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この文書の主な目的は, ロルの定理から出発して, ロピタルの定理を証明することです.
この文書では実数のみを扱いますので, 数というときには実数を意味し, 関数というときには実

数値関数を意味します.
関数 f(x)というときには, xを変数とする関数であることを表しています. また, f ′(x)は関数

f(x)を変数 xについて微分して得られる導関数を表します.

1 コーシーの平均値の定理

ロピタルの定理の証明には, 平均値の定理を拡張したものを利用します. それは, コーシーの平
均値の定理と呼ばれるものです. コーシーの平均値の定理はロルの定理から導かれます.
まず, ロルの定理を復習します. ロルの定理とは, 以下のような命題です.

定理 1.1（ロルの定理）f(x)を

• 閉区間 [a, b]で連続,

• 開区間 (a, b)で微分可能

なる関数とする. もし
f(a) = f(b)

ならば, ある数 cが存在して

f ′(c) = 0, a < c < b

が成り立つ.

コーシーの平均値の定理を証明する前に, 通常の平均値の定理を復習します.
平均値の定理とは, 次のような命題です.

定理 1.2（平均値の定理）f(x)を

• 閉区間 [a, b]で連続,

• 開区間 (a, b)で微分可能

なる関数とする. このとき, ある数 cが存在して

f(b)− f(a)
b− a

= f ′(c), a < c < b

が成り立つ.
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ロルの定理や平均値の定理は, 微分積分学の教科書に必ず書かれています. そして, 以下に紹介
する平均値の定理の証明も, どの教科書でも見かける定番のものです.

証明

m =
f(b)− f(a)

b− a

とおき,
F (x) = f(x)− f(a)−m(x− a)

とおく. すると, F (x)は [a, b]で連続, (a, b)で微分可能な関数になる. さらに,

F (a) = 0,

F (b) = f(b)− f(a)−m(b− a) = 0

である. よって F (x)に対してロルの定理が適用できて, ある数 cが存在して

F ′(c) = 0, a < c < b

が成り立つ.
F ′(x) = f ′(x)−m

なので,
f ′(c)−m = F ′(c) = 0

となる. これより
m = f ′(c),

すなわち
f(b)− f(a)

b− a
= f ′(c)

が得られる.

いよいよ, コーシーの平均値の定理を証明します.

定理 1.3（コーシーの平均値の定理）f(x), g(x)を

• 閉区間 [a, b]で連続,

• 開区間 (a, b)で微分可能,

• 開区間 (a, b)の各点 xにおいて g′(x) 6= 0

なる関数とする. このとき, ある数 cが存在して

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

, a < c < b

が成り立つ.
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コーシーの平均値の定理についていくつか注意しておきます.
まず, 定理の仮定のもとで, g(a) 6= g(b)が必ず成り立ちます. 実際, もし仮に g(a) = g(b)ならば,

ロルの定理より, ある数 cが存在して

g′(c) = 0, a < c < b

が成り立ちます. しかしながら, これは開区間 (a, b)の各点 xで g′(x) 6= 0であることに反します.
次に, g(x) = xとおくことにより, 通常の平均値の定理が得られます. したがって確かに, コー

シーの平均値の定理は通常の平均値の定理の拡張になっています.
先ほど紹介した平均値の定理の証明において, mと F (x)を

m =
f(b)− f(a)
g(b)− g(a)

,

F (x) = f(x)− f(a)−m(g(x)− g(a))

に変更すれば, コーシーの平均値の定理を証明することができます.

証明

m =
f(b)− f(a)
g(b)− g(a)

とおき,
F (x) = f(x)− f(a)−m(g(x)− g(a))

とおく. すると, F (x)は [a, b]で連続, (a, b)で微分可能な関数になる. さらに,

F (a) = 0,

F (b) = f(b)− f(a)− k(g(b)− g(a)) = 0

である. よって F (x)に対してロルの定理が適用できて, ある数 cが存在して

F ′(c) = 0, a < c < b

が成り立つ.
F ′(x) = f ′(x)−mg′(x)

なので,
f ′(c)−mg′(c) = F ′(c) = 0

となる. 仮定より g′(c) 6= 0なので

m =
f ′(c)
g′(c)

,

すなわち
f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

が得られる.
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2 極限の定義

この節では, 関数の極限の定義を復習します.
関数の極限の定義には, 極限値が存在する場合, 極限が限りなく大きくなる場合, 極限が限りなく

小さくなる場合の 3通りがあります. また, それぞれについて, xが点 aに近づく場合, xが aに右

から近づく場合, xが aに左から近づく場合, xが限りなく大きくなる場合, xが限りなく小さくな

る場合の 5通りがあります. したがって, 全部で 15通りの定義があります.
まず, 極限値が存在する場合の定義を書きます.

定義 2.1 a, lを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < |x− a| < δε =⇒ |f(x)− l | < ε

が成り立つとき, lを

lim
x→a

f(x)

と書く.

定義 2.2 a, lを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < x− a < δε =⇒ |f(x)− l | < ε

が成り立つとき, lを

lim
x→a+0

f(x)

と書く.

定義 2.3 a, lを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < a− x < δε =⇒ |f(x)− l | < ε

が成り立つとき, lを

lim
x→a−0

f(x)

と書く.

定義 2.4 lを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

x > δε =⇒ |f(x)− l | < ε

が成り立つとき, lを

lim
x→∞

f(x)

と書く.
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定義 2.5 lを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

x < −δε =⇒ |f(x)− l | < ε

が成り立つとき, lを

lim
x→−∞

f(x)

と書く.

次に, 極限が限りなく大きくなる場合の定義を書きます.

定義 2.6 aを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < |x− a| < δε =⇒ f(x) > ε

が成り立つとき,
lim
x→a

f(x) = ∞
と書く.

定義 2.7 aを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < x− a < δε =⇒ f(x) > ε

が成り立つとき,
lim

x→a+0
f(x) = ∞

と書く.

定義 2.8 aを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < a− x < δε =⇒ f(x) > ε

が成り立つとき,
lim

x→a−0
f(x) = ∞

と書く.

定義 2.9 f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

x > δε =⇒ f(x) > ε

が成り立つとき,
lim

x→∞
f(x) = ∞

と書く.
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定義 2.10 f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

x < −δε =⇒ f(x) > ε

が成り立つとき,
lim

x→−∞
f(x) = ∞

と書く.

次に, 極限が限りなく小さくなる場合の定義を書きます.

定義 2.11 aを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < |x− a| < δε =⇒ f(x) < −ε

が成り立つとき,
lim
x→a

f(x) = −∞
と書く.

定義 2.12 aを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < x− a < δε =⇒ f(x) < −ε

が成り立つとき,
lim

x→a+0
f(x) = −∞

と書く.

定義 2.13 aを数とし, f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

0 < a− x < δε =⇒ f(x) < −ε

が成り立つとき,
lim

x→a−0
f(x) = −∞

と書く.

