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1 商集合を定義域とする写像

集合X から集合 Y への写像とは, X の各元 xに対して, Y の元 yをただ 1つだ

け対応させる規則のことである.

集合Xに同値関係∼が与えられているとし, 写像 π : X → X/ ∼を

π(x) = [x] ([x]は xを代表元とする同値類)

と定義する. πは全射である. この写像 πを射影という.

集合X, Y と写像 f : X → Y が与えられ, かつXに同値関係∼が与えられてい
るとする. いま, この写像 f が代表元の取り方によらないという条件

x ∼ x′ ⇒ f(x) = f(x′) (1)

を満たしていると仮定する1) . このとき

f([x]) = f(x)

と定義すると写像 f : X/ ∼→ Y が定まる. この写像 f を f より誘導された写像あ

るいは引き起こされた写像という.

条件 (1)が成り立つとき, 写像 f はwell-definedであるという2).

［命題 1.1］π : X → X/ ∼を射影とするとき

f = f ◦ π

が成り立つ.

［証明］Xの任意の元 xに対して

f ◦ π(x) = f([x]) = f(x)

が成り立つ.

1)つまり, 条件 (1)が成り立つことを「代表元の取り方によらない」という. 実際, 条件 (1)は,
商集合X/ ∼に含まれる各同値類に対して, その代表元 xの選び方に影響されずに, 値 f(x)がただ
1つ対応すること意味している.

2)商集合を定義域とする写像を考える際には, その写像が well-definedであることを必ず確認し
なければならない. この文書では, 定理の主張でいきなり「写像 f」というとき, well-definedであ
ることを暗黙のうちに仮定している.
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［命題 1.2］f : X → Y が全射ならば, 写像 f : X/ ∼→ Y も全射である.

［証明］yを Y の元とする. f は全射だから, X の元 xで f(x) = yとなるものが

ある. このとき

f([x]) = f(x) = y.

よって f は全射である.

［命題 1.3］f : X → Y が条件

f(x) = f(x′) ⇒ x ∼ x′

を満たすとする. このとき, 写像 f : X/ ∼→ Y は単射である.

［証明］f([x]) = f([x′]) ⇒ f(x) = f(x′) ⇒ x ∼ x′ ⇒ [x] = [x′].

［例 1.4］X, Y を集合とし, 全射 f : X → Y が与えられているとする. このとき

Xにおける関係∼を
x ∼ x′ ⇔ f(x) = f(x′)

と定義すると∼は同値関係になる. このとき f から誘導された写像

f : X/ ∼→ Y, [x] 7→ f(x)

はwell-definedかつ全単射である3). とくに, X/ ∼の濃度と Y の濃度は等しい.

3)well-definedの定義, 命題 1.2, 命題 1.3より.
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2 正規部分群

Gを群とする. Gの部分群N が, 条件

xN = Nx (∀x ∈ G)

を満たすとき, N はGの正規部分群である, あるいはGの部分群N は正規である

という.

［例 2.1］Abel群の部分群はすべて正規である.

［命題 2.2］群Gの部分群N が正規部分群であるためには

xNx−1 ⊆ N (∀x ∈ G)

であることが必要十分である.

［証明］N が正規部分群であるとする. N の元 aとGの元 xに対して

xax−1 = axx−1 = a ∈ N

ゆえに xNx−1 ⊆ N である.

逆に, N が命題の条件を満たしているとする. aをN の元とし, xをGの元とす

る. N の元 bを適当にとると

xax−1 = b ∴ xa = bx ∈ Nx.

これは xN ⊆ Nxであることを示している. また, x−1もまたGの元であるから, N

の元 b′を適当にとると

x−1ax = x−1a(x−1)−1 = b′ ∴ ax = xb′ ∈ xN.

よってNx ⊆ xN である. したがって xN = Nx.

［命題 2.3］Gを群とし，H, N をGの部分群とする．N がGの正規部分群なら

ば，HNはGの部分群である．さらに，HもGの正規部分群ならば，HNはGの

正規部分群である．
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［証明］h1, h2をHの元，n1, n2をN の元とする．N は正規部分群だから，

h−1
2 n1h2 ∈ N, h1n

−1
1 h−1

1 ∈ N.

よって，

(h1n1)(h2n2) = (h1h2)(h
−1
2 n1h2)n2 ∈ HN,

(h1n1)
−1 = n−1

1 h−1
1 = h−1

1 (h1n
−1
1 h1) ∈ HN.

