
1 ホモロジー加群

Rを環とする.

定義 1.1. 左 R加群の系

A := (An | n ∈ Z), B := (Bn | n ∈ Z)

が与えられているとする.
ある k ∈ Zが存在して, すべての n ∈ Zに対して, R準同型

ϕn : An −→ Bn+k

が定まっているとき, R準同型の系

ϕ := (ϕn : An −→ Bn+k | n ∈ Z)

を Aから B への次数 kの R準同型という.

記号 1.2. Aから B への次数 kの R準同型 ϕを表すとき, 普通の写像と同じように

ϕ : A −→ B

という記号を用いる.

定義 1.3. 左 R加群の系

C := (Cn | n ∈ Z)

と, 次数 −1の R準同型

∂ := (∂n : Cn −→ Cn−1 | n ∈ Z)

とが, 条件
∂n ◦ ∂n+1 = 0 (∀n ∈ Z)

を満たすとき, 組X := (C, ∂)を鎖複体という.

· · · �� Cn+1
∂n+1

�� Cn
∂n

�� Cn−1
�� · · ·

各 n ∈ Zに対して, Cn を n次複体加群, ∂n を n次境界作用素という.

記号 1.4. 後に定義する双対鎖複体を表すための記号との区別を明確にするために, 鎖複体 (C, ∂)
を (Cn, ∂n)と書くことにする.
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定義 1.5. X := (Cn, ∂n)を鎖複体とする. 各 n ∈ Zに対して,

Zn(X) := Ker ∂n

をX の n次輪体加群といい,
Bn(X) := Im ∂n+1

をX の n次境界加群という.
Zn(X)の元を n次輪体といい, Bn(X)の元を n次境界輪体という.

∂n ◦ ∂n+1 = 0より,
Bn(X) ⊆ Zn(X) ⊆ Xn

が成り立つ. よって剰余 R加群

Hn(X) := Zn(X)/Bn(X)

が定義できる.
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���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Zn(X)

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Zn−1(X)

Bn+1(X) Bn(X) Bn−1(X)

0 0 0

定義 1.6. Hn(X)を n次ホモロジー加群という.
H(X) := (Hn(X) | n ∈ Z)をX のホモロジー加群という.

定義 1.7. 二つの鎖複体X := (Cn, ∂n), X ′ := (C′
n, ∂′

n)に対して, R準同型の系

f := (fn : Cn → C′
n | n ∈ Z)

がX からX ′への複体写像であるとは,

fn−1 ◦ ∂n = ∂′
n ◦ fn (∀n ∈ Z)

を満たすとき, 言いかえると, 図式

· · · �� Cn+1
∂n+1

��

fn+1

��

Cn
∂n

��

fn

��

Cn−1
��

fn−1

��

· · ·

· · · �� C′
n+1

∂′
n+1

�� C′
n

∂′
n

�� C′
n−1

�� · · ·

が可換であるときにいう.
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記号 1.8. f がX からX ′への複体写像であるとき, 普通の写像のように, f : X → X ′は複体写
像である, と書く.

例 1.9. X := (Cn, ∂n)を鎖複体とする. X 上の恒等写像

idX : X −→ X

とは, 恒等写像
idCn : Cn −→ Cn, x �−→ x

からなる R準同型の系

idX := (idCn : Cn −→ Cn | n ∈ Z)

のことである.

· · · �� Cn+1
∂n+1

��

idCn+1

��

Cn
∂n

��

idCn

��

Cn−1
��

idCn−1

��

· · ·

· · · �� Cn+1
∂n+1

�� Cn
∂n

�� Cn−1
�� · · ·

idX が複体写像であることは明らかである.

命題 1.10. Zn := Zn(X), Bn := Bn(X)などとおく.

(i) fn(Zn) ⊆ Z ′
n.

(ii) fn(Bn) ⊆ B′
n.

証明. (i) 可換性 fn−1 ◦ ∂n = ∂′
n ◦ fn より,

∂′
n ◦ fn(Zn) = fn−1 ◦ ∂n(Zn) = 0.

