
Hamilton-Cayleyの定理の証明

nを正の整数, K を体, Mn(K)をK 上の n次正方行列全体とする. また, Oを零行列, Eを単位

行列とする.

［定理 1（Hamilton-Cayley）］任意の A ∈ Mn(K)に対して, FA(x) = det(xE − A) ∈ K[x]を

Aの固有多項式とし,

FA(x) = xn + cn−1x
n−1 + · · · + c1x + c0, ci ∈ K (1)

とおく. このとき,

FA(A) = An + cn−1A
n−1 + · · · + c1A + c0E (2)

によって FA(A) ∈ Mn(K)を定めると, FA(A) = Oが成り立つ.

［証明］K をK の代数的閉包1)とする. α1, α2, . . ., αn ∈ K を Aのすべての固有値とする.

α1, α2, . . ., αn は FA(x)のすべての根なので, K[x]において

FA(x) = (x − α1)(x − α2) · · · (x − αn)

と 1次式の積に分解する. この右辺を展開して式 (1)の右辺と係数を比較すると, 各 ci は α1, α2,

. . ., αn の基本対称式になる:

cn−1 = α1 + α2 + · · · + αn,

cn−2 = α1α2 + α1α3 + · · · + αn−1αn,

· · · · · ·

cn−k =
∑

i1<i2<···<ik

αi1αi2 · · ·αik
,

· · · · · ·

c0 = α1α2 · · ·αn.

これを式 (2)に代入すると, その右辺は (A−α1E)(A−α2E) · · · (A−αnE)を展開した式に一致す

る. したがって,

FA(A) = (A − α1E)(A − α2E) · · · (A − αnE) (3)

が得られる.

1)体 K の代数的閉包とは, K の代数拡大体であって代数的閉体であるようなものである. また, 体 Ω が代数的閉体であ
るとは, Ω[x]における定数でないすべての多項式が Ωにおいて根をもつときにいう. 例えば, K = R, Cのときは, K とし
て C がとれる. 一般に, 任意の体に対して, その代数的閉包が必ず存在する (Steinitz の定理).
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一方, ある正則行列 P ∈ Mn(K)が存在して, P−1AP は Aの固有値を対角成分とする上三角行

列になる:

P−1AP =


α1 ∗

α2

. . .

O αn

 ∈ Mn(K). (4)

P を列ベクトルによって表示する: P = (p1 p2 · · · pn). そうすると, 式 (4)より,

(Ap1 Ap2 · · · Apn) = A(p1 p2 · · · pn)

= (p1 p2 · · · pn)


α1 ∗

α2

. . .

O αn

 . (5)

i = 1, 2, . . ., nに対して, Wi = Kp1 + Kp2 + · · · + Kpi とおく. また, W0 = {0}とおく. P は正

則なので, p1, p2, . . ., pn はK 上 1次独立である. よって,

{0} = W0 ( W1 ( · · · ( Wn = K
n
.

式 (5)より, i = 1, 2, . . ., nに対して, ある vi−1 ∈ Wi−1 が存在して,

Api = αipi + vi−1 ∈ Wi. (6)

これより,

(A − αiE)pi = Api − αipi = vi−1 ∈ Wi−1. (7)

ゆえに, 任意のwi ∈ Wi に対して,

wi = b1p1 + b2p2 + · · · + bipi, b1, b2, . . . , bi ∈ K

とおくと, 式 (6), 式 (7)より,

(A − αiE)wi = (A − αiE)(b1p1 + b2p2 + · · · + bipi)

= (A − αiE)(b1p1 + b2p2 + · · · + bi−1pi−1) + (A − αiE)bipi

= A(b1p1 + b2p2 + · · · + bi−1pi−1)

− αiE(b1p1 + b2p2 + · · · + bi−1pi−1) + (A − αiE)bipi

= (b1Ap1 + b2Ap2 + · · · + bi−1Api−1)

− (αib1p1 + αib2p2 + · · · + αibi−1pi−1) + bi(A − αiE)pi

∈ (W1 + W2 + · · · + Wi−1) + Wi−1 + Wi−1 ⊆ Wi−1.
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したがって, 任意の x ∈ K
n

= Wn に対して,

(A − αnE)x ∈ Wn−1,

(A − αn−1E)(A − αnE)x ∈ Wn−2,

· · · · · ·

(A − α1E) · · · (A − αn−1E)(A − αnE)x ∈ W0 = {0}.

式 (3)と合わせれば, 任意の x ∈ K
n
に対して, FA(A)x = 0. 特に,

e1 =


1

0
...

0

 , e2 =


0

1
...

0

 , · · · , en =


0

0
...

