
1 Gauss整数

1.1 Gauss整数

a + b
√
−1, a, b ∈ Qなる形の複素数の全体を Q(

√
−1)とおく:

Q(
√
−1) = {a + b

√
−1 | a, b ∈ Q}

定義より明らかに Q ⊆ Q(
√
−1)である. 複素数の性質より, 任意の a, b, c, d ∈ Qに対して,

a + b
√
−1 = c + d

√
−1 ⇐⇒ a = c, b = d

が成り立つ.

［定理 1.1］Q(
√
−1)は Cの部分体である. これをGauss数体という.

［証明］Q ⊆ Q(
√
−1)より, Q(

√
−1)は空集合でない.

α, β ∈ Q(
√
−1)とし,

α = a + b
√
−1, a, b ∈ Q,

β = c + d
√
−1, c, d ∈ Q

とおくと,

α − β = (a + b
√
−1) + (c + d

√
−1)

= (a − c) + (b − d)
√
−1 ∈ Q(

√
−1),

αβ = (a + b
√
−1)(c + d

√
−1)

= (ac − bd) + (ad + bc)
√
−1 ∈ Q(

√
−1).

したがって, Q(
√
−1)は Cの部分環である.

α = a + b
√
−1 6= 0のとき, a 6= 0または b 6= 0だから, a2 + b2 6= 0. よって,

α−1 =
1

a + b
√
−1

=
a − b

√
−1

(a + b
√
−1)(a − b

√
−1)

=
a

a2 + b2
− b

a2 + b2

√
−1 ∈ Q(

√
−1).

ゆえに, αは Q(
√
−1)において逆元をもつ. したがって, Q(

√
−1)は体である.

以下, この文書の最後まで, K = Q(
√
−1)とする.

K の元 α = a + b
√
−1, a, b ∈ Qに対して, αの複素共役のことを K における αの共役といい,

ασ で表す: ασ = a − b
√
−1. また, αとそのK における共役との積

αασ = (a + b
√
−1)(a − b

√
−1) = a2 + b2 = |α|2

を αのノルムといい, NKαで表す. 定義より, NKαは常に負でない有理数であり, NKα = 0とな

るのは α = 0のときだけである.
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［定理 1.2］α, β ∈ K とする. このとき,

NK(αβ) = NKαNKβ

が成り立つ.

［証明］NK(αβ) = αβ(αβ)σ = αβασβσ = αασββσ = NKαNKβ.

a + b
√
−1, a, b ∈ Zなる形の複素数をGauss整数という. これに対して, 従来の整数, すなわち

Zの元のことを有理整数と呼ぶことにする.

Gauss整数の全体を Z[
√
−1]で表す:

Z[
√
−1] = {a + b

√
−1 | a, b ∈ Z}.

定義から明らかに, Z ⊆ Z[
√
−1]である. また, ノルムの定義から, Gauss整数のノルムの値は常に

有理整数である.

［定理 1.3］Z[
√
−1]はK の部分整域である. Z[

√
−1]をGauss整数環という.

［証明］R = Z[
√
−1]とおく. R ⊆ K である. Z ⊆ Rより, Rは空集合でない. また, 任意の a, b,

c, d ∈ Zに対して,

(a + b
√
−1) − (c + d

√
−1) = (a − c) + (b − d)

√
−1 ∈ R,

(a + b
√
−1)(c + d

√
−1) = (ac − bd) + (ad + bc)

√
−1 ∈ R

であるから, Rは K の部分環である. さらに, K は体, したがって整域であるから, その部分環で

ある Rも整域である.

［定理 1.4］α, β を Gauss整数とし, β 6= 0とする. このとき, ある Gauss整数 κ, ρが存在して,

α = βκ + ρ, NKρ < NKβ

が成り立つ.

［証明］任意の実数 tに対して, btcを t以下の有理整数のうちで最大のものとし,

n(t) =

btc, t ≤ (2btc + 1)/2のとき

btc + 1, t > (2btc + 1)/2のとき

とおくと,

|t − n(t)| ≤ 1
2
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が成り立つ1).

z = x + y
√
−1をK の任意の元とし, κ = n(x) + n(y)

√
−1とおく. このとき, κは Gauss整数

であり,

NK(z − κ) = (x − n(x))2 + (y − n(y))2 ≤ 1
2
.

z = α/β とおくと,

NK

(
α

β
− κ

)
≤ 1

2
.

