
1 Homの計算例

［定理 1］HomZ(Q, Z) = 0.

［証明］f ∈ HomZ(Q, Z)とする.

任意のm, n ∈ Z, n 6= 0, gcd(m,n) = 1に対して,

n · f
(m

n

)
= f

(
n · m

n

)
= f(m) = m · f(1).

f(Q) ⊆ Zなので, nは f(1)を割る.

特に, m = 1とし, nとして素数 pをとれば, pは f(1)の約数である. もし仮に f(1) 6= 0ならば,

pの取り方は任意なので, f(1)は無数の素因子を持つことになり矛盾する. したがって, f(1) = 0

でなければならない.

すると, f(m/n) = 0がいえる. ゆえに, f = 0.

［定理 2］M を可除 Z加群とする1). このとき, HomZ(M, Z) = 0が成り立つ.

［証明］f ∈ HomZ(M, Z), すなわち, f : M → Zを Z準同型とする.

M が可除 Z加群ならば, f(M)もまた可除 Z加群である. 実際, u ∈ M を任意にとると, M は可

除 Z加群だから, 任意の r ∈ Zに対して, ある v ∈ M が存在して, u = rv. ゆえに,

f(u) = f(rv) = r · f(v).

よって, 任意の u ∈ M と任意の素数 pに対して, ある v ∈ M が存在して, f(u) = p · f(v)となる.

f(v) ∈ Zだから, f(u)は pで割り切れる. もし仮に f(u) 6= 0ならば, pは任意なので, f(u)は無数

の素因子を持つことになり矛盾する. ゆえに, f(u) = 0でなければならない. したがって, f = 0と

なる.

［例 3］Qは可除 Z加群である. 実際, 任意の x ∈ Q, r ∈ Zに対して, y = x/rとおけば, x = ry,

y ∈ Qとなる. したがって, 再び HomZ(Q, Z) = 0が示された.

［例 4］Q/Zは可除 Z加群である. 実際, 任意の x ∈ Q, r ∈ Zに対して, y = x/rとおけば,

x + Z = ry + Z = r · (y + Z)

となる. したがって, HomZ(Q/Z, Z) = 0.

1)すなわち, 任意の x ∈ M , r ∈ Z に対して, ある y ∈ M が存在して, x = ry が成り立つものとする.
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［定理 5］Rを環とする. 任意の左 R加群M に対して, HomR(R,M) ∼= M .

［証明］H = HomR(R,M)とおく. 写像 ϕを

ϕ : H → M, f 7→ f(1)

によって定める.

任意の f , g ∈ H と r ∈ Rに対して

ϕ(f + g) = (f + g)(1) = f(1) + g(1) = ϕ(f) + ϕ(g),

ϕ(rf) = (rf)(1) = r · f(1) = r · ϕ(f).

ゆえに, ϕは R準同型である.

各 x ∈ M に対して, 写像 fx : R → M を, 各 r ∈ Rに対して,

fx(a) = ax

とおくことによって定める. 任意の a, b, r ∈ Rに対して,

fx(a + b) = (a + b)x = ax + bx = fx(a) + fx(b),

fx(ra) = (ra)x = r(ax) = r · fx(a).

ゆえに, fx は R準同型である. すなわち, fx ∈ H. これより, 写像

ψ : M → H, x 7→ fx.

が定まる.

ϕが全単射であることを示すために, ψが ϕの逆写像であることを示す. 任意の x ∈ M に対して,

ϕ ◦ ψ(x) = ϕ(fx) = fx(1) = 1 · x = x.

逆に, 任意の f ∈ H に対して, y = f(1)とおくと,

ψ ◦ ϕ(f) = ψ(y) = fy.

一方, 任意の a ∈ Rに対して,

fy(a) = ay = a · f(1) = f(a).

ゆえに, fy = f . よって, ψ ◦ ϕ(f) = f . したがって, ψは ϕの逆写像であり, ϕは全単射である.

以上より, ϕが R加群の同型であることが示された.

［例 6］任意の環 Rに対して, HomR(R,R) ∼= R.

HomZ(Z, Q) ∼= Q.

mを 2以上の整数とするとき, HomZ(Z, Z/mZ) ∼= Z/mZ.
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［定理 7］mを正の整数とするとき, 任意の Z加群M に対して, HomZ(mZ,M) ∼= M .

