのとき,

aµ, µ ∈ Λ \ {λ}のとき
によって与えると, projλ(b) = xとなる.
したがって射影 projλ は全射である.

7 選択公理

公理 1 (選択公理). (Aλ | λ ∈ Λ)を集合系とする. 任意の λ ∈ Λに対してAλが空でなければ，直

積
∏

λ∈Λ Aλ も空ではない．

注意 7.1. 添数集合 Λが有限集合ならば, 選択公理において主張されていることは明らかに成り
立つ.

定義 7.2.
∏

λ∈Λ Aλ の元を集合系 (Aλ | λ ∈ Λ)の選択関数という．

例 7.3. Aを空でない集合とする. P(A)をAの部分集合全体からなる集合族とし, Aを空集合を

除く Aの部分集合全体からなる集合族とする：

A := P(A) \ {φ}.

I を A上の恒等写像とする．この I は Aを添数集合とする集合系である：

I = (IX | X ∈ A), ただし IX := X.
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各 IX は空でないから，選択公理によって集合系 (IX | X ∈ A)の選択関数 f が存在する．このと

き Aの各元X に対して f(X) ∈ X である．

このような f を集合 A上の選択関数という．

定理 7.4. すべての無限集合は，可算部分集合をもつ．

証明. 集合 Aを無限集合とし，A上の選択関数を f とする．

まず，a1 := f(A)とおく．それから n ≥ 2に対して

an := f(A \ {a1, . . . , an})

とおく．このとき i �= j ならば ai �= aj である．実際，i > jとすれば

ai = f(A \ {a1, . . . , aj}) ∈ A \ {a1, . . . , aj}

であり，一方

aj /∈ A \ {a1, . . . , ai}
であるから，ai �= aj．

したがって集合 {an | n ∈ Z+}は Aの可算部分集合である．

定理 7.5. 任意の全写像 f : A → B に対して, ある写像 s : B → Aが存在して, f ◦ s = idB が成

り立つ.

証明. fは全写像だから,各々の y ∈ Bに対して, {y}の逆像 f−1({y})は空でない. Ay := f−1({y})
とおけば, (Ay | y ∈ B)は空でない集合からなる集合系である. 選択公理より, 写像 s : B → Aで,
任意の y ∈ B に対して s(y) ∈ Ay となるものが存在する. sの定め方から, f ◦ s = idB であること

は明らかである.

定理 7.6. A, B を集合とする. Aから B への全写像が存在すれば, B から Aへの単写像が存在

する.

証明. 全写像 f : A → B が存在すれば, ある写像 s : B → Aが存在して, f ◦ s = idB となる. こ
のとき sは単写像である.

8 極限集合

定義 8.1. 正の整数全体からなる集合 Z+ を添数集合とする集合系 (An | n ∈ Z+)に対して,

lim sup
n→∞

An =
∞⋂

k=1

∞⋃
n=k

An

を (An | n ∈ Z+)の上極限集合という. また,

lim inf
n→∞ An =

∞⋃
k=1

∞⋂
n=k

An

を (An | n ∈ Z+)の下極限集合という.

注意 8.2. 上極限集合とは, 無限個のAnに属する元全体の集合である. また, 下極限集合とは, 有
限個を除くすべての An に属する元全体の集合である.
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例 8.3. An := {x ∈ R | x ≤ n}によって集合系 (An | n ∈ Z+)を定めれば,

lim sup
n→∞

An = lim inf
n→∞ An = R.

また, Bn := {x ∈ R | x ≥ −n}によって集合系 (Bn | n ∈ Z+)を定めても,

lim sup
n→∞

Bn = lim inf
n→∞ Bn = R.

例 8.4. 各 k ∈ Z+ に対して

A2k := {x ∈ R | x ≤ 0},
A2k+1 := {x ∈ R | x ≥ 0}

とおく. このとき
lim sup

n→∞
An = R, lim inf

n→∞ An = {0}.

定理 8.5. 集合系 (An | n ∈ Z+), (Bn | n ∈ Z+)について, 任意の n ∈ Z+ に対して An, Bn な

らば

(i) lim supn→∞ An ⊆ lim supn→∞ Bn,

(ii) lim infn→∞ An ⊆ lim infn→∞ Bn.

証明. lim sup, lim inf の定義から明らかである.

定理 8.6. 任意の集合系 (An | n ∈ Z+)に対して,

lim inf
n→∞ An ⊆ lim sup

n→∞
An.

証明. k, l ∈ Z+ とする. l ≤ kならば

∞⋂
n=l

An ⊆
∞⋂

n=k

An ⊆
∞⋃

n=k

An.

l > kならば
∞⋂

n=l

An ⊆
∞⋃

n=l

An ⊆
∞⋃

n=k

An.

ゆえに任意の k, l ∈ Z+ に対して
∞⋂

n=l

An ⊆
∞⋃

n=k

An.

よって任意の k ∈ Z+ に対して
∞⋃

l=1

∞⋂
n=l

An ⊆
∞⋃

n=k

An.

したがって
∞⋃

l=1

∞⋂
n=l

An ⊆
∞⋂

k=1

∞⋃
n=k

An.

定理 8.7. 任意の集合系 (An | n ∈ Z+), (Bm | m ∈ Z+)に対して,
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(i) lim supn→∞(An ∪ Bn) = lim supn→∞ An ∪ lim supn→∞ Bn,

(ii) lim infn→∞(An ∩ Bn) = lim infn→∞ An ∩ lim infn→∞ Bn.