両辺にNK(β)を掛けると,

NKβ · NK

(
α

β
− κ

)
≤ 1

2
NKβ.

定理 1.2を用いて左辺を計算すれば,

NKβ · NK

(
α

β
− κ

)
= NK

(
β ·

(
α

β
− κ

))
= NK(α − κβ).

ゆえに,

NK(α − κβ) ≤ 1
2
NKβ < NKβ.

ρ = α − βκとおけば, 求める結果が得られる.

1.2 単数

Gauss整数 εが単数であるとは, ある Gauss整数 ε′ が存在して εε′ = 1が成り立つときにいう.

単数の全体を Z[
√
−1]× で表す.

［定理 1.5］Gauss整数で単数となるものは, ±1, ±
√
−1の 4つである:

Z[
√
−1]× = {±1, ±

√
−1}.

Z[
√
−1]× は

√
−1を生成元とする位数 4の巡回群になる. Z[

√
−1]× を単数群という.

［証明］まず,

1 · 1 = (−1) · (−1) = −
√
−1 ·

√
−1 = 1

より, ±1, ±
√
−1は単数である.

ε = a + b
√
−1を単数とすれば, ある Gauss整数 ε′ が存在して,

εε′ = 1.

両辺のノルムをとると,

NKεNKε′ = 1.

1)n(t) は t の両側に隣接する 2 つの整数のうち t に近いほうを意味する.
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よって, NKε = a2 + b2 は Zにおける 1の約数である. すなわち, a2 + b2 = 1. これを満たす a, b

の組は

(a, b) = (±1, 0), (0, ±1)

の 4つである. よって, ε = ±1, ±
√
−1を得る.

Z[
√
−1]× が

√
−1から生成される巡回群であることは,

(
√
−1)2 = −1, (

√
−1)3 = −

√
−1, (

√
−1)4 = 1

よりわかる.

α, βを 0でないGauss整数とするとき, αが βに同伴であるとは, ある単数 εが存在して α = βε

が成り立つときにいう. このことを記号で α ∼ β と書く. 2 つの Gauss 整数が同伴であるとい

う関係は Z[
√
−1]における同値関係である. 単数は ±1, ±

√
−1の 4つなので, αに同伴なものは

±α, ±α
√
−1の 4つである. α = a + b

√
−1, a, b ∈ Zと表せば, αに同伴なものは

a + b
√
−1, −a − b

√
−1, −b + a

√
−1, b − a

√
−1

と表される.

［定理 1.6］εを Gauss整数とする. このとき, 次の 3つの条件は同値である.

(i) εは単数である.

(ii) εは 1に同伴である.

(iii) NKε = 1.

［証明］(i)⇒(ii) εを単数とすると, あるGauss整数 ε′が存在して, εε′ = 1. このとき, ε′もまた

単数である. したがって, εは 1に同伴である.

(ii)⇒(iii) εが 1に同伴であるとすると, ある単数 ε′ が存在して, εε′ = 1. ノルムをとり, 定理

1.2を用いて計算すると,

NKεNKε′ = NK(εε′) = NK1 = 1.

NKε, NKε′ はともに正の有理整数だから, NKε = 1となる.

(iii)⇒(i) NKε = 1とすると, ノルムの定義より εεσ = 1であり, εσ は Gauss整数だから, εは

単数である.

1.3 Gauss整数の整除

2つの Gauss整数 α, β に対して, ある Gauss整数 ξが存在して β = αξが成り立つとき, αは β

を割るといい, β は αで割り切れるという. このことを記号で α | β と書く. またこのとき, αを β

の約数, β を αの倍数という.
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α, β を Gauss整数とする. α | β かつ β | αならば, αは β に同伴である. 逆も成り立つ.

αがいくつかの β1, β2, . . ., βs ∈ Z[
√
−1]の約数であるとき, αをそれらの公約数という. また,

αがそれらの最大公約数であるとは, 2つの条件

(i) αは β1, β2, . . ., βs の公約数である.

(ii) β1, β2, . . ., βs の任意の公約数は αの約数である.

を満たすときにいう. 「約数」を「倍数」に書き換えれば, 公倍数, 最小公倍数も同様に定義できる.

