
1 四つの平方数の和に関するLagrangeの定理

定理 1.1 (Lagrange). 任意の正の整数 nは必ず

n = x2
1 + x2

2 + x2
3 + x2

4, xi ≥ 0, i = 1, 2, 3, 4

の形に書き表すことができる．

証明. 恒等式

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) = (x1y1 + x2y2 + x3y3 + x4y4)2

+ (x1y2 − x2y1 + x3y4 − x4y3)2

+ (x1y3 − x2y4 + x3y1 − x4y2)2

+ (x1y4 + x2y3 − x3y2 − x4y1)2

によって四つの平方数の和の積もまた，四つの平方数の和として表されるから，定理を nが素数で

ある場合に証明すれば十分である．

n = 2のときは 2 = 12 + 12により明らかである．

pを奇素数とする．まず，p2より小さな pの倍数で，四つの平方数の和になっている数が存在す

ることを示す．そのために (p + 1)/2個の平方数

(1) 02, 12, 22, . . . ,

(
p − 1

2

)2

を考える．これらのどの 2つも pを法として合同ではない．よって

(2) −1, −1 − 12, −1 − 22, . . . , −1 −
(

p − 1
2

)2

も pを法として合同ではない．(1), (2)を合わせると全部で p + 1個の数がある．よって部屋割り
論法から pを法として考えて同じ剰余類に入る数がある．すなわち

x2
1 ≡ −1 − x2

2 (mod p), 0 ≤ xi ≤ p − 1
2

, i = 1, 2

となる整数 x1, x2 がある．これより，ある正の整数 hによって

(3) x2
1 + x2

2 + 1 = ph, 0 ≤ xi ≤ p − 1
2

, i = 1, 2

と書ける．しかも

ph = x2
1 + x2

2 + 1

≤ (p − 1)2

4
+

(p − 1)2

4
+ 1

=
(p − 1)2

2
+ 1

<
(p − 1)2

2
+

(p − 1)2

2
< p2

であるから 1 ≤ h < pである．
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いま一般に

(4) x2
1 + x2

2 + x2
3 + x2

4 = ph, 1 < h < p

とするとき，0 < h′ < hであるような整数 h′を適当にとって ph′が 4つの平方数の和に分解でき
ることを示す．これが示せれば (3)の形から，hが 1になるまで上の操作を続けることにより，最
後には p自身の分解が得られる．

(4)における x1, x2, x3, x4 を hで割り，絶対値において最小の剰余を y1, y2, y3, y4とおいて

x1 ≡ y1, x2 ≡ y2, x3 ≡ y3, x4 ≡ y4 (mod h)(5)

|yi| ≥ h

2
, i = 1, 2, 3, 4(6)

とする．このとき

y2
1 + y2

2 + y2
3 + y4

2 ≡ x2
1 + x2

2 + x2
3 + x2

4 ≡ 0 (mod h)

よって，ある整数 h′ ≥ 0によって

(7) y2
1 + y2

2 + y2
3 + y2

4 = hh′

と書ける．これを冒頭に述べた恒等式に代入すると

z2
1 + z2

2 + z2
3 + z2

4 = ph2h′

ただし (5)によって

z1 = x1y1 + x2y2 + x3y3 + x4y4 ≡
4∑

i=1

x2
i ≡ 0 (mod h),

z2 = x1y1 − x2y2 + x3y4 − x4y3 ≡ x1x2 − x2x1 + x3x4 − x4x3 = 0 (mod h)

同様に

z3 = x1y3 − x2y4 + x3y1 − x4y2 ≡ 0 (mod h)

z4 = x1y4 + x2y3 − x3y2 − x4y1 ≡ 0 (mod h)

よって

z1 = ht1, z2ht2, z3ht3, z4ht4

とおけば

t21 + t22 + t23 + t24 = ph′

となる．

さて，(6)によって

hh′ =
4∑

i=1

y2
i ≤ 4

(
h

2

)2

= h2

ゆえに h′ ≤ h．

もし仮に等号が成り立つならば

yi =
h

2
, i = 1, 2, 3, 4

2



したがって h/2は整数であり，hは偶数である．また h > 1より各 iについて yi �= 0．よって xi

は hの倍数にはなりえない．ゆえに xi は h/2の奇数倍でなければならない．いま

xi = (2mi + 1)
h

2

とおき，(3)に代入すれば
h

4

4∑
i=1

(2mi + 1)2 = p

を得る．左辺は偶数だからこれは矛盾である．したがって h′ < hである．

最後に h′ �= 0を示す．もし h′ = 0とすると (7)から y1 = y2 = y3 = y4 = 0となる．よって (5)
から

x1 = hu1, x2 = hu2, x3 = hu3, x4 = hu4

となる整数 u1, u2, u3, u4が定まる．このとき (4)の両辺を hで割ると

h(u2
1 + u2

2 + u2
3 + u2

4) = p, 1 < h < p

となる．pは素数なのでこれは矛盾である．したがって h′ �= 0．
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