［証明］H = HomZ(mZ,M)とおく. 写像 ϕを

ϕ : H → M, f 7→ f(m)

によって定める.

任意の f , g ∈ H と r ∈ Zに対して

ϕ(f + g) = (f + g)(m) = f(m) + g(m) = ϕ(f) + ϕ(g),

ϕ(rf) = (rf)(m) = r · f(m) = r · ϕ(f).

ゆえに, ϕは Z準同型である.

各 x ∈ M に対して, 写像 fx : mZ → M を, 各 r ∈ Zに対して,

fx(ma) = ax

とおくことによって定める. 任意の a, b, r ∈ Zに対して,

fx(ma + mb) = (a + b)x = ax + bx = fx(ma) + fx(mb),

fx(r(ma)) = fx(m(ra)) = (ra)x = r(ax) = r · fx(ma).

ゆえに, fx は Z準同型である. すなわち, fx ∈ H. これより, 写像

ψ : M → H, x 7→ fx.

が定まる.

ϕが全単射であることを示すために, ψが ϕの逆写像であることを示す. 任意の x ∈ M に対して,

ϕ ◦ ψ(x) = ϕ(fx) = fx(m) = fx(m · 1) = 1 · x = x.

逆に, 任意の f ∈ H に対して, y = f(m)とおくと,

ψ ◦ ϕ(f) = ψ(y) = fy.

一方, 任意の a ∈ Zに対して,

fy(ma) = ay = a · f(m) = f(ma).

ゆえに, fy = f . よって, ψ ◦ ϕ(f) = f . したがって, ψは ϕの逆写像であり, ϕは全単射である.

以上より, ϕが Z加群の同型であることが示された.
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［別証］m倍写像

[m] : Z → mZ, x 7→ mx

は Z加群の同型であり, その逆写像は

[m−1] : mZ → Z, mx 7→ x

である. これより, 任意の Z加群M に対して, Z加群の同型

ϕ : HomZ(mZ,M) → HomZ(Z,M), f 7→ f ◦ [m]

が定まる. 実際, H = HomZ(mZ,M)とおくと, 任意の f , g ∈ H と任意の r, x ∈ Zに対して,

ϕ(f + g)(x) = ((f + g) ◦ [m])(x) = (f + g)(mx)

= f(mx) + g(mx)

= (f ◦ [m])(x) + (g ◦ [m])(x)

= ϕ(f)(x) + ϕ(g)(x)

= (ϕ(f) + ϕ(g))(x).

ϕ(rf)(x) = ((rf) ◦ [m])(x) = (rf)(mx)

= r · f(mx) = r · (f ◦ [m])(x)

= r · ϕ(f)(x).

ゆえに, ϕは準同型である. さらに,

ψ : HomZ(Z,M) → HomZ(mZ, M), g 7→ g ◦ [m−1]

が ϕの逆写像になる. 実際, H ′ = HomZ(Z,M)とおくと, 任意の f ∈ H, g ∈ H ′ に対して,

ψ ◦ ϕ(f) = ψ(f ◦ [m]) = (f ◦ [m]) ◦ [m−1] = f ◦ ([m] ◦ [m−1]) = f,

ϕ ◦ ψ(g) = ϕ(g ◦ [m−1]) = (g ◦ [m−1]) ◦ [m] = g ◦ ([m−1] ◦ [m]) = g.

ゆえに, ϕは全単射である. よって確かに, ϕは同型である.

このとき, 同型

HomZ(mZ,M) ∼= HomZ(Z,M) ∼= M

が成り立つ.

［例 8］mを正の整数とするとき, HomZ(mZ, Q) ∼= Q.

m, nを正の整数とするとき, HomZ(mZ, nZ) ∼= nZ ∼= Z.

m, nを正の整数とするとき, HomZ(mZ, Z/nZ) ∼= Z/nZ.
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［定理 9］Rを整域, K をその商体とするとき, HomR(K,K) ∼= K.

［証明］H = HomR(K,K)とおく. 写像 ϕを

ϕ : H → K, f 7→ f(1)

によって定める.

任意の f , g ∈ H と r ∈ Rに対して

ϕ(f + g) = (f + g)(1) = f(1) + g(1) = ϕ(f) + ϕ(g),

ϕ(rf) = (rf)(1) = r · f(1) = r · ϕ(f).

ゆえに, ϕは R準同型である.