定義 2.14 f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

x > δε =⇒ f(x) < −ε

が成り立つとき,
lim

x→∞
f(x) = −∞

と書く.
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定義 2.15 f(x)を関数とする.
任意の数 ε > 0に対して, ある数 δε > 0が存在して, 任意の数 xに対して

x < −δε =⇒ f(x) < −ε

が成り立つとき,
lim

x→−∞
f(x) = −∞

と書く.

3 極限に関する基本的な事項 (1)

定理 3.1 γを数とし, γ > 0とする. f(x)を開区間 (a−γ, a)で定義された関数とすると, f(2a−x)
は開区間 (a, a + γ)で定義された関数である. このとき,

lim
x→a−0

f(x) = l (1)

となる数 lが存在するならば,
lim

x→a+0
f(2a− x) = l (2)

が成り立つ.

証明 数 ε > 0を任意にとる. 式 (1)より, ある数 δε > 0が存在して, 任意の数 xに対して

0 < a− x < δε =⇒ |f(x)− l | < ε (3)

が成り立つ. 式 (3)の xに 2a− xを代入すると,

0 < x− a < δε =⇒ |f(2a− x)− l | < ε

となる. したがって式 (2)が成り立つ.

定理 3.2 γ を数とし, γ > 0とする. f(x)を開区間 (−γ, −∞)で定義された関数とすると, f(−x)
は開区間 (γ, ∞)で定義された関数である. このとき,

lim
x→−∞

f(x) = l (4)

となる数 lが存在するならば,
lim

x→+∞
f(−x) = l (5)

が成り立つ.

証明 数 ε > 0を任意にとる. 式 (4)より, ある数 δε > 0が存在して, 任意の数 xに対して

x < −δε =⇒ |f(x)− l | < ε (6)

が成り立つ. 式 (6)の xに −xを代入すると,

x > δε =⇒ |f(−x)− l | < ε

となる. したがって式 (5)が成り立つ.
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定理 3.3 γ を数とし, γ > 0とする. f(x)を開区間 (γ, ∞)で定義された関数とすると, f(1/x)は
開区間 (0, 1/γ)で定義された関数である. このとき,

lim
x→∞

f(x) = l (7)

となる数 lが存在するならば,

lim
x→+0

f

(
1
x

)
= l (8)

が成り立つ.

証明 数 ε > 0を任意にとる. 式 (7)より, ある数 δε > 0が存在して, 任意の数 xに対して

x > δε =⇒ |f(x)− l | < ε (9)

が成り立つ. 式 (9)の xに 1/xを代入すると,

0 < x < δε =⇒
∣∣∣∣f

(
1
x

)
− l

∣∣∣∣ < ε

となる. したがって式 (8)が成り立つ.

定理 3.4 γを数とし, γ > 0とする. f(x)を開区間 (a−γ, a)∪ (a, a+γ)で定義された関数とする.
(a)

lim
x→a

f(x) = l (10)

となる数 lが存在するならば,

lim
x→a+0

f(x) = lim
x→a−0

f(x) = l

が成り立つ.
(b)

lim
x→a+0

f(x) = lim
x→a−0

f(x) = l (11)

となる数 lが存在するならば,
lim
x→a

f(x) = l

が成り立つ.

証明 (a) 数 ε > 0を任意にとる. 式 (10)より, ある数 δε > 0が存在して, 任意の数 xに対して,

0 < |x− a| < δε =⇒ |f(x)− l | < ε (12)

が成り立つ.
0 < x− a < δε =⇒ 0 < |x− a| < δε

なので, 式 (12)より
0 < x− a < δε =⇒ |f(x)− l | < ε

が成り立つ. すなわち limx→a+0 f(x) = lが成り立つ. 同様に,

0 < a− x < δε =⇒ 0 < |x− a| < δε
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なので, 式 (12)より
0 < a− x < δε =⇒ |f(x)− l | < ε

が成り立つ. すなわち limx→a−0 f(x) = lが成り立つ.
(b) 数 ε > 0を任意にとる. 式 (11)より, ある数 δ1,ε > 0が存在して, 任意の数 xに対して,

0 < x− a < δ1,ε =⇒ |f(x)− l| < ε (13)

が成り立つ. 同様に, 式 (11)より, ある数 δ2,ε > 0が存在して, 任意の数 xに対して,

0 < a− x < δ2,ε =⇒ |f(x)− l| < ε (14)

が成り立つ.
δε = min{δ1,ε, δ2,ε} とおく. 0 < |x− a| < δε を満たす数 xを任意にとると, a < xのときは

0 < x− a ≤ |x− a| < δε ≤ δ1,ε

であり, x < aのときは

0 < a− x ≤ |x− a| < δε ≤ δ2,ε

である. つまり,

0 < |x− a| < δε =⇒ 0 < x− a < δ1,ε または 0 < a− x < δ2,ε.

これと式 (13), 式 (14)より

0 < |x− a| < δε =⇒ |f(x)− l | < ε

が成り立つ. したがって limx→a f(x) = lがいえる.

4 極限に関する基本的な事項 (2)

前節の定理に現れる lを∞に書き換えた形の定理も成り立ちます.

定理 4.1 γを数とし, γ > 0とする. f(x)を開区間 (a−γ, a)で定義された関数とすると, f(2a−x)
は開区間 (a, a + γ)で定義された関数である. このとき,

lim
x→a−0

f(x) = ∞ (15)

ならば,
lim

x→a+0
f(2a− x) = ∞ (16)

が成り立つ.

証明 数 ε > 0を任意にとる. 式 (15)より, ある数 δε > 0が存在して, 任意の数 xに対して

0 < a− x < δε =⇒ f(x) > ε (17)

が成り立つ. 式 (17)の xに 2a− xを代入すると,

0 < x− a < δε =⇒ f(2a− x) > ε

となる. したがって式 (16)が成り立つ.
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定理 4.2 γ を数とし, γ > 0とする. f(x)を開区間 (−γ, −∞)で定義された関数とすると, f(−x)
は開区間 (γ, ∞)で定義された関数である. このとき,

lim
x→−∞

f(x) = ∞ (18)

ならば,
lim

x→+∞
f(−x) = ∞ (19)

が成り立つ.

証明 数 ε > 0を任意にとる. 式 (18)より, ある数 δε > 0が存在して, 任意の数 xに対して

x < −δε =⇒ f(x) > ε (20)

が成り立つ. 式 (20)の xに −xを代入すると,

x > δε =⇒ f(−x) > ε

となる. したがって式 (19)が成り立つ.

定理 4.3 γ を数とし, γ > 0とする. f(x)を開区間 (γ, ∞)で定義された関数とすると, f(1/x)は
開区間 (0, 1/γ)で定義された関数である. このとき,

lim
x→∞

f(x) = ∞ (21)

ならば,

lim
x→+0

f

(
1
x

)
= ∞ (22)

が成り立つ.

証明 数 ε > 0を任意にとる. 式 (21)より, ある数 δε > 0が存在して, 任意の数 xに対して

x > δε =⇒ f(x) > ε (23)

が成り立つ. 式 (23)の xに 1/xを代入すると,

0 < x < δε =⇒ f

(
1
x

)
> ε

となる. したがって式 (22)が成り立つ.