ゆえに

fn(Zn) ⊆ Z ′
n.

(ii) 可換性 fn ◦ ∂n+1 = ∂′
n+1 ◦ fn+1より,

fn(Bn) = fn ◦ ∂n+1(Cn+1) = ∂′
n+1 ◦ fn+1(Cn+1) ⊆ B′

n.

fn(Zn) ⊆ Z ′
n, fn(Bn) ⊆ B′

n より, fnは R準同型

f∗
n : Hn(X) −→ Hn(X ′), z + Bn �−→ fn(z) + B′

n (z ∈ Zn)

を引き起こす.
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定義 1.11. 鎖複体X := (Cn, ∂n)から鎖複体X ′ := (C′
n, ∂′

n)への複体写像

f := (fn : Cn → C′
n | n ∈ Z)

に対して, R準同型の系

f∗ := (f∗
n : Hn(X) −→ Hn(X ′) | n ∈ Z)

を, f によって引き起こされたホモロジー写像という.

記号 1.12. f∗ が複体写像 f によって引き起こされたホモロジー写像であるとき, 普通の写像の
ように, f∗ : H(X) → H(X ′)はホモロジー写像である, と書く.

例 1.13. H(X)をホモロジー加群とする.
H(X)上の恒等写像とは, 鎖複体X 上の恒等写像

idX : X −→ X

から引き起こされるホモロジー写像

id∗
X : H(X) −→ H(X)

のことである.

定義 1.14. 鎖複体

X := (Cn, ∂n), X ′ := (C′
n, ∂′

n), X ′′ := (C′′
n , ∂′′

n)

と, 複体写像
f : X −→ X ′, g : X ′ −→ X ′′

とが与えられているとする.

0 �� X
f

�� X ′ g
�� X ′′ �� 0

が完全系列であるとは, 各 n ∈ Zについて

0 �� Cn
fn

�� C′
n

gn
�� C′′

n
�� 0

が完全系列であるとき, すなわち, 図式

0

��

0

��

0

��

· · · �� Cn+1
∂n+1

��

fn+1

��

Cn
∂n

��

fn

��

Cn−1
��

fn−1

��

· · ·

· · · �� C′
n+1

∂′
n+1

��

gn+1

��

C′
n

∂′
n

��

gn

��

C′
n−1

��

gn−1

��

· · ·

· · · �� C′′
n+1

∂′′
n+1

��

��

C′′
n

∂′′
n

��

��

C′′
n−1

��

��

· · ·

0 0 0

4



が可換であるときにいう.

定理 1.15. 鎖複体の完全系列

0 �� X
f

�� X ′ g
�� X ′′ �� 0

が与えられているとする. このとき, 次数 −1の R準同型

δ := (δn : Hn(X ′′) −→ Hn−1(X) | n ∈ Z)

が存在して,

· · · · · · δn+1
�� Hn(X)

f∗
n

�� Hn(X ′)
g∗

n
�� Hn(X ′′)

δn
�� Hn−1(X)

f∗
n−1

�� Hn−1(X ′)
g∗

n−1
�� Hn−1(X ′′)

δn−1
�� · · · · · ·　　　

が完全系列になる.
δを連結準同型という.

証明. Hn(X ′′)の元
x′′

n + Bn(X ′′) (x′′
n ∈ Zn(X ′′))

に対して, 次のようにしてHn−1(X)の元

xn−1 + Bn−1(X) (xn−1 ∈ Zn−1(X))

を定める.

手順 1 gnは全射なので,
∃x′

n ∈ C′
n s.t. gn(x′

n) = x′′
n.

手順 2 gn−1 ◦ ∂′
n = ∂′′

n ◦ gn より,

gn−1(∂′
n(x′

n)) = ∂′′
n(gn(x′

n)) = ∂′′
n(x′′

n) = 0.

ゆえに,
∂′

n(x′
n) ∈ Ker gn−1 = Im fn−1.

よって,
∃xn−1 ∈ Cn−1 s.t. fn−1(xn−1) = ∂′

n(x′
n).