各 a ∈ K に対して, 写像 fa : K → K を, 各 x ∈ K に対して,

fa(x) = ax

とおくことによって定めると, 任意の x, y ∈ K, r ∈ Rに対して,

fa(x + y) = a(x + y) = ax + ay = fa(x) + fa(y),

fa(rx) = a(rx) = r(ax) = r · f(x).

ゆえに, fa は R準同型である. すなわち, fa ∈ H. これより, 写像

ψ : K → H, a 7→ fa

が定まる.

ϕが全単射であることを示すために, ψが ϕの逆写像であることを示す. 任意の a ∈ Kに対して,

ϕ ◦ ψ(a) = ϕ(fa) = fa(1) = a.

逆に, 任意の f ∈ H に対して, b = f(1)とおくと,

ψ ◦ ϕ(f) = ψ(b) = fb.

一方, 任意のm, n ∈ R, n 6= 0に対して,

n · fb

(m

n

)
= fb

(
n · m

n

)
= fb(m) = m · fb(1) = m(b · 1)

= mb = m · f(1) = f(m) = f
(
n · m

n

)
= n · f

(m

n

)
.

K は体なので, 両辺を nで割ることにより, fb(m/n) = f(m/n)が得られる. さらに, K は Rの商

体だから, K のすべての元はm/nの形で表せる. ゆえに, fb = f となる. よって, ψ ◦ϕ(f) = f . し

たがって, ψは ϕの逆写像であり, ϕは全単射である.

以上より, ϕが R同型であることが示された.
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［例 10］HomZ(Q, Q) ∼= Q.

［定理 11］Kを整域, Rをその部分整域, aをRの 0でないイデアルとするとき, HomR(R/a,K) =

0が成り立つ.

［証明］a 6= 0なので, a ∈ a, a 6= 0が存在する.

f ∈ HomR(R/a,K)とすると, 任意の x ∈ Rに対して,

a · f(x + a) = f(ax + a) = f(0 + a) = 0.

K は整域であり, a 6= 0だから, f(x + a) = 0でなければならない. したがって, f = 0.

［例 12］mを 2以上の整数とするとき, HomZ(Z/mZ, Z) = HomZ(Z/mZ, Q) = 0.

m, nを 2以上の整数とするとき, HomZ(Z/mZ, nZ) = 0. 実際, もし仮に Z/mZから nZへの

Z準同型 f で f 6= 0なるものが存在すれば, 写像 [n−1] : nZ → Z, nx 7→ xは Z加群の同型なの

で, [n−1] ◦ f は Z/mZから Zへの 0でない準同型写像になる. これは HomZ(Z/mZ, Z) = 0に矛

盾する.

［定理 13］m, nを 2以上の整数, d = gcd(m,n)とする. このとき, Z加群として

HomZ(Z/mZ, Z/nZ) ∼= Z/dZ.

［証明］m = dm′, n = dn′ とおく. また, H = HomZ(Z/mZ, Z/nZ)とおく.

a ∈ Zに対して, 写像 fa : Z/mZ → Z/nZを, 各 x ∈ Zに対して,

fa(x + mZ) = n′ax + nZ

とおくことによって定める. fa は well-definedである. 実際, 任意の x, x′ ∈ Zに対して,

x ≡ x′ (mod m) ⇒ x ≡ x′ (mod d)

⇒ n′a(x − x′) ≡ 0 (mod n)

⇒ n′ax ≡ n′ax′ (mod n)

⇒ fa(x + mZ) = fa(x′ + mZ).

任意の x, y, r ∈ Zに対して,

fa((x + mZ) + (y + mZ)) = fa((x + y) + mZ) = n′a(x + y) + nZ

= (n′ax + nZ) + (n′ay + nZ)
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= fa(x + mZ) + fa(y + mZ),

fa(r · (x + mZ)) = fa(rx + nZ) = n′a(rx) + nZ

= r · (n′ax + nZ)

= r · f(x + mZ).

したがって, fa は Z準同型である. すなわち, fa ∈ H. これより, 写像

ϕ : Z → H, a 7→ fa

が定まる.

任意の a, b, x, r ∈ Zに対して,

(ϕ(a) + ϕ(b))(x + mZ) = fa(x + mZ) + fb(x + mZ)

= (n′ax + nZ) + (n′bx + nZ) = n′(a + b)x + nZ

= ϕ(a + b)(x + mZ),

(r · ϕ(a))(x + mZ) = r · fa(x + mZ) = r · (n′ax + nZ)

= r(n′ax) + nZ = n′(ra)x + nZ

= ϕ(ra).