定理 4.4 γを数とし, γ > 0とする. f(x)を開区間 (a−γ, a)∪ (a, a+γ)で定義された関数とする.
(a)

lim
x→a

f(x) = ∞ (24)

ならば

lim
x→a+0

f(x) = lim
x→a−0

f(x) = ∞
が成り立つ.

(b)
lim

x→a+0
f(x) = lim

x→a−0
f(x) = ∞ (25)

ならば

lim
x→a

f(x) = ∞
が成り立つ.
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証明 (a) 数 ε > 0を任意にとる. 式 (24)より, ある数 δε > 0が存在して, 任意の数 xに対して,

0 < |x− a| < δε =⇒ f(x) > ε (26)

が成り立つ.
0 < x− a < δε =⇒ 0 < |x− a| < δε

なので, 式 (26)より
0 < x− a < δε =⇒ f(x) > ε

が成り立つ. すなわち limx→a+0 f(x) = ∞が成り立つ. 同様に,

0 < a− x < δε =⇒ 0 < |x− a| < δε

なので, 式 (26)より
0 < a− x < δε =⇒ f(x) > ε

が成り立つ. すなわち limx→a−0 f(x) = ∞が成り立つ.
(b) 数 ε > 0を任意にとる. 式 (25)より, ある数 δ1,ε > 0が存在して, 任意の数 xに対して,

0 < x− a < δ1,ε =⇒ f(x) > ε (27)

が成り立つ. 同様に, 式 (25)より, ある数 δ2,ε > 0が存在して, 任意の数 xに対して,

0 < a− x < δ2,ε =⇒ f(x) > ε (28)

が成り立つ.
δε = min{δ1,ε, δ2,ε} とおく. 0 < |x− a| < δε を満たす数 xを任意にとると, a < xのときは

0 < x− a ≤ |x− a| < δε ≤ δ1,ε

であり, x < aのときは

0 < a− x ≤ |x− a| < δε ≤ δ2,ε

である. つまり,

0 < |x− a| < δε =⇒ 0 < x− a < δ1,ε または 0 < a− x < δ2,ε.

これと式 (27), 式 (28)より
0 < |x− a| < δε =⇒ f(x) > ε

が成り立つ. したがって limx→a f(x) = ∞がいえる.

5 ロピタルの定理 (1)

まず, 関数 f(x), g(x)が共に 0に収束する場合を証明します.

定理 5.1（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 半開区間 [a, a + γ)で連続,

• 開区間 (a, a + γ)で微分可能,
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• 開区間 (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
f(a) = g(a) = 0 (29)

かつ, ある数 lが存在して

lim
x→a+0

f ′(x)
g′(x)

= l (30)

ならば,

lim
x→a+0

f(x)
g(x)

= l (31)

が成り立つ.

証明 a < x < a + γであるような任意の数 xに対して, 閉区間 [a, x]においてコーシーの平均値の
定理を適用すると, ある数 cx が存在して

f(x)− f(a)
g(x)− g(a)

=
f ′(cx)
g′(cx)

, a < cx < x (32)

が成り立つ. これと式 (29)より
f(x)
g(x)

=
f ′(cx)
g′(cx)

(33)

が得られる.
数 ε > 0を任意にとる. 式 (30)より, εに対してある数 δ1,ε が存在して, 任意の数 xに対して

0 < x− a < δ1,ε =⇒
∣∣∣∣∣
f ′(x)
g′(x)

− l

∣∣∣∣∣ < ε (34)

が成り立つ.
δε = min{γ, δ1,ε}とおく. xが 0 < x− a < δε を満たすとき,

a < x < a + δε ≤ a + γ

なので, xに対して式 (32)を満たす数 cx が存在する. このとき,

0 < cx − a < x− a < δε ≤ δ1,ε

である. 式 (33)と式 (34)より,
∣∣∣∣∣
f(x)
g(x)

− l

∣∣∣∣∣ =

∣∣∣∣∣
f ′(cx)
g′(cx)

− l

∣∣∣∣∣ < ε

が得られる.
したがって, 任意の数 xに対して

0 < x− a < δε =⇒
∣∣∣∣∣
f(x)
g(x)

− l

∣∣∣∣∣ < ε

が成り立つ. よって, 式 (31)が成り立つ.

次に, 関数 f(x), g(x)が x = aで定義されていないときを考えます.
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定理 5.2（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a+0
f(x) = lim

x→a+0
g(x) = 0 (35)

かつ, ある数 lが存在して

lim
x→a+0

f ′(x)
g′(x)

= l (36)

ならば,

lim
x→a+0

f(x)
g(x)

= l

が成り立つ.

微分可能な関数は連続なので, 定理 5.2における関数 f(x), g(x)は開区間 (a, a + γ)で連続です.
もし, 関数 f(x), g(x)が半開区間 [a, a + γ)で連続かつ f(a) = g(a) = 0ならば

lim
x→a+0

f(x) = f(a) = 0,

lim
x→a+0

g(x) = g(a) = 0

となります. よって, 定理 5.2は定理 5.1の拡張になっています.

証明 x = aで 0をとるように関数 f(x), g(x)を拡張した関数

F (x) =





f(x), x 6= aのとき

0, x = aのとき

G(x) =





g(x), x 6= aのとき

0, x = aのとき

を考える.
式 (35)より, F (x), G(x)は半開区間 [a, a + γ)で連続になる. F (x), G(x)の定義と式 (36)より

lim
x→a+0

F ′(x)
G′(x)

= lim
x→a+0

f ′(x)
g′(x)

= l

だから, 定理 5.1が適用できて,

lim
x→a+0

f(x)
g(x)

= lim
x→a+0

F (x)
G(x)

= l

が得られる.

x → a− 0の場合は, 定理 5.2と極限に関する基本的な事項から導くことができます.

定理 5.3（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a)で微分可能,

13



• 開区間 (a− γ, a)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a−0
f(x) = lim

x→a−0
g(x) = 0

かつ, ある数 lが存在して

lim
x→a−0

f ′(x)
g′(x)

= l

ならば,

lim
x→a−0

f(x)
g(x)

= l

が成り立つ.

証明 F (x) = f(2a−x), G(x) = g(2a−x)によって, 新しい関数 F (x), G(x)を定める. F (x), G(x)
は半開区間 [a, a + γ)で連続である. さらに, 合成関数の微分により

F ′(x) = −f ′(2a− x), G′(x) = −g′(2a− x)

が得られるから,

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで G′(x) 6= 0

である. また,

lim
x→a+0

F (x) = lim
x→a+0

f(2a− x) = lim
x→a−0

f(x) = 0,

lim
x→a+0

G(x) = lim
x→a+0

g(2a− x) = lim
x→a−0

g(x) = 0

であり,

lim
x→a+0

F ′(x)
G′(x)

= lim
x→a+0

f ′(2a− x)
g′(2a− x)

= lim
x→a−0

f ′(x)
g′(x)

= l

である. ゆえに, 定理 5.2が適用できて,

lim
x→a−0

f(x)
g(x)

= lim
x→a+0

f(2a− x)
g(2a− x)

= lim
x→a+0

F (x)
G(x)

= l

が成り立つ.

x → aの場合は, 定理 5.2, 定理 5.3と極限に関する基本的な事項から導くことができます.