2つ以上のGauss整数に対して, それらの最大公約数と同伴なものも最大公約数であり, また, 任

意の 2つの最大公約数は同伴になる. 最小公倍数についても同様である.

［定理 1.7］α, β, κ, ρを Gauss整数とし,

α = βκ + ρ

が成り立っているとする. このとき, α, β の最大公約数と β, ρの最大公約数とは同伴である.

［証明］α, β の最大公約数を δ とおき, β, ρの最大公約数を δ′ とおく. α = βκ + ρより, δ′ は α

を割る. δ′ は β も割るから, α, β の公約数である. ゆえに, δ′ は δ を割る. 同様に, ρ = α − βκよ

り, δが δ′ を割ることもいえる. ゆえに, δ′ | δかつ δ | δ′. したがって, δ′ ∼ δ.

［定理 1.8］α, β を Gauss整数とする. まず,

α = βκ0 + ρ1, NKρ1 < NKβ

なる κ0, ρ1 を求める. NKρ1 6= 0ならば,

β = ρ1κ1 + ρ2, NKρ2 < NKρ1

なる κ1, ρ2 を求める. NKρ2 6= 0ならば,

ρ1 = ρ2κ2 + ρ3, NKρ3 < NKρ2

なる κ2, ρ3 を求める. 以下同様の操作を行うと, ある番号 n ≥ 0が存在して, ρn+1 = 0かつ ρn は

α, β の最大公約数である.

［証明］もし仮に, 任意の番号 i ≥ 1に対して NKρi 6= 0であるとすると, 定理 1.4を繰り返し用

いて,

NKβ > NKρ1 > NKρ2 > · · · > NKρl > 0, l = NKβ

なる減少列が作れる. ところが, 各 iに対してNKρi ≤ NKβ − iであるから, NKρl ≤ NKβ − l = 0

となってNKρl > 0と矛盾する. よって, ある番号 n ≥ 0が存在して, NKρn+1 = 0となる. このと

き, ρn+1 = 0であるから, ρn−1 = ρnκn となり, ρn は ρn−1, ρn の最大公約数である.
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いま, 2つの Gauss整数 ξ, ηの最大公約数を (ξ, η)で表すことにすれば, 定理 1.7より,

(α, β) ∼ (β, ρ1) ∼ (ρ1, ρ2) ∼ · · · ∼ (ρn−1, ρn) ∼ ρn.

ゆえに, ρn は α, β の最大公約数である.

［定理 1.9］α, β を 0でない Gauss整数とし, α, β の最小公倍数を λ, 最大公約数を δとする. こ

のとき, αβ は λδに同伴である.

［証明］λは α, β の公倍数であるから, ある α1, β1 が存在して,

λ = αβ′ = βα′. (1)

一方, αβはα, βの倍数であるから,それらの最小公倍数である λの倍数である. よって,あるGauss

整数 δ′ が存在して,

αβ = λδ′. (2)

(1)を (2)に代入すると,

αβ = αβ′δ′ = βα′δ′.

これより,

α = α′δ′, β = β′δ′ (3)

を得る. よって, δ′ は α, β の公約数であるから, それらの最大公約数である δの約数である. すな

わち, ある Gauss整数 εが存在して,

δ = δ′ε. (4)

δ′ は α, β を割るから, ある α′′, β′′ が存在して,

α = δ′εα′′, β = δ′εβ′′.

これを (3)に代入すると,

δ′εα′′ = δ′α′, δ′εβ′′ = δ′β′.

もし仮に δ′ = 0ならば, (2)より αβ = 0となって α, β がともに 0でないことに反する. したがっ

て, δ′ 6= 0であるから,

εα′′ = α′, εβ′′ = β′.

ゆえに, εは α′, β′ の公約数である. これを (1)に代入すると,

λ = αεβ′′ = βεβ′′.

各辺に ε−1 を掛けると,

λε−1 = αβ′′ = βα′′.
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よって, λε−1 は α, β の公倍数であり, したがって λの倍数である. すなわち, ある Gauss整数 ε′

が存在して, λε−1 = λε′. ゆえに, ε−1 = ε′. これより εε′ = 1となるから, εは単数である. また,

(2), (4)より,

αβε = λδ

が得られる. すなわち, αβ は λδに同伴である.