ゆえに, ϕは Z準同型である.

f ∈ H とする. ある y ∈ Zによって f(1 + mZ) = y + nZと書ける. このとき,

my + nZ = m · (y + nZ) = m · f(1 + mZ)

= f(m + mZ) = f(0 + nZ)

= 0 + nZ.

さらに,

my + nZ = 0 + nZ ⇒ my ≡ 0 (mod n) ⇒ m′y ≡ 0 (mod n′).

よって, ある a ∈ Zが存在して, m′y = n′a と書ける. gcd(m′, n′) = 1 だから, m′ は a を割る.

a = m′a′ とおくと, y = n′a′ となる. このとき, 任意の x ∈ Zに対して

f(x + mZ) = x · f(1 + mZ) = x · (y + nZ)

= xy + nZ = n′a′x + nZ

= fa′(x + mZ).

すなわち, f = fa′ = ϕ(a′). ゆえに, ϕは全射である.

さらに,

a ∈ Ker(ϕ) ⇔任意の x ∈ Zに対して, fa(x + mZ) = 0 + nZ
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⇔任意の x ∈ Zに対して, n′ax + nZ = 0 + nZ

⇔任意の x ∈ Zに対して, n′ax ≡ 0 (mod n)

⇔任意の x ∈ Zに対して, ax ≡ 0 (mod d)

⇔ a ∈ dZ.

ゆえに, Ker(ϕ) = dZ.

したがって, 準同型定理により, 同型

Z/dZ ∼= HomZ(Z/mZ, Z/nZ), a + dZ 7→ fa

が得られる.

［別証］m = m′d, n = n′d, H = HomZ(Z/mZ, Z/nZ)とする.

f ∈ H に対して, af を f(1 + mZ) = af + nZ, 0 ≤ af < nによって定めると,

maf + nZ = m(af + nZ) = mf(1 + mZ)

= f(m + mZ) = f(0 + mZ)

= 0 + nZ.

さらに, gcd(m′, n′) = 1より,

n | maf ⇒ n′ | m′af ⇒ n′ | af .

したがって, af = n′a′
f と表せる. このとき, 写像 ϕを

ϕ : H → Z/dZ, f 7→ a′
f + dZ

によって定める.

任意の f , g ∈ H に対して,

f = g ⇔ af ≡ ag mod n ⇔ a′
f ≡ a′

g mod d ⇔ ϕ(f) = ϕ(g).

ゆえに, ϕは well-definedかつ単射である.

任意の f , g ∈ H, r ∈ Zに対して,

(f + g)(1) = f(1) + g(1), (rf)(1) = r · f(1)

より,

ϕ(f + g) = (a′
f + a′

g) + dZ = ϕ(f) + ϕ(g),

ϕ(rf) = (ra′
f ) + dZ = rϕ(f).
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ゆえに, ϕは Z加群の準同型である.

任意の a ∈ Zに対して, f(1 + mZ) = n′a + nZによって f ∈ H を定めれば, ϕ(f) = a + dZが成

り立つ. したがって, ϕは全射である.

以上より, ϕが Z加群の同型であることが示された.

［注意 14］m = nのとき, 上の定理における Z加群の同型

Z/dZ ∼= HomZ(Z/mZ, Z/mZ), a + dZ 7→ fa

は, 環としての同型になる. ただし, HomZ(Z/mZ, Z/mZ)の乗法は写像の合成によって定める.

実際, 任意の a, b, x ∈ Zに対して,

fab(x + mZ) = abx + mZ = fa(bx + mZ) = fa ◦ fb(x + mZ)

となり, 積についても準同型であることがわかる.

［定理 15］m, nを 2以上の整数, d = gcd(m,n)とする. このとき, Z加群として

HomZ

(
1
m

Z/Z,
1
n

Z/Z
)

∼= Z/dZ.