定理 5.4（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a) ∪ (a, a + γ)で微分可能,

• 開区間 (a− γ, a) ∪ (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim
x→a

f(x) = lim
x→a

g(x) = 0 (37)

かつ, ある数 lが存在して

lim
x→a

f ′(x)
g′(x)

= l (38)
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ならば,

lim
x→a

f(x)
g(x)

= l (39)

が成り立つ.

証明 式 (37), 式 (38)より,
lim

x→a+0
f(x) = lim

x→a
g(x) = 0

かつ, ある数 lが存在して

lim
x→a+0

f ′(x)
g′(x)

= l

が成り立つ. 定理 5.2を適用すれば,

lim
x→a+0

f(x)
g(x)

= l (40)

が得られる.
同様に, 式 (37), 式 (38)より,

lim
x→a−0

f(x) = lim
x→a

g(x) = 0

かつ, ある数 lが存在して

lim
x→a−0

f ′(x)
g′(x)

= l

が成り立つ. 定理 5.3を適用すれば,

lim
x→a−0

f(x)
g(x)

= l (41)

が得られる.
したがって, 式 (40), 式 (41)より, 式 (39)が得られる.

x →∞, x → −∞の場合, ロピタルの定理は次のようになります.

定理 5.5（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (γ, ∞)で微分可能,

• 開区間 (γ, ∞)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→∞
f(x) = lim

x→∞
g(x) = 0 (42)

かつ, ある数 lが存在して

lim
x→∞

f ′(x)
g′(x)

= l (43)

ならば,

lim
x→∞

f(x)
g(x)

= l

が成り立つ.
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証明 f(x), g(x)に対して,

F (x) = f

(
1
x

)
, G(x) = g

(
1
x

)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (γ, ∞)で定義され
ていれば, F (x), G(x)は開区間 (0, 1/γ)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(1/x)
x2

, (44)

G′(x) = −g′(1/x)
x2

(45)

が得られる. よって, F (x), G(x)は

• 開区間 (0, 1/γ)で微分可能,

• 開区間 (0, 1/γ)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (42)より

lim
x→+0

F (x) = lim
x→+0

f

(
1
x

)
= lim

x→∞
f(x) = 0,

lim
x→+0

G(x) = lim
x→+0

g

(
1
x

)
= lim

x→∞
g(x) = 0

であり, 式 (44), 式 (45), 式 (43)より

lim
x→+0

F ′(x)
G′(x)

= lim
x→+0

f ′(1/x)
g′(1/x)

= lim
x→∞

f ′(x)
g′(x)

= l

である. ゆえに, 定理 5.2が適用できて,

lim
x→∞

f(x)
g(x)

= lim
x→+0

f(1/x)
g(1/x)

= lim
x→+0

F (x)
G(x)

= l

が成り立つ.

定理 5.6（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (−∞, −γ)で微分可能,

• 開区間 (−∞, −γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→−∞
f(x) = lim

x→−∞
g(x) = 0 (46)

かつ, ある数 lが存在して

lim
x→−∞

f ′(x)
g′(x)

= l (47)

ならば,

lim
x→−∞

f(x)
g(x)

= l

が成り立つ.
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証明 f(x), g(x)に対して,
F (x) = f(−x), G(x) = g(−x)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (−∞, −γ)で定義
されていれば, F (x), G(x)は開区間 (γ, ∞)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(−x), (48)

G′(x) = −g′(−x) (49)

が得られる. よって, F (x), G(x)は

• 開区間 (γ, ∞)で微分可能,

• 開区間 (γ, ∞)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (46)より

lim
x→∞

F (x) = lim
x→∞

f(−x) = lim
x→−∞

f(x) = 0,

lim
x→∞

G(x) = lim
x→∞

g(−x) = lim
x→−∞

g(x) = 0

であり, 式 (48), 式 (49), 式 (47)より

lim
x→∞

F ′(x)
G′(x)

= lim
x→∞

f ′(−x)
g′(−x)

= lim
x→−∞

f ′(x)
g′(x)

= l

である. ゆえに, 定理 5.5が適用できて,

lim
x→−∞

f(x)
g(x)

= lim
x→∞

f(−x)
g(−x)

= lim
x→∞

F (x)
G(x)

= l

が成り立つ.

6 ロピタルの定理 (2)

次に, 関数 f(x), g(x)が共に∞に発散するときを考えます.

定理 6.1（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a+0
f(x) = lim

x→a+0
g(x) = ∞ (50)

かつ, ある数 lが存在して

lim
x→a+0

f ′(x)
g′(x)

= l (51)

ならば,

lim
x→a+0

f(x)
g(x)

= l

が成り立つ.
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証明 式 (50)より, ある数 δ1 > 0が存在して, 任意の数 xに対して

0 < x− a < δ1 =⇒ f(x) > 1 (52)

が成り立つ. また, ある数 δ2 > 0が存在して, 任意の数 xに対して

0 < x− a < δ2 =⇒ g(x) > 1 (53)

が成り立つ.
0 < ε′ < 1を満たす数 ε′を任意にとる. 式 (51)より, ε′に対してある数 δ3,ε′ > 0が存在して, 任

意の数 xに対して

0 < x− a < δ3,ε′ =⇒
∣∣∣∣
f ′(x)
g′(x)

− l

∣∣∣∣ < ε′ (54)

が成り立つ.
0 < x1 − a < δ3,ε′ を満たすような, (a, a + γ)の点 x1 を 1つとって固定する. そして,

δ4,ε′ = min{δ1, δ2, x1 − a}

とおく.
a < x < x1 を満たすような数 xを任意にとると, x, x1 ∈ (a, a + γ)なので, 関数 f(t), g(t)は

• 閉区間 [x, x1]で連続,

• 開区間 (x, x1)で微分可能,

• 開区間 (x, x1)の各点 tにおいて g′(t) 6= 0

を満たす. よってコーシーの平均値の定理より, ある数 cx が存在して

f(x)− f(x1)
g(x)− g(x1)

=
f ′(cx)
g′(cx)

, x < cx < x1 (55)

が成り立つ.
0 < x− a < cx − a < x1 − a < δ3,ε′

であるから, 式 (54)より ∣∣∣∣
f ′(cx)
g′(cx)

− l

∣∣∣∣ < ε′ (56)

が成り立つ.
さて, 式 (55)は

f(x)
g(x)

=
f ′(cx)
g′(cx)

1− g(x1)
g(x)

1− f(x1)
f(x)

(57)