証明. (i) x ∈ lim supn→∞(An ∪ Bn)とする. もし仮に, x ∈ Al となる l ∈ Z+ と, x ∈ Bm と

なる m ∈ Z+ とが共に有限個しかないとすると, ある k ∈ Z+ が存在して, n > k なるすべての

n ∈ Z+ に対して x �∈ An ∪ Bn となる. よって, 任意の l ∈ Z+ に対して,

l > k =⇒ x �∈
∞⋃

n=l

(An ∪ Bn).

これより

x �∈
∞⋂
l=1

∞⋃
n=l

(An ∪ Bn) = lim sup
n→∞

(An ∪ Bn)

が得られ, x ∈ lim supn→∞(An ∪ Bn)に矛盾する.
したがって, x ∈ An となる n ∈ Z+ と, x ∈ Bm となるm ∈ Z+ の少なくとも一方は無限個ある.

このことは x ∈ lim supn→∞ An または x ∈ lim supm→∞ Bm を意味する. したがって

lim sup
n→∞

(An ∪ Bn) ⊆ lim sup
n→∞

An ∪ lim sup
m→∞

Bn.

逆の包含関係は明らかである.
(ii) x ∈ lim infn→∞ An∩ lim infm→∞ Bmとする. このとき,有限個の n ∈ Z+を除いて x ∈ An

であり, かつ有限個の m ∈ Z+ を除いて x ∈ Bm である. したがって, ある k ∈ Z+ が存在して,
l > kなる任意の l ∈ Z+ に対して x ∈ Al かつ x ∈ Bl となる. すなわち, 高々有限個を除くすべて
の l ∈ Z+ に対して x ∈ Al ∩ Bl となる. このことは x ∈ lim inf l→∞(Al ∩ Bl)を示している. した
がって

lim inf
n→∞ (An ∩ Bn) ⊇ lim inf

n→∞ An ∩ lim inf
n→∞ Bn.

逆の包含関係は明らかである.

定理 8.8. B, C を集合とし, 各 k ∈ Z+ に対して A2k = B, A2k−1 = C とおく.

(i) lim supn→∞ An = B ∪ C,

(ii) lim infn→∞ An = B ∩ C.

証明. (i) 任意の l ∈ Z+ に対して

∞⋃
n=l

An = B ∪ C.

ゆえに
∞⋂
l=1

∞⋃
n=l

An =
∞⋂

l=1

(B ∪ C) = B ∪ C.

(ii) 任意の l ∈ Z+ に対して
∞⋂

n=l

An = B ∩ C.
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ゆえに
∞⋃
l=1

∞⋂
n=l

An =
∞⋃

l=1

(B ∩ C) = B ∩ C.

例 8.9. 各 k ∈ Z+ に対して

A2k = B2k−1 = {0}, A2k−1 = B2k = {1}

とおくと, 任意の n ∈ Z+ に対して

An ∪ Bn = {0, 1}, An ∩ Bn = ∅.

このとき,
lim sup

n→∞
An = lim sup

n→∞
Bn = {0, 1},

lim inf
n→∞ An = lim inf

n→∞ Bn = ∅,
lim sup

n→∞
(An ∪ Bn) = lim inf

n→∞ (An ∪ Bn) = {0, 1},

lim sup
n→∞

(An ∩ Bn) = lim inf
n→∞ (An ∩ Bn) = ∅,

lim sup
n→∞

An ∪ lim sup
n→∞

Bn = {0, 1},

lim inf
n→∞ An ∪ lim inf

n→∞ Bn = ∅,
lim sup

n→∞
An ∩ lim sup

n→∞
Bn = {0, 1},

lim inf
n→∞ An ∩ lim inf

n→∞ Bn = ∅.

定義 8.10. 集合系 (An | n ∈ Z+)について,

lim sup
n→∞

An = lim inf
n→∞ An

が成り立つとき,
lim

n→∞An := lim sup
n→∞

An(= lim inf
n→∞ An)

とおき, これを極限集合という.

定理 8.11. 任意の集合系 (An | n ∈ Z+), (Bn | n ∈ Z+)に対して,

(i) limn→∞(An ∪ Bn) = limn→∞ An ∪ limn→∞ Bn,

(ii) limn→∞(An ∩ Bn) = limn→∞ An ∩ limn→∞ Bn.

証明. 定理 8.7より明らか.

定理 8.12. (An | n ∈ Z+)を集合系とする.

(i) 任意の n ∈ Z+ に対して An ⊆ An+1 ならば

lim
n→∞An =

∞⋃
n=1

An.
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(ii) 任意の n ∈ Z+ に対して An ⊇ An+1 ならば

lim
n→∞An =

∞⋂
n=1

An.

証明.

(i) 任意の n ∈ Z+ に対して An ⊆ An+1 であるとき, 任意の k ∈ Z+ に対して

∞⋃
n=k

An = Ak

となる. よって

lim
n→∞An = lim inf

n→∞ An =
∞⋃

k=1

Ak.

(ii) 任意の n ∈ Z+ に対して An ⊆ An+1 であるとき, 任意の k ∈ Z+ に対して

∞⋂
n=k

An = Ak

となる. よって

lim
n→∞An = lim sup

n→∞
An =

∞⋂
k=1

Ak.
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