［証明］m = dm′, n = dn′ とおく. また, H = HomZ

(
1
m

Z/Z,
1
n

Z/Z
)
とおく.

a ∈ Zに対して, 写像 fa :
1
m

Z/Z → 1
n

Z/Zを, 各 x ∈ Zに対して,

fa

( x

m
+ Z

)
=

n′ax

n
+ Z

とおくことによって定める. fa は well-definedである. 実際, 任意の x, x′ ∈ Zに対して,

x ≡ x′ (mod m) ⇒ x ≡ x′ (mod d)

⇒ n′a(x − x′) ≡ 0 (mod n)

⇒ n′ax

n
− n′ax′

n
=

n′a(x − x′)
n

∈ Z

⇒ n′ax

n
+ Z =

n′ax′

n
+ Z

⇒ fa

( x

m
+ Z

)
= fa

(
x′

m
+ Z

)
.

任意の x, y, r ∈ Zに対して,

fa

(( x

m
+ Z

)
+

( y

m
+ Z

))
= fa

(
x + y

m
+ Z

)
=

n′a(x + y)
n

+ Z

=
(

n′ax

n
+ Z

)
+

(
n′ay

n
+ Z

)
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= fa

( x

m
+ Z

)
+ fa

( y

m
+ Z

)
,

fa

(
r ·

( x

m
+ Z

))
= fa

(rx

m
+ Z

)
=

n′a(rx)
n

+ Z

= r ·
(

n′ax

n
+ Z

)
= r · f

( x

m
+ Z

)
.

したがって, fa は Z準同型である. すなわち, fa ∈ H. これより, 写像

ϕ : Z → H, a 7→ fa

が定まる.

任意の a, b, x, r ∈ Zに対して,

(ϕ(a) + ϕ(b))
( x

m
+ Z

)
= fa

( x

m
+ Z

)
+ fb

( x

m
+ Z

)
=

(
n′ax

n
+ Z

)
+

(
n′bx

n
+ Z

)
=

n′(a + b)x
n

+ Z

= ϕ(a + b)
( x

m
+ Z

)
,

(r · ϕ(a))
( x

m
+ Z

)
= r · fa

( x

m
+ Z

)
= r ·

(
n′ax

n
+ Z

)
=

r(n′ax)
n

+ Z =
n′(ra)x

n
+ Z

= ϕ(ra).

ゆえに, ϕは Z準同型である.

f ∈ H とする. ある y ∈ Zによって f
( x

m
+ Z

)
= y + nZと書ける. このとき,

my

n
+ Z = m ·

( y

n
+ Z

)
= m · f

(
1
m

+ Z
)

= f
(m

m
+ Z

)
= f(0 + Z)

= 0 + Z.

さらに,
my

n
+ Z = 0 + Z ⇒ my ≡ 0 (mod n) ⇒ m′y ≡ 0 (mod n′).

よって, ある a ∈ Z が存在して, m′y = n′a と書ける. gcd(m′, n′) = 1 だから, m′ は a を割る.

a = m′a′ とおくと, y = n′a′ となる. このとき, 任意の x ∈ Zに対して

f
( x

m
+ Z

)
= x · f

(
1
m

+ Z
)

= x ·
( y

n
+ Z

)
=

xy

n
+ Z =

n′a′x

n
Z

= fa′

( x

m
+ Z

)
.
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すなわち, f = fa′ = ϕ(a′). ゆえに, ϕは全射である.

さらに,

a ∈ Ker(ϕ) ⇔任意の x ∈ Zに対して, fa

( x

m
+ Z

)
= 0 + nZ

⇔任意の x ∈ Zに対して,
n′ax

n
+ Z = 0 + nZ

⇔任意の x ∈ Zに対して,
ax

d
=

n′ax

n
∈ Z

⇔任意の x ∈ Zに対して, ax ∈ dZ

⇔ a ∈ dZ.

ゆえに, Ker(ϕ) = dZ.

したがって, 準同型定理により, 同型

Z/dZ ∼= HomZ

(
1
m

Z/Z,
1
n

Z/Z
)

, a + dZ 7→ fa

が得られる.

［別証］
1
m

Z/Z =
{ x

m
+ Z

∣∣∣ x ∈ Z
}
より, 写像

ϕm : Z → 1
m

Z/Z, x 7→ x

m
+ Z

は全射である. ϕm が Z加群の準同型であることはすぐに確かめられる. さらに,

x ∈ Ker(ϕm) ⇔ x

m
∈ Z ⇔ x ∈ mZ.