写像 δn : Hn(X ′′) −→ Hn−1(X)を

δn(x′′
n + Bn(X ′′)) = xn−1 + Bn−1(X)
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によって定義するわけだが, そのためには次の二つのことを確認しなければならない.

cn−1 ∈ Zn−1(X)であること: fn−2 ◦ ∂n−1 = ∂′
n−1 ◦ fn−1より,

fn−2(∂n−1(xn−1)) = ∂′
n−1(fn−1(xn−1)) = ∂′

n−1(∂
′
n(x′

n)) = 0.

fn−2は単射であるから,
∂n−1(xn−1) = 0.

したがって,
xn−1 ∈ Zn−1(X).

δn が well-definedであること: 二つの元 x′′
n, y′′

n ∈ Zn(X ′′)をとり,

x′′
n ≡ y′′

n mod Bn(X ′′)

であると仮定する. このとき,

∃b′′n+1 ∈ C′′
n+1 s.t. ∂′′

n+1(b
′′
n+1) = x′′

n − y′′
n.

gn+1は全射であるから,
∃b′n+1 ∈ C′

n+1 s.t. gn+1(b′n+1) = b′′n+1.

一方, 手順 1, 手順 2 を y′′
n についても行うと,

∃y′
n ∈ C′

n s.t. gn(y′
n) = y′′

n,

∃yn−1 ∈ Cn−1 s.t. fn−1(yn−1) = ∂′
n(y′

n).

ゆえに,

gn(x′
n) − gn(y′

n) = x′′
n − y′′

n = ∂′′
n+1(b

′′
n+1) = ∂′′

n+1(gn+1(b′n+1)) = gn(∂′
n+1(b

′
n+1)).

よって,
gn(x′

n − y′
n − ∂′

n+1(b
′
n+1)) = 0.

したがって,
x′

n − y′
n − ∂′

n+1(b
′
n+1) ∈ Ker gn = Im fn.

ゆえに,
∃an ∈ Cn s.t. x′

n − y′
n − ∂′

n+1(b
′
n+1) = fn(an).

したがって,

fn−1(xn−1 − yn−1) = ∂′
n(x′

n − y′
n) = ∂′

n(fn(an)) = fn−1(∂n(an)).

fn−1は単射であるから,
xn−1 − yn−1 = ∂n(an).

ゆえに,
xn−1 ≡ yn−1 mod Bn−1(X).

以上より, 写像 δn が実際に定まることがわかった.
δnがR準同型であることや, 系列が完全になることは, 地道に一つ一つ確かめていけばよい.
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2 コホモロジー加群

定義 2.1. 左 R加群の系

C := (Cn | n ∈ Z)

と, 次数 1の R準同型

d := (dn : Cn −→ Cn+1 | n ∈ Z)

とが, 条件
dn+1 ◦ dn = 0 (∀n ∈ Z)

を満たすとき, 組X := (C, d)を双対鎖複体という.

· · · �� Cn−1 dn−1
�� Cn dn

�� Cn+1 �� · · ·

各 n ∈ Zに対して, Cn を n次双対複体加群, dn を n次双対境界作用素という.

記号 2.2. 鎖複体を表すための記号との区別を明確にするために, 双対鎖複体 (C, d)を (Cn, dn)
と書くことにする.

定義 2.3. X := (Cn, dn)を鎖複体とする. 各 n ∈ Zに対して,

Zn(X) := Ker dn

をX の n次双対輪体加群といい,
Bn(X) := Im dn−1

をX の n次双対境界加群という.
Zn(X)の元を n次双対輪体といい, Bn(X)の元を n次双対境界輪体という.

dn ◦ dn−1 = 0より,
Bn(X) ⊆ Zn(X) ⊆ Cn

が成り立つ. よって剰余 R加群

Hn(X) := Zn(X)/Bn(X)

が定義できる.
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定義 2.4. Hn(X)を n次コホモロジー加群という.
H(X) := (Hn(X) | n ∈ Z)をX のコホモロジー加群という.