1


とおくと, i = 1, 2,. . ., nに対して FA(A)ei = 0が成り立つから,

FA(A) = FA(A)E = FA(A)(e1 e2 · · · en)

= (FA(A)e1 FA(A)e2 · · · FA(A)en)

= (0 0 · · · 0) = O.

［別証］B(x) = xE − Aとおく. FA(x) = det B(x)であるから, B(x)の余因子行列を B̃(x)とす

ると,

B(x)B̃(x) = FA(x)E. (8)

B̃(x)の各成分は, 余因子である2)から, xの高々n − 1次の多項式である. よって, xの冪に関して

整理すると, ある B0, B1, . . ., Bn−1 ∈ Mn(K)が存在して,

B̃(x) = xn−1Bn−1 + xn−2Bn−2 + · · · + xB1 + B0

と書ける. これを式 (8)に代入すると,

(xE − A)(xn−1Bn−1 + xn−2Bn−2 + · · · + xB1 + B0) = FA(x)E.

左辺を展開すると,

xnBn−1 + xn−1(Bn−2 − ABn−1) + · · · + x(B0 − AB1) − AB0 = FA(x)E.

さらに, 式 (1)を代入して整理すると,

xn(E − Bn−1) + xn−1
(
cn−1E − (Bn−2 − ABn−1)

)
+ · · · + x

(
c1E − (B0 − AB1)

)
+ (c0E + AB0) = O. (9)

2)すなわち, eB(x) の (i, j) 成分は, B(x) から第 i 行と第 j 列を除いた n − 1 次の正方行列の行列式に (−1)i+j を掛け
たもの.
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一般に, 任意の C0, C1, . . ., Cr ∈ Mn(K)に対して,

xrCr + xr−1Cr−1 + · · · + xC1 + C0 = O

⇒ C0 = C1 = · · · = Cr−1 = Cr = O.

なぜなら, Ck = (c(k)
ij ) (k = 0, 1, . . ., r)とおき, xrCr + xr−1Cr−1 + · · · + xC1 + C0 = Oとする

と, 各 (i, j)成分について,

c
(r)
ij xr + c

(r−1)
ij xr−1 + · · · + c

(1)
ij x + c

(0)
ij = 0.

このとき, c
(r)
ij = c

(r−1)
ij = · · · = c

(1)
ij = c

(0)
ij = 0.

したがって, 式 (9)より,

Bn−1 = E,

Bn−2 − ABn−1 = cn−1E,

· · · · · ·

B0 − AB1 = c1E,

−AB0 = c0E

が得られる. よって,

FA(A) = An + cn−1A
n−1 + cn−2A

n−2 + · · · + c1A + c0E

= AnBn−1 + An−1(Bn−2 − ABn−1) + · · · + A(B0 − AB1) − AB0

= AnBn−1 + (An−1Bn−2 − AnBn−1) + · · · + (AB0 − A2B1) − AB0

= (A − A)(An−1Bn−1 + An−2Bn−2 + · · · + AB1 + B0)

= O.

［例 2］n = 2のときを考える. A ∈ M2(K)とし,

A =

a b

c d

 , a, b, c, d ∈ K

とおくと, 固有多項式は,

FA(x) = det(xE − A) =

∣∣∣∣∣∣x − a −b

−c x − d

∣∣∣∣∣∣
= (x − a)(x − d) − bc

= x2 − (a + d)x + ad − bc.
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このとき, Hamilton-Cayleyの定理により,

A2 − (a + d)A + (ad − bc)E = O.

なお, n = 2の場合は, 直接計算して確かめることも難しくない.

A2 =

a b

c d

a b

c d

 =

 a2 + bc (a + d)b

(a + d)c bc + d2

 ,

(a + d)A − (ad − bc)E =

(a + d)a (a + d)b

(a + d)c (a + d)d

 −

ad − bc 0

0 ad − bc


=

(a + d)a − (ad − bc) (a + d)b

(a + d)c (a + d)d − (ad − bc)


=

 a2 − bc (a + d)b

(a + d)c bc + d2

 .

ゆえに, A2 = (a + d)A − (ad − bc)E.

［例 3］A ∈ Mn(K)の固有値が 0のみならば, Aは冪零行列である. このことが, Hamilton-Cayley

の定理から直ちに証明される.

実際, Aの固有値が 0のみだとすると, Aの固有多項式は FA(x) = xn. Hamilton-Cayleyの定理

により, An = O. したがって, Aは冪零行列である.

参考文献

[1] 永田雅宜 (代表著者): 理系のための線型代数の基礎, 紀伊国屋書店, 1986

[2] 三宅敏恒: 入門線形代数, 培風館, 1991

5