と書き直すことができる. ここで, 式 (52), 式 (53)より, 0 < x − a < δ4,ε′ を満たす任意の数 xに

対して f(x) 6= 0, g(x) 6= 0が成り立つことに注意せよ.
いま, x1 を固定しているので, f(x1), g(x1)は定数であると考えることができる. よって,

lim
x→a+0

f(x) = ∞ =⇒ lim
x→a+0

f(x1)
f(x)

= 0 =⇒ lim
x→a+0

(
1− f(x1)

f(x)

)
= 1

lim
x→a+0

g(x) = ∞ =⇒ lim
x→a+0

g(x1)
g(x)

= 0 =⇒ lim
x→a+0

(
1− g(x1)

g(x)

)
= 1
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なので,

lim
x→a+0

f(x) = lim
x→a+0

g(x) = ∞ =⇒ lim
x→a+0

1− g(x1)
g(x)

1− f(x1)
f(x)

= 1

である. すなわち, ε′ に対して, ある数 δ5,ε′ > 0が存在して, 任意の数 xに対して

0 < x− a < δ5,ε′ =⇒

∣∣∣∣∣∣∣∣

1− g(x1)
g(x)

1− f(x1)
f(x)

− 1

∣∣∣∣∣∣∣∣
< ε′ (58)

となることがいえる.
一般に, 任意の数 u, v, α, M に対して,

|u− α| < M, |v − 1| < M

ならば,

|uv − α| = |uv − vα + vα− α|
= |v(u− α) + α(v − 1)|
≤ |v||u− α|+ |α||v − 1|
< (1 + M)M + |α|M
= (1 + |α|+ M)M

となる. よって,
δε′ = min{δ4,ε′ , δ5,ε′}

とおくと, 0 < x− a < δε′ を満たす任意の数 xに対して,

u =
f ′(cx)
g′(cx)

, v =
1− g(x1)

g(x)

1− f(x1)
f(x)

, α = l, M = ε′

とすれば, 式 (57)より

uv =
f(x)
g(x)

なので, 式 (56), 式 (58)と ε′ < 1という条件より
∣∣∣∣
f(x)
g(x)

− l

∣∣∣∣ < (1 + |l|+ ε′)ε′ < (2 + |l|)ε′

が成り立つ.
数 ε > 0を任意にとり,

ε′ =





1
2 + |l| , ε ≥ 1のとき

ε

2 + |l| , ε < 1のとき

とおけば, ε′ < 1, (2 + |l|)ε′ ≤ εとなるので, 証明は完成する.
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x → a− 0の場合は, 定理 6.1と極限に関する基本的な事項から導くことができます.

定理 6.2（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a)で微分可能,

• 開区間 (a− γ, a)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a−0
f(x) = lim

x→a−0
g(x) = ∞

かつ

lim
x→a−0

f ′(x)
g′(x)

= l

ならば,

lim
x→a−0

f(x)
g(x)

= l

が成り立つ.

証明 F (x) = f(2a−x), G(x) = g(2a−x)によって, 新しい関数 F (x), G(x)を定める. F (x), G(x)
は半開区間 [a, a + γ)で連続である. さらに, 合成関数の微分により

F ′(x) = −f ′(2a− x), G′(x) = −g′(2a− x)

が得られるから,

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで G′(x) 6= 0

である. また,

lim
x→a+0

F (x) = lim
x→a+0

f(2a− x) = lim
x→a−0

f(x) = ∞,

lim
x→a+0

G(x) = lim
x→a+0

g(2a− x) = lim
x→a−0

g(x) = ∞

であり,

lim
x→a+0

F ′(x)
G′(x)

= lim
x→a+0

f ′(2a− x)
g′(2a− x)

= lim
x→a−0

f ′(x)
g′(x)

= l

である. ゆえに, 定理 6.1が適用できて,

lim
x→a−0

f(x)
g(x)

= lim
x→a+0

f(2a− x)
g(2a− x)

= lim
x→a+0

F (x)
G(x)

= l

が成り立つ.

x → aの場合は, 定理 6.1, 定理 6.2と極限に関する基本的な事項から導くことができます.

定理 6.3（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a) ∪ (a, a + γ)で微分可能,

• 開区間 (a− γ, a) ∪ (a, a + γ)の各点 xで g′(x) 6= 0
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なる関数とする. このとき,
lim
x→a

f(x) = lim
x→a

g(x) = ∞ (59)

かつ, ある数 lが存在して

lim
x→a

f ′(x)
g′(x)

= l (60)

ならば,

lim
x→a

f(x)
g(x)

= l (61)

が成り立つ.

証明 式 (59), 式 (60)より,
lim

x→a+0
f(x) = lim

x→a
g(x) = ∞

かつ, ある数 lが存在して

lim
x→a+0

f ′(x)
g′(x)

= l

が成り立つ. 定理 6.1を適用すれば,

lim
x→a+0

f(x)
g(x)

= l (62)

が得られる.
同様に, 式 (59), 式 (60)より,

lim
x→a−0

f(x) = lim
x→a

g(x) = ∞

かつ, ある数 lが存在して

lim
x→a−0

f ′(x)
g′(x)

= l

が成り立つ. 定理 6.2を適用すれば,

lim
x→a−0

f(x)
g(x)

= l (63)

が得られる.
したがって, 式 (62), 式 (63)より, 式 (61)が得られる.

x →∞, x → −∞の場合, ロピタルの定理は次のようになります.

定理 6.4（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (γ, ∞)で微分可能,

• 開区間 (γ, ∞)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→∞
f(x) = lim

x→∞
g(x) = ∞ (64)

かつ, ある数 lが存在して

lim
x→∞

f ′(x)
g′(x)

= l (65)

ならば,

lim
x→∞

f(x)
g(x)

= l

が成り立つ.
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証明 f(x), g(x)に対して,

F (x) = f

(
1
x

)
, G(x) = g

(
1
x

)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (γ, ∞)で定義され
ていれば, F (x), G(x)は開区間 (0, 1/γ)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(1/x)
x2

, (66)

G′(x) = −g′(1/x)
x2

(67)

が得られる. よって, F (x), G(x)は

• 開区間 (0, 1/γ)で微分可能,

• 開区間 (0, 1/γ)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (64)より

lim
x→+0

F (x) = lim
x→+0

f

(
1
x

)
= lim

x→∞
f(x) = ∞,

lim
x→+0

G(x) = lim
x→+0

g

(
1
x

)
= lim

x→∞
g(x) = ∞

であり, 式 (66), 式 (67), 式 (65)より

lim
x→+0

F ′(x)
G′(x)

= lim
x→+0

f ′(1/x)
g′(1/x)

= lim
x→∞

f ′(x)
g′(x)

= l

である. ゆえに, 定理 6.1が適用できて,

lim
x→∞

f(x)
g(x)

= lim
x→+0

f(1/x)
g(1/x)

= lim
x→+0

F (x)
G(x)

= l

が成り立つ.