定義 2.5. 二つの双対鎖複体X := (Cn, dn), X ′ := (C′n, d′n)に対して, R準同型の系

f := (fn : Cn → C′n | n ∈ Z)

がX からX ′への双対複体写像であるとは,

fn+1 ◦ dn = d′n ◦ fn (∀n ∈ Z)

を満たすとき, 言いかえると, 図式

· · · �� Cn−1 dn−1
��

fn−1

��

Cn dn
��

fn

��

Cn+1 ��

fn+1

��

· · ·

· · · �� C′
n−1

d′n−1
�� C′n d′n

�� C′
n+1

�� · · ·

が可換であるときにいう.

記号 2.6. f がX からX ′への双対複体写像であるとき, 普通の写像のように, f : X → X ′は双
対複体写像である, と書く.

例 2.7. X := (Cn, dn)を双対鎖複体とする. X 上の恒等写像

idX : X −→ X

とは, 恒等写像
idCn : Cn −→ Cn, x �−→ x

からなる R準同型の系

idX := (idCn : Cn −→ Cn | n ∈ Z)

のことである.

· · · �� Cn−1 dn−1
��

idCn−1

��

Cn dn
��

idCn

��

Cn+1 ��

idCn+1

��

· · ·

· · · �� C′
n−1

d′n−1
�� C′n d′n

�� C′
n+1

�� · · ·

idX が双対複体写像であることは明らかである.

命題 2.8. Zn := Zn(X), Bn := Bn(X)などとおく.

(i) fn(Zn) ⊆ Z ′n.
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(ii) fn(Bn) ⊆ B′n.

証明. (i) 可換性 fn+1 ◦ dn = d′n ◦ fnより,

d′n ◦ fn(Zn) = fn+1 ◦ dn(Zn) = 0.

ゆえに

fn(Zn) ⊆ Z ′n.

(ii) 可換性 fn ◦ dn−1 = d′n−1 ◦ fn−1より,

fn(Bn) = fn ◦ dn−1(Cn−1) = d′n−1 ◦ fn−1(Cn−1) ⊆ B′n.

fn(Zn) ⊆ Z ′n, fn(Bn) ⊆ B′n より, fn は R準同型

fn∗ : Hn(X) −→ Hn(X ′), z + Bn �−→ fn(z) + B′n (z ∈ Zn)

を引き起こす.

定義 2.9. 双対鎖複体X := (Cn, dn)から鎖複体X ′ := (C′n, d′n)への双対複体写像

f := (fn : Cn → C′n | n ∈ Z)

に対して, R準同型の系

f∗ := (fn∗ : Hn(X) −→ Hn(X ′) | n ∈ Z)

を, f によって引き起こされたコホモロジー写像という.

記号 2.10. f∗ が双対複体写像 f によって引き起こされたコホモロジー写像であるとき, 普通の
写像のように, f∗ : H(X) → H(X ′)はコホモロジー写像である, と書く.

例 2.11. H(X)をコホモロジー加群とする.
H(X)上の恒等写像とは, 双対鎖複体X 上の恒等写像

idX : X −→ X

から引き起こされるコホモロジー写像

id∗
X : H(X) −→ H(X)

のことである.
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定義 2.12. 双対鎖複体

X := (Cn, dn), X ′ := (C′n, d′n), X ′′ := (C′′n, d′′n)

と, 双対複体写像
f : X −→ X ′, g : X ′ −→ X ′′

とが与えられているとする.

0 �� X
f

�� X ′ g
�� X ′′ �� 0

が完全系列であるとは, 各 n ∈ Zについて

0 �� Cn
fn

�� C′n gn

�� C′′n �� 0

が完全系列であるとき, すなわち, 図式

0

��

0

��

0

��

· · · �� Cn−1 dn−1
��

fn−1

��

Cn dn
��

fn

��

Cn+1 ��

fn+1

��

· · ·

· · · �� C′n−1 d′n−1
��

gn−1

��

C′n d′n
��

gn

��

C′n+1 ��

gn+1

��

· · ·

· · · �� C′′n−1 d′′n−1
��

��

C′′n d′′n
��

��

C′′n+1 ��

��

· · ·

0 0 0

が可換であるときにいう.

