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1 Legendre の定理と Hasse-Minkowski の定理

［定理 1.1（Legendre の定理）］a, b, c を, どの二つをとっても互いに素な 0 で

ない整数であるとする. このとき,

• a, b, c は同一符号でない.

• a を割るすべての奇素数 p に対し,

(
−bc

p

)
= 1.

• b を割るすべての奇素数 p に対し,

(
−ca

p

)
= 1.

• c を割るすべての奇素数 p に対し,

(
−ab

p

)
= 1.

をすべて満たすならば, 方程式 ax2 + by2 + cz2 = 0 は自明でない整数解をもつ.

今回, Legendre の定理を, 次の Hasse-Minkowski の定理から導く.

［定理 1.2（Hasse-Minkowski の定理）］a, b ∈ Q× に対し, 次の二つの条件は

同値である.

(i) 方程式 ax2 + by2 = 1 が Q において自明でない解をもつ.

(ii) 任意の素数 p および p = ∞ に対し, 方程式 ax2 + by2 = 1 が Qp において自

明でない解をもつ. ただし, Q∞ = R とする.

Hasse-Minkowski の定理の証明については, 加藤, 黒川, 斎藤 [1] 命題 2.20 ある

いは斎藤 [2] 系 7.26 を参照のこと.

2 Hilbert 記号

p を素数または ∞ とし, Qp を p 進整数環 (p = ∞ のときは Q∞ = R) とする.

a, b ∈ Qp に対し,

(a, b)p =

1, 方程式 ax2 + by2 = 1 が Qp において自明でない解をもつとき

−1, そうでないとき

とおく. 記号 (a, b)p を Hilbert 記号という.
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［定理 2.1（積公式）］a, b ∈ Q× とする. このとき, (a, b)p は有限個の p を除い

て 1 に等しく, ∏
p

(a, b)p = 1

が成り立つ. この積で, p は ∞ と素数全体を走る.

積公式の証明については, 加藤, 黒川, 斎藤 [1] 定理 2.5 を参照のこと.

3 いくつかの補題

［補題 3.1］a, b は 0 でない実数であり, a > 0 または b > 0 であるとする. この

とき, 方程式

ax2 + by2 = 1

は自明でない実数解をもつ.

［証明］a > 0 と仮定しても一般性を失わない. by2
1 < 1 を満たす 0 でない実数 y1

を一つ選び,

x1 =

√
1 − by2

1

a

とおけば, (x, y) = (x1, y1) が自明でない実数解である.

［補題 3.2］p を素数, a, b, r を整数とし, gcd(a, p) = gcd(b, p) = 1 とする. この

とき, 合同式

ax2 + by2 ≡ r (mod p)

は x, y について整数解をもつ.

［証明］まず, a = 1 の場合を証明する. すなわち, 合同式

x2 + by2 ≡ r (mod p)

が x, y について整数解をもつことを証明する.
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p = 2 の場合. gcd(b, 2) = 1 より, b ≡ 1 (mod 2) となる. r ≡ 0 (mod 2) のと

き, (x, y) = (0, 0) が整数解の 1つである. r ≡ 1 (mod 2) のとき, (x, y) = (1, 0) が

整数解の 1つである.

p が奇素数の場合. y2 (0 ≤ y ≤ (p − 1)/2) は, どの 2つも p を法として合同で

はない. gcd(b, p) = 1 より, r − by2 (0 ≤ y ≤ (p− 1)/2) も, どの 2つも p を法とし

て合同ではない. ところが, これらの個数が (p + 1)/2 個であるにもかかわらず, 0

から p− 1 までの整数のうち, p の平方非剰余であるものは (p− 1)/2 個しかない.

ゆえに, ある整数 y0 が存在して, r − by2
0 は p の平方剰余になる. すなわち, ある

整数 x0 が存在して, r − by2
0 ≡ x2

0 (mod p). このとき, (x, y) = (x0, y0) は与えられ

た合同方程式の整数解である.

次に, 一般の場合について, gcd(a, p) = 1 より, 1次合同式 ax ≡ b (mod p) は x

についての整数解 b′ をもつ. gcd(b, p) = 1 より, gcd(b′, p) = 1 である. 同様に, 1

次合同式 ax ≡ r (mod p) は x についての整数解 r′ をもつ. 与えられた合同方程

式の両辺を a で割ると,

x2 + b′y2 ≡ r′ (mod p)

となり, a = 1 の場合に帰着する.

［補題 3.3］p を奇素数, a, b, c を整数とし, a, b, c はいずれも p と互いに素であ

るとする. このとき, 方程式

ax2 + by2 + cz2 = 0

は Zp において自明でない解をもつ.

［証明］z0 ∈ Z で p と互いに素なものを任意に一つとり, r = −cz2
0 とおき, 補題

3.2 を適用すると, ある x0, y0 ∈ Z が存在して,

ax2
0 + by2

0 ≡ −cz2
0 (mod pZ).

よって,

ax2
0 + by2

0 ≡ −cz2
0 (mod pZp).

c は p と互いに素であるから, c ∈ Z×
p . すなわち, Zp における c の逆元 c−1 が存

在する. 上式の両辺に c−1 を掛けたのち, a′ = −ac−1, b′ = −bc−1 とおくと,

−(a′x2
0 + b′y2

0) ≡ z2
0 (mod pZp).
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ゆえに, −(a′x2
0 + b′y2

0) ∈ (Z×
p )2. すなわち, ある z1 ∈ Z×

p が存在して,

−(a′x2
0 + b′y2

0) = z2
1 .