ゆえに，HN はGの部分群である．

さらに，Hも正規部分群とするとき，g ∈ G, h ∈ H, n ∈ N ならば，

g(hn)g−1 = (ghg−1)(gng−1) ∈ HN.

よってHN はGの正規部分群になる．

［命題 2.4］群Gの部分群H, Kについて次の 2つの条件は同値である．

(i) HKはGの部分群である．

(ii) HK = KH.

［証明］(i)⇒(ii) 積HKがGの部分群であれば，

H, K ⊆ HK ⇒ KH ⊆ HK

である．一方，

x ∈ HK ⇒ x−1 ∈ HK ⇒ x ∈ (HK)−1 = KH

であるから，HK ⊆ KH．ゆえにKH = HK.

(ii)⇒(i) L = HKとおく．

LL = H(KH)K = HHKK ⊆ L

より，Lの任意の 2つの元の積は Lに属する．また，

HK = KH ⇒ L−1 = L

より，Lの任意の元xの逆元はLに属する．以上よりLはGの部分群である．
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3 準同型写像

G, G′を群とし, f : G → G′を写像とする. 任意の x, y ∈ Gに対して

f(xy) = f(x)f(y)

が成り立つとき, f を準同型写像という. あるいは簡単に準同型ということもある.

［例 3.1］Gを群, N をGの正規部分群とする. このとき, 写像

π : G → G/N, x 7→ xN

は全射かつ準同型である. πは標準的全射あるいは自然な全射と呼ばれている4).

［命題 3.2］G, G′を群, e, e′をそれぞれG, G′の単位元とし, f : G → G′を準同

型写像とする. このとき

(i) f(e) = e′

(ii) f(x−1) = f(x)−1

が成り立つ.

［証明］(i) eがGの単位元であることと, f が準同型写像であることから

f(e)f(e) = f(ee) = f(e).

両辺に f(e)−1を掛ければ f(e) = e′を得る.

(ii) (i)の結果を用いれば

f(x)f(x−1) = f(xx−1) = f(e) = e′.

同様に f(x−1)f(x) = e′も得る. したがって逆元の一意性から f(x)−1 = f(x−1)を

得る.

4)標準的準同型, 自然な準同型などと呼ばれることもある.

7



［命題 3.3］G, G′を群, e′をG′の単位元とし, f : G → G′を準同型写像とする.

このとき

ker f = f−1(e) = {x ∈ G | f(x) = e′}

はGの正規部分群である. ker f を f の核という.

［証明］まず, ker f がGの部分群であることを示す. a, bを ker f の元とする.

f(a) = f(b) = e′

であるから

f(ab−1) = f(a)f(b−1) = f(a)f(b−1) = f(e)f(e)−1 = e′.

よって ab−1は ker fに属する. これは ker fがGの部分群であることを示している.

次に, ker f がGの正規部分群であることを示す. Gの元 xと ker f の元 aに対

して

f(xax−1) = f(x)f(a)f(x−1) = f(x)e′f(x)−1 = f(x)f(x)−1 = e′

であるから xax−1は ker f に属する. これは ker f がGの正規部分群であることを

示している.

［例 3.4］Gを群, N をGの正規部分群とする. 標準的全射

π : G → G/N, x 7→ xN

の核は,

ker π = {x ∈ G | xN = N} = N

である.

［例 3.5］f : G → G′を群の準同型写像とし, HをGの部分群, fH : H → G′を f

のHへの制限とする. このとき, fH は準同型写像であり,

ker fH = {h ∈ H | f(h) = fH(h) = e′} = H ∩ ker f

が成り立つ.
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［命題 3.6］G, G′を群, f : G → G′を全射準同型写像とし, N = ker f とする. こ

のときGの任意の部分群Hに対して

f−1(f(H)) = HN

が成り立つ. ただし, HN = {hn | h ∈ H, n ∈ N}とする.

［証明］Gの元 aについて

a ∈ f−1(f(H)) ⇔ f(a) ∈ f(H) ⇔ f(a) = f(h) (∃h ∈ H)

⇔ ah−1 ∈ N (∃h ∈ H) ⇔ a ∈ hN (∃h ∈ H)

⇔ a ∈ HN

が成り立つ.

［命題 3.7］f : G → G′を群の全射準同型写像とする.

(i) HがGの部分群ならば, f(H)はG′の部分群である. とくにHが正規ならば

f(H)も正規である.