定理 2.13. 双対鎖複体の完全系列

0 �� X
f

�� X ′ g
�� X ′′ �� 0

が与えられているとする. このとき, 次数 −1の R準同型

δ := (δn : Hn(X ′′) −→ Hn+1(X) | n ∈ Z)

が存在して,

· · · · · · δn−1
�� Hn(X)

fn∗
�� Hn(X ′)

gn∗
�� Hn(X ′′)

δn
�� Hn+1(X)

fn+1∗
�� Hn+1(X ′)

gn+1∗
�� Hn+1(X ′′)

δn+1
�� · · · · · ·　　　

が完全系列になる.
鎖複体のときと同じように, δを連結準同型という.
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証明. Hn(X ′′)の元
x′′n + Bn(X ′′) (x′′n ∈ Zn(X ′′))

に対して, 次のようにしてHn+1(X)の元

xn+1 + Bn+1(X) (xn+1 ∈ Zn+1(X))

を定める.

手順 1 gnは全射なので,

∃x′n ∈ Cn′ s.t. gn(x′n) = x′′n.

手順 2 gn+1 ◦ d′n = d′′n ◦ gn より,

gn+1(d′n(x′n)) = d′′n(gn(x′n)) = d′′n(x′′n) = 0.

ゆえに,
d′n(x′n) ∈ Ker gn+1 = Im fn+1.

よって,
∃xn+1 ∈ Cn+1 s.t. fn+1(xn+1) = d′n(x′n).

写像 δn : Hn(X ′′) −→ Hn+1(X)を

δn(x′′n + Bn(X ′′)) = xn+1 + Bn+1(X)

によって定義するわけだが, そのためには次の二つのことを確認しなければならない.

cn+1 ∈ Zn+1(X)であること: fn+2 ◦ dn+1 = d′n+1 ◦ fn+1より,

fn+2(dn+1(xn+1)) = d′n+1(fn+1(xn+1)) = d′n+1(d′n(x′n)) = 0.

fn+2は単射であるから,
dn+1(xn+1) = 0.

したがって,
xn+1 ∈ Zn+1(X).

δn が well-definedであること: 二つの元 x′′n, y′′n ∈ Zn(X ′′)をとり,

x′′n ≡ y′′n mod Bn(X ′′)

であると仮定する. このとき,

∃b′′n−1 ∈ Cn−1′′ s.t. d′′n−1(b′′n−1) = x′′n − y′′n.
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gn−1は全射であるから,

∃b′n−1 ∈ Cn−1′ s.t. gn−1(b′n−1) = b′′n−1
.

一方, 手順 1, 手順 2 を y′′n についても行うと,

∃y′n ∈ Cn′ s.t. gn(y′n) = y′′n,

∃yn+1 ∈ Cn+1 s.t. fn+1(yn+1) = d′n(y′n).

ゆえに,

gn(x′n) − gn(y′n) = x′′n − y′′n = d′′n−1(b′′n−1) = d′′n−1(gn−1(b′n−1)) = gn(d′n−1(b′n−1)).

よって,
gn(x′n − y′n − d′n−1(b′n−1)) = 0.

したがって,
x′n − y′n − d′n−1(b′n−1) ∈ Ker gn = Im fn.

ゆえに,
∃an ∈ Cn s.t. x′n − y′n − d′n−1(b′n−1) = fn(an).

したがって,

fn+1(xn+1 − yn+1) = d′n(x′n − y′n) = d′n(fn(an)) = fn+1(dn(an)).

fn+1は単射であるから,
xn+1 − yn+1 = dn(an).

ゆえに,
xn+1 ≡ yn+1 mod Bn+1(X).

以上より, 写像 δn が実際に定まることがわかった.
δnがR準同型であることや, 系列が完全になることは, 地道に一つ一つ確かめていけばよい.
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