よって, 準同型定理により, Z加群の同型

ϕ̃m : Z/mZ → 1
m

Z/Z, x + mZ 7→ x

m
+ Z

が得られる. 同様に, nに対しても, Z加群の同型

ϕ̃n : Z/nZ → 1
n

Z/Z, x + nZ 7→ x

n
+ Z

が得られる. このとき,

HomZ

(
1
m

Z/Z,
1
n

Z/Z
)

→ HomZ (Z/mZ, Z/nZ) , f 7→ ϕ̃n
−1 ◦ f ◦ ϕ̃m

は Z加群の同型である. したがって,

HomZ

(
1
m

Z/Z,
1
n

Z/Z
)

∼= HomZ (Z/mZ, Z/nZ) ∼= Z/dZ.

11



［注意 16］m = nのとき, 上の定理における Z加群の同型

Z/dZ ∼= HomZ

(
1
m

Z/Z,
1
m

Z/Z
)

, a + dZ 7→ fa

は, 環としての同型になる. ただし, HomZ

(
1
m

Z/Z,
1
m

Z/Z
)
の乗法は写像の合成によって定める.

実際, 任意の a, b, x ∈ Zに対して,

fab

( x

m
+ Z

)
=

abx

m
+ Z = fa

(
bx

m
+ Z

)
= fa ◦ fb

( x

m
+ Z

)
となり, 積についても準同型であることがわかる.

［定理 17］mを 2以上の整数とする. このとき, Z加群として

HomZ(Z/mZ, C×) ∼= Z/mZ.

［証明］ζ を 1の原始 m乗根とする. a ∈ Zに対して, 写像 fa : Z/mZ → C× を, 各 x ∈ Zに対

して,

fa(x + mZ) = ζax

とおくことによって定める. fa は well-definedである. 実際, ζm = 1より, 任意の x, x′ ∈ Zに対

して,

x ≡ x′ (mod m) ⇒ fa(x + mZ) = ζax = ζax′
= fa(x′ + mZ).

任意の x, y, r ∈ Zに対して,

fa((x + mZ) + (y + mZ)) = fa((x + y) + mZ) = ζa(x+y) = ζax · ζay

= fa(x + mZ) · fa(y + mZ),

fa(r · (x + mZ)) = fa(rx + nZ) = ζa(rx) = (ζax)r

= f(x + mZ)r.

したがって, fa は Z準同型であり, 写像

ϕ : Z → HomZ(Z/mZ, C×), a 7→ fa

が定まる.

任意の a, b, x, r ∈ Zに対して,

(ϕ(a) · ϕ(b))(x + mZ) = fa(x + mZ) · fb(x + mZ) = ζax · ζbx = ζ(a+b)x

= ϕ(a + b)(x + mZ),

ϕ(a)r(x + mZ) = fa(x + mZ)r = (ζax)r = ζrax

12



= ϕ(ra).

ゆえに, ϕは Z準同型である.

f ∈ HomZ(Z/mZ, C×)とすると,

f(1 + mZ)m = f(m + mZ) = f(0 + mZ) = 1.

よって, f(1 + mZ)は 1のm乗根であるから, ある整数 a ∈ Zが存在して, f(1 + mZ) = ζaと書け

る. さらに, 任意の x ∈ Zに対して,

f(x + mZ) = f(1 + mZ)x = ζax = fa(x + mZ).

すなわち, f = fa = ϕ(a). ゆえに, ϕは全射である.

さらに,

a ∈ Ker(ϕ) ⇔任意の x ∈ Zに対して, fa(x + mZ) = 1

⇔任意の x ∈ Zに対して, ζax = 1

⇔任意の x ∈ Zに対して, ax ∈ mZ

⇔ a ∈ mZ.

ゆえに, Ker(ϕ) = mZ.

したがって, 準同型定理により, 同型

Z/mZ → HomZ(Z/mZ, C×), a + mZ 7→ fa

が得られる.

［定理 18］mを 2以上の整数とする. このとき, Z加群として

HomZ(Z/mZ, Q/Z) ∼= Z/mZ.

［証明］a ∈ Zに対して, 写像 fa : Z/mZ → Q/Zを, 各 x ∈ Zに対して,

fa(x + mZ) =
ax

m
+ Z

とおくことによって定める. fa は well-definedである. 実際, 任意の x, x′ ∈ Zに対して,

x ≡ x′ (mod m) ⇒
(ax

m
+ Z

)
−

(
ax′

m
+ Z

)
=

a(x − x′)
m

+ Z = 0 + Z

⇒ fa(x + mZ) = fa(x′ + mZ).