定理 6.5（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (−∞, −γ)で微分可能,

• 開区間 (−∞, −γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→−∞
f(x) = lim

x→−∞
g(x) = ∞ (68)

かつ, ある数 lが存在して

lim
x→−∞

f ′(x)
g′(x)

= l (69)

ならば,

lim
x→−∞

f(x)
g(x)

= l

が成り立つ.
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証明 f(x), g(x)に対して,
F (x) = f(−x), G(x) = g(−x)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (−∞, −γ)で定義
されていれば, F (x), G(x)は開区間 (γ, ∞)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(−x), (70)

G′(x) = −g′(−x) (71)

が得られる. よって, F (x), G(x)は

• 開区間 (γ, ∞)で微分可能,

• 開区間 (γ, ∞)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (68)より

lim
x→∞

F (x) = lim
x→∞

f(−x) = lim
x→−∞

f(x) = ∞,

lim
x→∞

G(x) = lim
x→∞

g(−x) = lim
x→−∞

g(x) = ∞

であり, 式 (70), 式 (71), 式 (69)より

lim
x→∞

F ′(x)
G′(x)

= lim
x→∞

f ′(−x)
g′(−x)

= lim
x→−∞

f ′(x)
g′(x)

= l

である. ゆえに, 定理 6.4が適用できて,

lim
x→−∞

f(x)
g(x)

= lim
x→∞

f(−x)
g(−x)

= lim
x→∞

F (x)
G(x)

= l

が成り立つ.

7 ロピタルの定理 (3)

f ′(x)/g′(x) →∞の場合にも, ロピタルの定理が成り立ちます. この節では関数 f(x), g(x)が共
に 0に収束するときを考えます.

定理 7.1（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 半開区間 [a, a + γ)で連続,

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
f(a) = g(a) = 0 (72)

かつ

lim
x→a+0

f ′(x)
g′(x)

= ∞ (73)
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ならば,

lim
x→a+0

f(x)
g(x)

= ∞ (74)

が成り立つ.

証明 a < x < a + γであるような任意の数 xに対して, 閉区間 [a, x]においてコーシーの平均値の
定理を適用すると, ある数 cx が存在して

f(x)− f(a)
g(x)− g(a)

=
f ′(cx)
g′(cx)

, a < cx < x (75)

が成り立つ. これと式 (72)より
f(x)
g(x)

=
f ′(cx)
g′(cx)

(76)

が得られる.
数 ε > 0を任意にとる. 式 (73)より, εに対してある数 δ1,ε が存在して, 任意の数 xに対して

0 < x− a < δ1,ε =⇒ f ′(x)
g′(x)

> ε (77)

が成り立つ.
δε = min{γ, δ1,ε}とおく. xが 0 < x− a < δε を満たすとき,

a < x < a + δε ≤ a + γ

なので, xに対して式 (75)を満たす数 cx が存在する. このとき,

0 < cx − a < x− a < δε ≤ δ1,ε

である. 式 (76)と式 (77)より,
f(x)
g(x)

=
f ′(cx)
g′(cx)

> ε

が得られる.
したがって, 任意の数 xに対して

0 < x− a < δε =⇒ f(x)
g(x)

> ε

が成り立つ. よって, 式 (74)が成り立つ.

次に, 関数 f(x), g(x)が x = aで定義されていないときを考えます.

定理 7.2（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a+0
f(x) = lim

x→a+0
g(x) = 0 (78)

かつ

lim
x→a+0

f ′(x)
g′(x)

= ∞ (79)

24



ならば,

lim
x→a+0

f(x)
g(x)

= ∞

が成り立つ.

微分可能な関数は連続なので, 定理 7.2における関数 f(x), g(x)は開区間 (a, a + γ)で連続です.
もし, 関数 f(x), g(x)が半開区間 [a, a + γ)で連続かつ f(a) = g(a) = 0ならば

lim
x→a+0

f(x) = f(a) = 0,

lim
x→a+0

g(x) = g(a) = 0

となります. よって, 定理 7.2は定理 7.1の拡張になっています.

証明 x = aで 0をとるように関数 f(x), g(x)を拡張した関数

F (x) =





f(x), x 6= aのとき

0, x = aのとき

G(x) =





g(x), x 6= aのとき

0, x = aのとき

を考える.
式 (78)より, F (x), G(x)は半開区間 [a, a + γ)で連続になる. F (x), G(x)の定義と式 (79)より

lim
x→a+0

F ′(x)
G′(x)

= lim
x→a+0

f ′(x)
g′(x)

= ∞

だから, 定理 7.1が適用できて,

lim
x→a+0

f(x)
g(x)

= lim
x→a+0

F (x)
G(x)

= ∞

が得られる.

x → a− 0の場合は, 定理 7.2と極限に関する基本的な事項から導くことができます.

定理 7.3（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a)で微分可能,

• 開区間 (a− γ, a)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a−0
f(x) = lim

x→a−0
g(x) = 0

かつ

lim
x→a−0

f ′(x)
g′(x)

= ∞

ならば,

lim
x→a−0

f(x)
g(x)

= ∞

が成り立つ.
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証明 F (x) = f(2a−x), G(x) = g(2a−x)によって, 新しい関数 F (x), G(x)を定める. F (x), G(x)
は半開区間 [a, a + γ)で連続である. さらに, 合成関数の微分により

F ′(x) = −f ′(2a− x), G′(x) = −g′(2a− x)

が得られるから,

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで G′(x) 6= 0

である. また,

lim
x→a+0

F (x) = lim
x→a+0

f(2a− x) = lim
x→a−0

f(x) = 0,

lim
x→a+0

G(x) = lim
x→a+0

g(2a− x) = lim
x→a−0

g(x) = 0

であり,

lim
x→a+0

F ′(x)
G′(x)

= lim
x→a+0

f ′(2a− x)
g′(2a− x)

= lim
x→a−0

f ′(x)
g′(x)

= ∞

である. ゆえに, 定理 7.2が適用できて,

lim
x→a−0

f(x)
g(x)

= lim
x→a+0

f(2a− x)
g(2a− x)

= lim
x→a+0

F (x)
G(x)

= ∞

が成り立つ.

x → aの場合は, 定理 7.2, 定理 7.3と極限に関する基本的な事項から導くことができます.

定理 7.4（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a) ∪ (a, a + γ)で微分可能,

• 開区間 (a− γ, a) ∪ (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim
x→a

f(x) = lim
x→a

g(x) = 0 (80)

かつ

lim
x→a

f ′(x)
g′(x)

= ∞ (81)

ならば,

lim
x→a

f(x)
g(x)

= ∞ (82)

が成り立つ.

証明 式 (80), 式 (81)より,
lim

x→a+0
f(x) = lim

x→a
g(x) = 0

かつ

lim
x→a+0

f ′(x)
g′(x)

= ∞
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が成り立つ. 定理 7.2を適用すれば,

lim
x→a+0

f(x)
g(x)

= ∞ (83)

が得られる.
同様に, 式 (80), 式 (81)より,

lim
x→a−0

f(x) = lim
x→a

g(x) = 0

かつ

lim
x→a−0

f ′(x)
g′(x)

= ∞

が成り立つ. 定理 7.3を適用すれば,

lim
x→a−0

f(x)
g(x)

= ∞ (84)

が得られる.
したがって, 式 (83), 式 (84)より, 式 (82)が得られる.

x →∞, x → −∞の場合, ロピタルの定理は次のようになります.