2つ以上の Gauss整数が互いに素であるとは, 単数以外の公約数が存在しないときにいう. 互い

に素であることは, 最大公約数が単数であることと同値である.

［定理 1.10］α, β, γ をGauss整数とする. α, βは互いに素であり, ともに 0でないとする. この

とき,

α | βγ =⇒ α | γ

が成り立つ.

［証明］α, βは互いに素だから, それらの最大公約数は単数である. よって, 定理 1.9より, α, βの

最小公倍数は αβ に同伴である. また, α | βγ より, βγ は α, β の公倍数である. ゆえに, βγ は αβ

の倍数となる. すなわち, ある Gauss整数 ξが存在して,

βγ = αβξ.

β 6= 0であるから, 両辺を β で割ると, γ = αξ. すなわち, α | γ.

1.4 既約元分解とその一意性

π を 0でも単数でもない Gauss整数とする. π が既約元であるとは, 任意の Gauss整数 α, β に

対して,

π = αβ =⇒ αまたは β が単数

が成り立つときにいう. また, πが素元であるとは, 任意の Gauss整数 α, β に対して,

π | αβ =⇒ π | αまたは π | β

が成り立つときにいう.

［定理 1.11］ (i) 既約元と同伴な Gauss整数は既約元である.

(ii) 素元と同伴な Gauss整数は素元である.

［証明］(i) πを既約元, εと単数とする. α, βをGauss整数とし, πε = αβとすると, π = αβε−1

より, αまたは βε−1は単数である. βε−1が単数のときは,あるGauss整数 ε′が存在して βε−1ε′ = 1
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となるから, β は単数である. ゆえに, αまたは β は単数である. したがって, πεもまた既約元で

ある.

(ii) πを素元, εと単数とする. α, βをGauss整数とし, πε | αβとすると, あるGauss整数 ξが

存在して, αβ = πεξ. 両辺に (ε−1)2 を掛けると,

(αε−1)(βε−1) = πε−1ξ.

よって, π | (αε−1)(βε−1). ゆえに, π | αε−1 または π | βε−1. これより, πε | αまたは πε | β が得

られる. したがって, πεもまた素元である.

［定理 1.12］πを Gauss整数とし, πσ を πの共役とする.

(i) πが既約元ならば πσ も既約元である.

(ii) πが素元ならば πσ も素元である.

［証明］(i) πを既約元とする. α, β を Gauss整数とし, πσ = αβ とする.

π = (πσ)σ = (αβ)σ = ασβσ

であるから, ασ または βσ は単数である. よって, αまたは β も単数である. したがって, πσ は既

約元である.

(ii) πを素元とする. α, β を Gauss整数とし, πσ | αβ とする. このとき, ある Gauss整数 ξ が

存在して, αβ = πσξ. ゆえに,

ασβσ = (αβ)σ = (πσξ) = πξσ.

π は素元だから, π | ασ または π | βσ となる. π | ασ のとき, ある Gauss 整数 ξ′ が存在して,

ασ = πξ′. よって,

α = (ασ)σ = (πξ′)σ = πσξ′σ.

ゆえに, πσ | α. 同様に, π | βσ のとき, πσ | βとなる. ゆえに, πσ | αまたは πσ | β. したがって, π

は素元である.

［定理 1.13］πを Gauss整数とする. このとき, 次の 2つの条件は同値である.

(i) πは既約元である.

(ii) πは素元である.

［証明］(i)⇒(ii) πを既約元, α, β を Gauss整数とし, π | αβ とする. δを π, αの最大公約数と

すると, δは πの約数だから, δは単数であるか, または πに同伴である. δが単数であるとき, αと
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πは互いに素だから, 定理 1.10より, β が πで割り切れる. 一方, δ が πに同伴であるとき, αは δ

で割り切れるから, πでも割り切れる. ゆえに, π | αまたは π | β である. したがって, πは素元で

ある.

(ii)⇒(i) π を素元, α, β を Gauss整数とし, π = αβ とする. π | αβ であるから, π | αまたは

π | β が成り立つ. π | αのとき, ある Gauss整数 ξが存在して α = πξとなるから,

π = αβ = πξβ.

π 6= 0より, 1 = ξβ. ゆえに, β は単数である. 同様に, π | β のとき, αが単数であることが導かれ

る. ゆえに, αまたは β は単数である. したがって, πは既約元である.