任意の x, y ∈ Zに対して,

fa((x + mZ) + (y + mZ)) = fa((x + y) + mZ) =
a(x + y)

m
+ Z

13



=
(ax

m
+ Z

)
+

(ay

m
+ Z

)
= fa(x + mZ) + fa(y + mZ),

fa(r · (x + mZ)) = fa(rx + nZ) =
a(rx)

m
+ nZ = r ·

(ax

m
+ nZ

)
= r · f(x + mZ).

したがって, fa は Z準同型であり, 写像

ϕ : Z → HomZ(Z/mZ, Q/Z), a 7→ fa

が定まる.

任意の a, b, x, r ∈ Zに対して,

(ϕ(a) + ϕ(b))(x + mZ) = fa(x + mZ) + fb(x + mZ)

=
(ax

m
+ Z

)
+

(
bx

m
+ Z

)
=

(a + b)x
m

+ Z

= ϕ(a + b)(x + mZ),

(r · ϕ(a))(x + mZ) = r · fa(x + mZ) =
rax

m
+ Z

= ϕ(ra).

ゆえに, ϕは Z準同型である.

f ∈ HomZ(Z/mZ, Q/Z)とする. ある y ∈ Qによって f(1 + mZ) = y + Zと書ける. このとき,

my + Z = m · (y + Z) = m · f(1 + mZ)

= f(m + mZ) = f(0 + mZ)

= 0 + Z.

ゆえに, my ∈ Z. そこで, a = myとおくと, 任意の x ∈ Zに対して

f(x + mZ) = x · f(1 + mZ) = x · (y + Z)

= xy + Z =
ax

m
+ Z

= fa(x + mZ).

すなわち, f = fa = ϕ(a). よって, ϕは全射である.

さらに,

a ∈ Ker(ϕ) ⇔任意の x ∈ Zに対して, fa(x + mZ) = 0 + Z

⇔任意の x ∈ Zに対して,
ax

m
+ Z = 0 + Z

⇔任意の x ∈ Zに対して,
ax

m
∈ Z

14



⇔任意の x ∈ Zに対して, ax ∈ mZ

⇔ a ∈ mZ.

ゆえに, Ker(ϕ) = mZ.

したがって, 準同型定理により, 同型

Z/mZ → HomZ(Z/mZ, Q/Z), a + mZ 7→ fa

が得られる.

［定理 19］pを素数, Zp を p進整数環とする. このとき, 環として

HomZ

(
Z

[
1
p

]
/Z, Z

[
1
p

]
/Z

)
∼= Zp.

ただし,

Z
[
1
p

]
=

{
x

pn

∣∣∣∣∣ x ∈ Z, n ∈ Z≥0

}
, Z≥0 = {n ∈ Z | n ≥ 0}

とする.

［証明］M = Z
[
1
p

]
/Z, H = HomZ(M,M)とおく.

各 α = (αn | n ∈ Z≥0) ∈ lim←−
n

Z/pnZ = Zp と各 x ∈ Z, n ∈ Z≥0 に対して,

α ·
(

x

pn
+ Z

)
=

akx

pn
+ Z, h =

0, x ∈ pnZ,

n − ordp(x), x 6∈ pnZ,

αh = ah + phZ ∈ Z/pnZ, ah ∈ Z

によってスカラー倍を定めることにより, M は Zp 加群になる.

実際, まず, 任意の x, x′ ∈ Z, n, n′ ∈ Z≥0 に対して,

x

pn
− x′

pn′ ∈ Z ⇒ ordp

(
x

pn

)
− ordp

(
x′

pn′

)
= 0

⇒ (ordp(x) − n) − (ordp(x′) − n′) = 0

であるから, h の値は M に属する類の代表元の取り方によらない. したがって, スカラー倍は

well-definedである.