定理 7.5（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (γ, ∞)で微分可能,

• 開区間 (γ, ∞)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→∞
f(x) = lim

x→∞
g(x) = 0 (85)

かつ

lim
x→∞

f ′(x)
g′(x)

= ∞ (86)

ならば,

lim
x→∞

f(x)
g(x)

= ∞

が成り立つ.

証明 f(x), g(x)に対して,

F (x) = f

(
1
x

)
, G(x) = g

(
1
x

)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (γ, ∞)で定義され
ていれば, F (x), G(x)は開区間 (0, 1/γ)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(1/x)
x2

, (87)

G′(x) = −g′(1/x)
x2

(88)

が得られる. よって, F (x), G(x)は
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• 開区間 (0, 1/γ)で微分可能,

• 開区間 (0, 1/γ)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (85)より

lim
x→+0

F (x) = lim
x→+0

f

(
1
x

)
= lim

x→∞
f(x) = 0,

lim
x→+0

G(x) = lim
x→+0

g

(
1
x

)
= lim

x→∞
g(x) = 0

であり, 式 (87), 式 (88), 式 (86)より

lim
x→+0

F ′(x)
G′(x)

= lim
x→+0

f ′(1/x)
g′(1/x)

= lim
x→∞

f ′(x)
g′(x)

= ∞

である. ゆえに, 定理 7.2が適用できて,

lim
x→∞

f(x)
g(x)

= lim
x→+0

f(1/x)
g(1/x)

= lim
x→+0

F (x)
G(x)

= ∞

が成り立つ.

定理 7.6（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (−∞, −γ)で微分可能,

• 開区間 (−∞, −γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→−∞
f(x) = lim

x→−∞
g(x) = 0 (89)

かつ

lim
x→−∞

f ′(x)
g′(x)

= ∞ (90)

ならば,

lim
x→−∞

f(x)
g(x)

= ∞

が成り立つ.

証明 f(x), g(x)に対して,
F (x) = f(−x), G(x) = g(−x)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (−∞, −γ)で定義
されていれば, F (x), G(x)は開区間 (γ, ∞)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(−x), (91)

G′(x) = −g′(−x) (92)

が得られる. よって, F (x), G(x)は

• 開区間 (γ, ∞)で微分可能,
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• 開区間 (γ, ∞)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (89)より

lim
x→∞

F (x) = lim
x→∞

f(−x) = lim
x→−∞

f(x) = 0,

lim
x→∞

G(x) = lim
x→∞

g(−x) = lim
x→−∞

g(x) = 0

であり, 式 (91), 式 (92), 式 (90)より

lim
x→∞

F ′(x)
G′(x)

= lim
x→∞

f ′(−x)
g′(−x)

= lim
x→−∞

f ′(x)
g′(x)

= ∞

である. ゆえに, 定理 7.5が適用できて,

lim
x→−∞

f(x)
g(x)

= lim
x→∞

f(−x)
g(−x)

= lim
x→∞

F (x)
G(x)

= ∞

が成り立つ.

8 ロピタルの定理 (4)

この節では, f ′(x)/g′(x) →∞であって, 関数 f(x), g(x)が共に∞に発散するときを考えます.

定理 8.1（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a+0
f(x) = lim

x→a+0
g(x) = ∞ (93)

かつ, ある数 lが存在して

lim
x→a+0

f ′(x)
g′(x)

= ∞ (94)

ならば,

lim
x→a+0

f(x)
g(x)

= ∞

が成り立つ.

証明 式 (93)より, ある数 δ1 > 0が存在して, 任意の数 xに対して

0 < x− a < δ1 =⇒ f(x) > 1 (95)

が成り立つ. また, ある数 δ2 > 0が存在して, 任意の数 xに対して

0 < x− a < δ2 =⇒ g(x) > 1 (96)

が成り立つ.
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数 ε′ > 0を任意にとる. 式 (94)より, ε′ に対してある数 δ3,ε′ > 0が存在して, 任意の数 xに対

して

0 < x− a < δ3,ε′ =⇒ f ′(x)
g′(x)

> ε′ (97)

が成り立つ.
0 < x1 − a < δ3,ε′ を満たすような, (a, a + γ)の点 x1 を 1つとって固定する. そして,

δ4,ε′ = min{δ1, δ2, x1 − a}

とおく.
a < x < x1 を満たすような数 xを任意にとると, x, x1 ∈ (a, a + γ)なので, 関数 f(t), g(t)は

• 閉区間 [x, x1]で連続,

• 開区間 (x, x1)で微分可能,

• 開区間 (x, x1)の各点 tにおいて g′(t) 6= 0

を満たす. よってコーシーの平均値の定理より, ある数 cx が存在して

f(x)− f(x1)
g(x)− g(x1)

=
f ′(cx)
g′(cx)

, x < cx < x1 (98)

が成り立つ.
0 < x− a < cx − a < x1 − a < δ3,ε′

であるから, 式 (97)より
f ′(cx)
g′(cx)

> ε′ (99)

が成り立つ.
さて, 式 (98)は

f(x)
g(x)

=
f ′(cx)
g′(cx)

1− g(x1)
g(x)

1− f(x1)
f(x)

(100)

と書き直すことができる. ここで, 式 (95), 式 (96)より, 0 < x − a < δ4,ε′ を満たす任意の数 xに

対して f(x) 6= 0, g(x) 6= 0が成り立つことに注意せよ.
いま, x1 を固定しているので, f(x1), g(x1)は定数であると考えることができる. よって,

lim
x→a+0

f(x) = ∞ =⇒ lim
x→a+0

f(x1)
f(x)

= 0 =⇒ lim
x→a+0

(
1− f(x1)

f(x)

)
= 1

lim
x→a+0

g(x) = ∞ =⇒ lim
x→a+0

g(x1)
g(x)

= 0 =⇒ lim
x→a+0

(
1− g(x1)

g(x)

)
= 1

なので,

lim
x→a+0

f(x) = lim
x→a+0

g(x) = ∞ =⇒ lim
x→a+0

1− g(x1)
g(x)

1− f(x1)
f(x)

= 1
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である. すなわち, ある数 δ5,ε′ > 0が存在して1, 任意の数 xに対して

0 < x− a < δ5,ε′ =⇒

∣∣∣∣∣∣∣∣

1− g(x1)
g(x)

1− f(x1)
f(x)

− 1

∣∣∣∣∣∣∣∣
<

1
2

となることがいえる. 一般に, 任意の数 uに対して

|u− 1| < 1
2
⇐⇒ −1

2
< u− 1 <

1
2
⇐⇒ 1

2
< u <

3
2

であるから,

0 < x− a < δ5,ε′ =⇒
1− g(x1)

g(x)

1− f(x1)
f(x)

>
1
2

(101)

である.
よって,

δε′ = min{δ4,ε′ , δ5,ε′}
とおくと, 0 < x− a < δε′ を満たす任意の数 xに対して, 式 (100), 式 (101), 式 (99)より

f(x)
g(x)

>
1
2

f ′(cx)
g′(cx)

>
1
2
ε′

が成り立つ.
数 ε > 0を任意にとり, ε′ = 2εとおけば, 証明は完成する.

x → a− 0の場合は, 定理 8.1と極限に関する基本的な事項から導くことができます.