(ii) H ′がG′の部分群ならば, f−1(H ′)はGの部分群である. とくにH ′が正規な

らば f−1(H ′)も正規である.

［証明］(i) HがGの部分群ならば

f(x)f(y)−1 = f(xy−1) ∈ f(H) (∀x, ∀y ∈ G)

ゆえ, f(H)はG′の部分群である. さらに, HがGの正規部分群ならば

f(x)f(H) = f(xH) = f(Hx) = f(H)f(x) (∀x ∈ G)

であるから, f(H)はGの正規部分群である.

(ii) H ′がG′の部分群ならば

x, y ∈ f−1(H ′) ⇒ f(x), f(y) ∈ H ′

⇒ f(xy−1) = f(x)f(y)−1 ∈ H ′

⇒ xy−1 ∈ f−1(H ′)
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ゆえ, f−1(H ′)はGの部分群である. さらにH ′がG′の正規部分群ならば

y ∈ xf−1(H ′) ⇔ x−1y ∈ f−1(H ′)

⇔ f(x−1y) ∈ H ′ ⇔ f(x)−1f(y) ∈ H ′

⇔ f(y) ∈ f(x)H ′ ⇔ f(y) ∈ H ′f(x)

⇔ f(y)f(x−1) ∈ H ′ ⇔ f(yx−1) ∈ H ′

⇔ yx−1 ∈ f−1(H ′)

⇔ y ∈ f−1(H ′)x

であるから, xf−1(H ′) = f−1(H ′)x. ゆえにf−1(H ′)はGの正規部分群である.

［定理 3.8］f : G → G′を群の全射準同型写像とし, N = ker f とする. N を含む

ようなGの部分群全体の集合をΩとし, G′の部分群全体の集合をΩ′とする. この

とき, 写像

Φ : Ω → Ω′, H 7→ f(H)

は全単射で

Ψ : Ω′ → Ω, H ′ 7→ f−1(H ′)

がΦの逆写像になっている. とくに, H ∈ ΩとH ′ ∈ Ω′とが対応しているとき

HがGの正規部分群 ⇔ H ′がG′の正規部分群

である.

［証明］H ∈ Ωならば f(H) ∈ Ω′であることは命題 3.7からわかる. H ′ ∈ Ω′なら

ば f−1(H ′) ∈ Ωであることは, 命題 3.7と f−1(H ′) ⊇ f−1(e′) = N とからわかる.

また, f は全射だから f(f−1(H ′)) = H ′である. f−1(f(H)) ⊇ H も明らかである.

f−1(f(H)) ⊆ Hは

a ∈ f−1(f(H)) ⇒ f(a) ∈ f(H)

⇒ f(a) = f(h) (∃h ∈ H)

⇒ ah−1 ∈ N ⊆ H

⇒ a ∈ H

よりわかる. 以上より ΦとΨとは互いに逆写像であることが証明された. 後半は

命題 3.7より明らか.
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4 準同型定理と3つの同型定理

G, G′を群とする. 写像 f : G → G′が同型写像であるとは, f が全単射かつ準同

型であるときにいう. 同型写像のことを単に同型ともいう. 群Gから群G′への同

型写像が存在するとき, GとG′とは同型であるといい, G ∼= G′で表す.

［定理 4.1（準同型定理）］G, G′を群, f : G → G′を全射準同型写像, fの核をN

とする. 写像 f : G/N → G′を

f(xN) = f(x)

によって定義する. このとき f は群の同型写像となる. したがってG/N とG′とは

群として同型である.

［証明］まず, N = ker f だから, 命題 3.3よりN は正規部分群である. したがっ

て剰余群G/N が定義できる.

Gの元 x1, x2に対して

x1x
−1
2 N ⇔ f(x1) = f(x2)

が成り立つ. 実際, N = ker f だから,

x1x
−1
2 ∈ N ⇔ f(x1)f(x2)

−1 = f(x1x
−1
2 ) = e′ ⇔ f(x1) = f(x2).

このことと, f が全射であるという仮定から, f は全単射

f : G/N → G′, xN 7→ f(x)

を誘導する（例 1.4）.

この写像 f は準同型である. 実際

f((xN)(yN)) = f(xyN) = f(xy) = f(x)f(y) = f(xN)f(yN)

である. よって f は群の同型写像である.