次に, α ∈ Zp に対して,

α =
∞∑

i=0

a′
ip

i, a′
i ∈ {0, 1, . . . , p − 1}

を p進展開とするとき,

an ≡
n∑

i=0

a′
ip

i (mod pn)
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だから, 任意の k ∈ Z≥0 に対して,

k ≥ h ⇒ (ak − ah)x
pn

∈ Z ⇒ akx

pn
+ Z =

ahx

pn
+ Z

となることに注意せよ. すると, 任意の α, β ∈ Zp, 任意の x, y ∈ Z, n, m ∈ Z≥0 に対して,

α = (an + pnZ | n ∈ Z≥0), β = (bn + pnZ | n ∈ Z≥0)

とおくと,

α + β = ((an + bn) + pnZ | n ∈ Z≥0), αβ = (anbn + pnZ | n ∈ Z≥0)

であり, 十分大きい k ∈ Z≥0 をとれば,

(αβ) ·
(

x

pn
+ Z

)
=

(akbk)x
pn

+ Z = α ·
(

bkx

pn
+ Z

)
= α ·

(
β ·

(
x

pn
+ Z

))
,

(α + β) ·
(

x

pn
+ Z

)
=

(ak + bk)x
pn

+ Z

=
(

akx

pn
+ Z

)
+

(
bkx

pn
+ Z

)
= α ·

(
x

pn
+ Z

)
+ β ·

(
x

pn
+ Z

)
,

さらに, m ≤ nのとき,

α ·
((

x

pn
+ Z

)
+

(
y

pm
+ Z

))
= α ·

(
x + pn−my

pn
+ Z

)
=

ak(x + pn−my)
pn

+ Z

=
(

akx

pn
+ Z

)
+

(
akpn−my

pn
+ Z

)
= α ·

(
x

pn
+ Z

)
+ α ·

(
y

pm
+ Z

)
.

m > nのときも同様である. 1Zp , 1Z をそれぞれ Zp, Zの単位元とすると,

1Zp ·
(

x

pn
+ Z

)
=

1Z · x
pn

+ Z =
x

pn
+ Z.

以上より, M は Zp 加群をなす.

各 α ∈ Zに対して, 写像 fα : M → M を, 各 x ∈ Z, n ∈ Z≥0 に対して,

fα

(
x

pn
+ Z

)
= α ·

(
x

pn
+ Z

)
とおくことによって定める. 任意の α ∈ Zp, x, y ∈ Z, n, m ∈ Z≥0 に対して, スカラー倍の性質に

より,

fα

((
x

pn
+ Z

)
+

(
y

pm
+ Z

))
= α ·

((
x

pn
+ Z

)
+

(
y

pm
+ Z

))
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= α ·
(

x

pn
+ Z

)
+ α ·

(
y

pm
+ Z

)
= fα

(
x

pn
+ Z

)
+ fα

(
y

pm
+ Z

)
.

よって, fα は Z加群としての準同型であり, 写像

ϕ : Zp → H, α 7→ fα

が定まる.

H の積が写像の合成によって定まっているとき, ϕは環準同型になる. 実際, 任意の α, β ∈ Zpに

対して, スカラー倍の性質により,

fα+β

(
x

pn
+ Z

)
= (α + β) ·

(
x

pn
+ Z

)
= α ·

(
x

pn
+ Z

)
+ β ·

(
x

pn
+ Z

)
= fα

(
x

pn
+ Z

)
+ fβ

(
x

pn
+ Z

)
,

fαβ

(
x

pn
+ Z

)
= (αβ) ·

(
x

pn
+ Z

)
= α ·

(
β ·

(
x

pn
+ Z

))
= fα ◦ fβ

(
x

pn
+ Z

)
.

f ∈ H とする. 各 n ∈ Z≥0に対して, Mn =
1
pn

Zとおくと, MnはM の部分 Z加群なので, f の

Mn への制限 fn : Mn → M は Z準同型である. 一方, M における pn 倍写像 [pn]を考えると,

[pn] ◦ fn(Mn) = fn(pnMn) = fn(Z) = Z

であるから,

fn(Mn) ⊆ Ker([pn] : M → M) = Mn.

ゆえに, fn はMn の自己準同型であり, ある an ∈ Zが存在して, fn はMn における an 倍写像で

ある. α = (an + pnZ | n ∈ Z≥0)とおくと, α ∈ Zp. さらに, fα のMn への制限は fn に一致する.

M =
⋃

n∈Z≥0

Mn だから, fα = f となる. よって, ϕは全射である.

α = (an + pnZ | n ∈ Z≥0) ∈ Ker(ϕ)とすると, ϕ(α) = fαは零写像なので, 任意の n ∈ Z≥0に対

して,
an

pn
+ Z = α ·

(
1
pn

+ Z
)

= fα

(
1
pn

+ Z
)

= 0 + Z.

よって, an ≡ 0 (mod pn). ゆえに, α = 0. したがって, ϕは単射である.

以上より, ϕが環の同型であることが示された.
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