両辺に −c を掛けて移項すると,

ax2
0 + by2

0 + cz2
1 = 0.

したがって, (x, y, z) = (x0, y0, z1) は方程式 ax2 + by2 + cz2 = 0 の Zp における自

明でない解である.

［補題 3.4］p を奇素数とし, a, b, c をどの二つをとっても互いに素な 0 でない整

数であるとする. また,

• p が a を割るならば,

(
−bc

p

)
= 1.

• p が b を割るならば,

(
−ca

p

)
= 1.

• p が c を割るならば,

(
−ab

p

)
= 1.

がすべて成立するものとする. このとき, 方程式

ax2 + by2 + cz2 = 0

は Zp において自明でない解をもつ.

［証明］a, b, c はどの二つも互いに素だから, p が a, b, c のいずれも割らない場合

と, a のみを割る場合を証明すれば十分である. 前者の場合は, 補題 3.3 より明ら

か. 後者の場合,

(
−bc

p

)
= 1であるから, ある z0 ∈ Z×

p が存在して, z2
0 = −bcとな

る. 両辺に c を掛け, y0 = c2 とおくと, cz2
0 = −by2

0 となる. ゆえに, by2
0 + cz2

0 = 0.

このとき, (x, y, z) = (0, y0, z0) は方程式 ax2 + by2 + cz2 = 0 の Zp における自明

でない解である.
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4 Legendre の定理の証明

［定理 1.1（Legendre の定理, 再掲）］a, b, c を, どの二つをとっても互いに素

な 0 でない整数であるとする. このとき,

• a, b, c は同一符号でない.

• a を割るすべての奇素数 p に対し,

(
−bc

p

)
= 1.

• b を割るすべての奇素数 p に対し,

(
−ca

p

)
= 1.

• c を割るすべての奇素数 p に対し,

(
−ab

p

)
= 1.

をすべて満たすならば, 方程式 ax2 + by2 + cz2 = 0 は自明でない整数解をもつ.

［証明］補題 3.4 より, p が奇素数ならば, 方程式 ax2 + by2 + cz2 = 0 は Zp

における自明でない解 (x, y, z) = (x0, y0, z0) をもつ. z0 6= 0 であるとすれば,

(X,Y ) = (x0/z0, y0/z0) は方程式 (−a/c)X2 + (−b/c)Y 2 = 1 の Qp における自明

でない解である.

また, a, b, c は同一符号でないという仮定より, −a/c > 0 または −b/c > 0 であ

る. 補題 3.1 より, (−a/c)X2 + (−b/c)Y 2 = 1 は p = ∞ の場合にも自明でない解

をもつ. よって, Hilbert 記号についての等式 (−b/a,−c/a)p = 1 が p = 2 以外の

場合にいえる.

ところが, Hilbert 記号の積公式により, p = 2 の場合も (−b/a,−c/a)2 = 1 でな

ければならない. すなわち, (−a/c)X2 + (−b/c)Y 2 = 1 は Q2 においても自明でな

い解をもつ.

したがって, 任意の素数 p および p = ∞ に対し, (−a/c)X2 + (−b/c)Y 2 = 1

は Qp において自明でない解をもつ. よって, Hasse-Minkowski の定理により,

(−a/c)X2 + (−b/c)Y 2 = 1 は自明でない有理数解 (X,Y ) = (X1, Y1) をもつ. あ

る x1, y1, z1 ∈ Z, z1 > 0 によって X1 = x1/z1, Y1 = y1/z1 と表せば, (x, y, z) =

(x1, y1, z1) は方程式 ax2 + by2 + cz2 = 0 の自明でない整数解である.
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［注意 4.1］定理 1.1の逆もいえて,条件は必要十分である. 以下,それを証明する.

方程式 ax2 + by2 + cz2 = 0 が自明でない整数解 (x1, y1, z1) をもつとする.

a, b, c が同一符号ならば実数解は自明なものしかない. よって, 自明でない整数

解が存在すれば, a, b, c は同一符号にならない.

係数の平方因子を整数解に押しやることにより, a, b, c は平方因子をもたないと

仮定してもよい. さらに, ax2
1 + by2

1 + cz2
1 = 0 の両辺を x1, y1, z1 の公約数で割っ

て gcd(x1, y1, z1) = 1 なるものが得られる. このとき, c が平方因子を持たないこ

とにより, x1, y1 の共通の素因子は z1 を割るので, そのような共通の素因子は存在

しない. 他の組み合わせについても同様である. こうして, x1, y1, z1 が二つずつ互

いに素であるような整数解がとれる.

さて, a を割る任意の奇素数 p に対して,

by2
1 + cz2

1 ≡ 0 (mod p)

が成り立つ. 両辺に b を掛けて移項すると,

b2y2
1 ≡ −bcz2

1 (mod p).

a, b, c は互いに素であり, y1, z1 は共通の素因子をもたないことから, b, c, y1, z1

は p と互いに素である. ゆえに,(
−bc

p

)
=

(
−bcz2

1

p

)
= 1.

同様にして, 残りの二つの条件も得られる.

8