［命題 4.2］G1, G2, . . ., Gnを群とし, NiをGiの正規部分群とする. このとき,

N =
∏n

i=1 NiはG =
∏n

i=1 Giの正規部分群であり,

G/N ∼=
n∏

i=1

(Gi/Ni), (x1, . . . , xn)N 7→ (x1N, . . . , xnN)

が成り立つ.
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［証明］n = 2の場合について証明する. n > 2についても同様に示すことがで

きる.

i = 1, 2に対して標準的全射

πi : Gi → Gi/Ni, xi 7→ xiN

を考えると, 写像

π : G1 × G2 → (G1/N1) × (G2/N2),

(x1, x2) 7→ (π1(x1), π2(x2)) = (x1N, x2N)

が全射であることはすぐにわかる. さらに, ker πi = Niより

ker π = ker π1 × ker π2 = N1 × N2

である. したがって準同型定理 4.1により主張は示される.

［注意 4.3］G1, G2を群とし, N1をG1の正規部分群, N2をG2の正規部分群とす

る. このとき, G1
∼= G2かつN1

∼= N2であっても, G1/N1
∼= G2/N2とは限らない.

例えば,

G1 = G2 = N1 = Z, N2 = 2Z

とおく. Z → 2Z, x 7→ 2xは加法群の同型写像である. したがってN1
∼= N2であ

るが,

G1/N1 = Z/Z = {0}, G2/N2 = Z/2Z

なので, G1/N1と G2/N2との間に全単射は存在しない5). したがって同型になら

ない.

例をもう 1つ挙げよう.

G1 = G2 = Z/2Z ⊕ Z/4Z,

N1 = Z/2Z ⊕ {0} = 〈(1 + 2Z, 0 + 4Z)〉,

N2 = {0} ⊕ 2Z/4Z = 〈(0 + 2Z, 2 + 4Z)〉

とおく. ただし, 2Z/4Z = {x + 4Z | x ∈ 2Z}である. N1
∼= N2

∼= Z/2Zである. 一

方, 任意の x, y ∈ Zに対して

x ≡ y (mod 4) ⇒ x ≡ y (mod 2)

5)一般に, 元の個数が異なる 2つの有限集合の間に全単射は存在しない.
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であるから, 写像

Z/4Z → Z/2Z, x + 4Z 7→ x + 2Z

はwell-definedである. ただし x ∈ Z. 準同型かつ全射であることはすぐにわかる.

この写像の核は 2Z/4Zである. 準同型定理 4.1により同型

Z/4Z
2Z/4Z

∼= Z/2Z

が得られる. したがって

G1/N1
∼= Z/4Z, G2/N2

∼= Z/2Z ⊕ Z/2Z

となり6), G1/N1とG2/N2は同型ではない7).

［定理 4.4（第 1同型定理）］f : G → G′を群の全射準同型写像とし, N ′をG′の

正規部分群, N = f−1(N ′)とする. このとき

G/N → G′/N ′, xN → f(x)N ′

は同型写像である.

［証明］標準的な全射

π′ : G′ → G′/N ′, x′ 7→ x′N ′

を考える. 2つの全射準同型写像の合成

π′ ◦ f : G → G′/N, x 7→ f(x)N ′

は全射準同型写像である. このとき ker(π′ ◦ f) = N である. 実際

x ∈ ker(π′ ◦ f) ⇔ f(x) ∈ N ′ ⇔ x ∈ f−1(N ′) ⇔ x ∈ N

である. 準同型定理 4.1により求める同型写像が得られる.

6)命題 4.2を適用.
7)Abel群の基本定理から明らかであるが, 直接証明することも可能である. Z/4Zは位数 4の元

をもつので, それと同型な群においてもそうでなければならない. ところが, Z/2Z ⊕ Z/2Zは位数
4の元もたない.
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［定理 4.5（第 2同型定理）］Gを群, N をGの正規部分群, HをGの部分群とす

る. このとき

H/(H ∩ N) → HN/N, h(H ∩ N) 7→ hN

は同型写像である.

［証明］π : G → G/N を標準的な全射とする. ker π = N である.

π の H への制限を πH とすると, πH は H から π(H) への全射準同型であり,

ker πH = H ∩Nである（例 3.5）. ゆえにH ∩NはHの正規部分群（命題 3.3）で

あり, 準同型定理 4.1により

H/(H ∩ N) → π(H), h(H ∩ N) 7→ π(h) (2)

もまた同型写像である.