定理 8.2（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a)で微分可能,

• 開区間 (a− γ, a)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→a−0
f(x) = lim

x→a−0
g(x) = ∞

かつ

lim
x→a−0

f ′(x)
g′(x)

= ∞

ならば,

lim
x→a−0

f(x)
g(x)

= ∞

が成り立つ.

1δ5,ε′ の取り方は x1 に依存しています. また, x1 の取り方は ε′ に依存しています. つまり, δ5,ε′ の取り方は ε′ に依
存しています.
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証明 F (x) = f(2a−x), G(x) = g(2a−x)によって, 新しい関数 F (x), G(x)を定める. F (x), G(x)
は半開区間 [a, a + γ)で連続である. さらに, 合成関数の微分により

F ′(x) = −f ′(2a− x), G′(x) = −g′(2a− x)

が得られるから,

• 開区間 (a, a + γ)で微分可能,

• 開区間 (a, a + γ)の各点 xで G′(x) 6= 0

である. また,

lim
x→a+0

F (x) = lim
x→a+0

f(2a− x) = lim
x→a−0

f(x) = ∞,

lim
x→a+0

G(x) = lim
x→a+0

g(2a− x) = lim
x→a−0

g(x) = ∞

であり,

lim
x→a+0

F ′(x)
G′(x)

= lim
x→a+0

f ′(2a− x)
g′(2a− x)

= lim
x→a−0

f ′(x)
g′(x)

= ∞

である. ゆえに, 定理 8.1が適用できて,

lim
x→a−0

f(x)
g(x)

= lim
x→a+0

f(2a− x)
g(2a− x)

= lim
x→a+0

F (x)
G(x)

= ∞

が成り立つ.

x → aの場合は, 定理 8.1, 定理 8.2と極限に関する基本的な事項から導くことができます.

定理 8.3（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (a− γ, a) ∪ (a, a + γ)で微分可能,

• 開区間 (a− γ, a) ∪ (a, a + γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim
x→a

f(x) = lim
x→a

g(x) = ∞ (102)

かつ

lim
x→a

f ′(x)
g′(x)

= ∞ (103)

ならば,

lim
x→a

f(x)
g(x)

= ∞ (104)

が成り立つ.

証明 式 (102), 式 (103)より,
lim

x→a+0
f(x) = lim

x→a
g(x) = ∞

かつ

lim
x→a+0

f ′(x)
g′(x)

= ∞
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が成り立つ. 定理 8.1を適用すれば,

lim
x→a+0

f(x)
g(x)

= ∞ (105)

が得られる.
同様に, 式 (102), 式 (103)より,

lim
x→a−0

f(x) = lim
x→a

g(x) = ∞

かつ

lim
x→a−0

f ′(x)
g′(x)

= ∞

が成り立つ. 定理 8.2を適用すれば,

lim
x→a−0

f(x)
g(x)

= ∞ (106)

が得られる.
したがって, 式 (105), 式 (106)より, 式 (104)が得られる.

x →∞, x → −∞の場合, ロピタルの定理は次のようになります.

定理 8.4（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (γ, ∞)で微分可能,

• 開区間 (γ, ∞)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→∞
f(x) = lim

x→∞
g(x) = ∞ (107)

かつ

lim
x→∞

f ′(x)
g′(x)

= ∞ (108)

ならば,

lim
x→∞

f(x)
g(x)

= ∞

が成り立つ.

証明 f(x), g(x)に対して,

F (x) = f

(
1
x

)
, G(x) = g

(
1
x

)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (γ, ∞)で定義され
ていれば, F (x), G(x)は開区間 (0, 1/γ)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(1/x)
x2

, (109)

G′(x) = −g′(1/x)
x2

(110)

が得られる. よって, F (x), G(x)は
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• 開区間 (0, 1/γ)で微分可能,

• 開区間 (0, 1/γ)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (107)より

lim
x→+0

F (x) = lim
x→+0

f

(
1
x

)
= lim

x→∞
f(x) = ∞,

lim
x→+0

G(x) = lim
x→+0

g

(
1
x

)
= lim

x→∞
g(x) = ∞

であり, 式 (109), 式 (110), 式 (108)より

lim
x→+0

F ′(x)
G′(x)

= lim
x→+0

f ′(1/x)
g′(1/x)

= lim
x→∞

f ′(x)
g′(x)

= ∞

である. ゆえに, 定理 8.1が適用できて,

lim
x→∞

f(x)
g(x)

= lim
x→+0

f(1/x)
g(1/x)

= lim
x→+0

F (x)
G(x)

= ∞

が成り立つ.

定理 8.5（ロピタルの定理）γ を数とし, γ > 0とする. f(x), g(x)を

• 開区間 (−∞, −γ)で微分可能,

• 開区間 (−∞, −γ)の各点 xで g′(x) 6= 0

なる関数とする. このとき,
lim

x→−∞
f(x) = lim

x→−∞
g(x) = ∞ (111)

かつ

lim
x→−∞

f ′(x)
g′(x)

= ∞ (112)

ならば,

lim
x→−∞

f(x)
g(x)

= ∞

が成り立つ.

証明 f(x), g(x)に対して,
F (x) = f(−x), G(x) = g(−x)

とおくことによって, 新しい関数 F (x), G(x)を定義する. f(x), g(x)が開区間 (−∞, −γ)で定義
されていれば, F (x), G(x)は開区間 (γ, ∞)で定義することができる.
合成関数の微分により,

F ′(x) = −f ′(−x), (113)

G′(x) = −g′(−x) (114)

が得られる. よって, F (x), G(x)は

• 開区間 (γ, ∞)で微分可能,
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• 開区間 (γ, ∞)の各点 xで G′(x) 6= 0

であることがわかる. また, 式 (111)より

lim
x→∞

F (x) = lim
x→∞

f(−x) = lim
x→−∞

f(x) = ∞,

lim
x→∞

G(x) = lim
x→∞

g(−x) = lim
x→−∞

g(x) = ∞

であり, 式 (113), 式 (114), 式 (112)より

lim
x→∞

F ′(x)
G′(x)

= lim
x→∞

f ′(−x)
g′(−x)

= lim
x→−∞

f ′(x)
g′(x)

= ∞

である. ゆえに, 定理 8.4が適用できて,

lim
x→−∞

f(x)
g(x)

= lim
x→∞

f(−x)
g(−x)

= lim
x→∞

F (x)
G(x)

= ∞

が成り立つ.
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