次に, HN はN を含むようなGの部分群である（命題 2.3）. そこで, πのHN

への制限 πHN を考える. πHN : HN → π(HN)は全射準同型であり,

ker πHN = HN ∩ N = N

である（例 3.5）. N はHN の正規部分群（命題 3.3）であり, 剰余群HN/N が定

義できる. さらに,

HN/N = {hnN | h ∈ H,n ∈ N} = {hN | h ∈ H}.

すなわち, 剰余類の代表元として必ずHの元をとることができる. 一方, ker π = N

だから, 任意の h ∈ H, n ∈ N に対して

π(hn) = π(h)π(n) = π(h).

すなわち π(HN) ⊆ π(N). 逆の包含関係は明らかだから, π(HN) = π(N)である.

したがって, 準同型定理 4.1により同型HN/N ∼= π(HN) = π(H)が得られるので,

その逆写像を考えれば,

π(H) ∼= HN/N, π(h) 7→ hN (3)

なる同型が得られる.

2つの同型写像 (2), (3)を合成することにより求める同型写像が得られる.
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［命題 4.6］群Gの正規部分群をN とし, f : G → G′を群の準同型写像とする.

このとき, 準同型写像

f : G/N → G′, xN 7→ f(x) (4)

が存在するための必要十分条件は, N ⊆ ker f が成り立つことである.

［証明］π : G → G/N , x 7→ xN を標準的な全射とする. 準同型写像 (4)が存在す

ると仮定すると, f = f ◦ πなので,

f(N) = f(π(N)) = f(N) = e′.

ゆえにN ⊆ ker f .

逆に, N ⊆ ker f と仮定すると,

x1x
−1
2 ∈ N ⇒ f(x1)f(x2)

−1 = f(x1x
−1
2 ) = e′ ⇒ f(x1) = f(x2).

ゆえに, f は写像

f : G/N → G′, xN 7→ f(x)

を誘導する. f が準同型であることはすぐに確かめられる.

［注意 4.7］群Gの正規部分群をN とし, f : G → G′を群の全射準同型写像とす

る. N ⊆ ker f が成り立つとき, f から誘導される準同型写像 (4)は全射である. 実

際, f = f ◦ πなので,

f(G/N) = f(π(G)) = f(G) = G′

となる.

［定理 4.8（第 3同型定理）］Gを群, M , N を正規部分群とし, N ⊆ M とする.

このとき

G/M ∼=
G/N

M/N

が成り立つ. ただし, M/N はG/N の同値類でM の元を代表元とするものの全体

を表す. すなわち,

M/N = {xN ∈ G/N | x ∈ M}

とおく.
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［証明］標準的な全射 π′ : G → G/M , x 7→ xM を考える.

N ⊆ M = ker π′

であるから, π′は準同型写像

π′ : G/N → G/M, xN 7→ π′(x) = xM

を誘導する（命題 4.6）.

ker π′ = {xN ∈ G/N | xM = M} = M/N

だから, 準同型定理 4.1より

G/N

M/N
∼= π′(G/N).

一方, 標準的な全射 π : G → G/N , x 7→ xN を考えると, π′ = π′ ◦ πが成り立つ

から,

π′(G/N) = π′(π(G)) = π′(G) = G/M.

したがって求める同型が得られる.
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5 Zassenhausの補題

［命題 5.1］Gを群，U1, U2, V1, V2をGの部分群とし，U2は U1の正規部分群，

V2は V1の正規部分群であるとする．このとき U2 ∩ V2は U1 ∩ V1の正規部分群で

ある．

［証明］g ∈ U1 ∩ V1, x ∈ U2 ∩ V2とする．U2はU1の正規部分群，V2は V1の正規

部分群であるから，

g ∈ U1, x ∈ U2 ⇒ gxg−1 ∈ U2,

g ∈ V1, x ∈ V2 ⇒ gxg−1 ∈ V2.

ゆえに，

gxg−1 ∈ U2 ∩ V2 ⇒ g(U2 ∩ V2)g
−1 ⊆ U2 ∩ V2.

したがって，U2 ∩ V2は U1 ∩ V1の正規部分群である．

［命題 5.2］Gを群，U1, U2, V1, V2をGの部分群とし，U2は U1の正規部分群，

V2は V1の正規部分群であるとする．このとき，

(i) U2(U1 ∩ V2), U2(U1 ∩ V1)はともに U1の部分群である.

(ii) U2(U1 ∩ V2)は U2(U1 ∩ V1)の正規部分群である．

［証明］(i) U2はU1の正規部分群であり，U1 ∩V1はU1の部分群であるから，積

U2(U1 ∩ V1)は U1の部分群である（命題 2.3）．同様に，U2(U1 ∩ V2)も U1の部分

群である．

(ii) V2 ⊆ V1よりU2(U1 ∩ V2) ⊆ U2(U1 ∩ V1). よってU2(U1 ∩ V2)はU2(U1 ∩ V1)

の部分群である．

また，U2は U1の正規部分群, V2は V1の正規部分群だから，U1 ∩ V2は U1 ∩ V1

の正規部分群である（命題 5.1）．したがって，u ∈ U2, g ∈ U1 ∩ V1に対して，

ug U2(U1 ∩ V2)(ug)−1 = ug U2g
−1g(U1 ∩ V2)g

−1u−1

⊆ uU2(U1 ∩ V2)u
−1

⊆ U2(U1 ∩ V2)U2.
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一方, U2(U1 ∩ V1)は U1の部分群だから, 命題 2.4より

(U1 ∩ V1)U2 = U2(U1 ∩ V1).

よって,

U2(U1 ∩ V2)U2 = U2U2(U1 ∩ V2) ⊆ U2(U1 ∩ V2).

ゆえに,

ug U2(U1 ∩ V2)(ug)−1 ⊆ U2(U1 ∩ V2).

したがって, U2(U1 ∩ V2)は U2(U1 ∩ V1)の正規部分群である．

［命題 5.3（Dedekindの法則）］Gを群, LをGの部分群とする. また, V をG

の部分集合, U を Lの部分集合とする. このとき,

UV ∩ L = U(V ∩ L), V U ∩ L = (V ∩ L)U

が成り立つ．

［証明］U(V ∩ L)は UV の部分集合である．また，LはGの部分群だから，

U(V ∩ L) ⊆ LL ⊆ L.

ゆえに UV ∩ L ⊇ U(V ∩ L)．

x ∈ UV ∩Lとする．x ∈ Lであり，かつ，ある u ∈ U , v ∈ V が存在して x = uv

と書ける. 仮定より Lが U を含む部分群であるから，

v = u−1x ∈ L ⇒ v ∈ V ∩ L ⇒ x = uv ∈ U(V ∩ L).

したがって UV ∩ L ⊆ U(V ∩ L)．これより 1番目の等式が得られる. まったく同

じようにして 2番目の等式も証明できる.

［定理 5.4（Zassenhausの補題）］Gを群，U1, U2, V1, V2をGの部分群とし，U2

は U1の正規部分群，V2は V1の正規部分群であるとする．このとき，同型

U2(U1 ∩ V1)

U2(U1 ∩ V2)
∼=

V2(V1 ∩ U1)

V2(V1 ∩ U2)

が成り立つ．
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［証明］命題 5.2により，U2(U1 ∩ V2)は U2(U1 ∩ V1)の正規部分群である．

H = U2(U1 ∩ V2), K = U1 ∩ V1とおくと，

U1 ∩ V2 ⊆ U1 ∩ V1 ⇒ (U1 ∩ V2)(U1 ∩ V1) = U1 ∩ V1

⇒ U2(U1 ∩ V2)(U1 ∩ V1) = U2(U1 ∩ V1)

であるから，

HK = U2(U1 ∩ V1).

また, Dedekindの法則 5.3により8),

H ∩ K = U2(U1 ∩ V2) ∩ (U1 ∩ V1)

= (U2 ∩ (U1 ∩ V1))(U1 ∩ V2)

= (U2 ∩ V1)(U1 ∩ V2).

したがって，第 2同型定理 4.5を適用すると，同型

HK/H ∼= K/H ∩ K,

すなわち，
U2(U1 ∩ V1)

U2(U1 ∩ V2)
∼=

U1 ∩ V1

(U2 ∩ V1)(U1 ∩ V2)

が得られる．

H = V2(U2 ∩ V1), K = U1 ∩ V1とおいて上と同様に議論すれば,

V2(V1 ∩ U1)

V2(V1 ∩ U2)
∼=

U1 ∩ V1

(U1 ∩ V2)(U2 ∩ V1)

が得られる．さらに, 命題 2.4より

(U2 ∩ V1)(U1 ∩ V2) = (U1 ∩ V2)(U2 ∩ V1)

である. したがって求める同型が得られる．

8)U = U1 ∩ V2, V = U2, L = U1 ∩ V1 とおいて適用.
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