［定理 1.14］αを Gauss整数とする. このとき, NKαが素数ならば αは既約元である.

［証明］対偶を示す. αが既約元でないとすると, ある Gauss整数 β, γ が存在して,

α = βγ, β, γ は単数でない.

ノルムをとると, 定理 1.2, 定理 1.6より,

NKα = NKβNKγ, NKβ > 1, NKγ > 1.

ゆえに,

1 < NKβ < NKα, 1 < NKγ < NKα.

したがって, NKαは素数でない.

［定理 1.15］αを 0でも単数でもない Gauss整数とする. このとき, αは既約元の積で表される.

［証明］ノルムの定義より, NKαは正の有理整数であり,

NKα = 0 ⇐⇒ α = 0.

また, 定理 1.6より,

NKα = 1 ⇐⇒ αは単数.

したがって, すべての有理整数 n ≥ 2に対して, nに関する命題

(Pn) NKα = nなる Gauss整数 αは既約元の積で表される.
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が成り立つことを示せばよい. nに関する数学的帰納法により証明する.

n = 2のとき, 2は素数だから, 定理 1.14より, NKα = 2を満たす αは既約元である.

n > 2のとき, 2 ≤ k ≤ n − 1なるすべての有理整数 kに対しては命題 (Pk)が成り立つと仮定す

る. αをNKα = nなるGauss整数とする. αが既約元でないとすると, あるGauss整数 β, γが存

在して,

α = βγ, β, γ は単数でない.

ノルムをとると, 定理 1.2, 定理 1.6より,

NKα = NKβNKγ, NKβ > 1, NKγ > 1.

ゆえに,

2 ≤ NKβ < NKα, 2 ≤ NKγ < NKα.

帰納法の仮定より, β, γはともに既約元の積で表される. ゆえに, αも既約元の積で表される. した

がって, nのときも命題 (Pn)は正しい.

［定理 1.16］Gauss整数 αを既約元の積で表す仕方は同伴を除き一意的である.

［証明］証明すべきことは, Gauss整数 αが既約元の積で

α ∼ π1π2 · · ·πr ∼ π′
1π

′
2 · · ·π′

s

と 2通りに表されたとき, r = sかつ適当に番号を付け替えれば πi ∼ π′
i (i = 1, 2, . . ., r)となるこ

とである. ここで, ∼は同伴であることを表す.

rに関する数学的帰納法により証明する.

r = 1のとき.

α ∼ π1 ∼ π′
1π

′
2 · · ·π′

s.

とすると, ある単数 εが存在して,

π1 = π′
1π

′
2 · · ·π′

sε.

もし仮に s ≥ 2とすると, π1 は既約元なので, π′
1 または π′

2 · · ·π′
sεが単数である. π′

1 は既約元であ

り, したがって単数でないから, π′
2 · · ·π′

sεが単数である. 定理 1.2, 定理 1.6より,

NKπ′
2 · · ·NKπ′

s = NKπ′
2 · · ·NKπ′

sNKε

= N ′
K(π′

2 · · ·π′
sε) = 1.

ところが, π′
2, . . ., π′

sは単数でないから, NKπ′
2 · · ·NKπ′

sは 1より大きい. これは矛盾である. した

がって, s = 1となり, π1 = π′
1εとなる.
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r > 1のとき. r − 1に対しては既約元の積による表し方の一意性が成り立つと仮定する.

α ∼ π1π2 · · ·πr ∼ π′
1π

′
2 · · ·π′

s

とすると, ある単数 εが存在して,

π1π2 · · ·πr = π′
1π

′
2 · · ·π′

sε.

このとき, π′
1 | π1π2 · · ·πr である. 定理 1.13より π′

1は素元であるから, いずれかの πiを割るが, 番

号を適当に付け替えて π′
1 | π1 としてもよい. すなわち, ある Gauss整数 ε1 が存在して π1 = π′

1ε1

となる. π1 は既約元だから, ε1 が単数になる. よって,

π2 · · ·πr = π′
2 · · ·π′

sεε1

かつ εε1 は単数である. すなわち,

π2 · · ·πr ∼ π′
2 · · ·π′

s.

帰納法の仮定より, r = sとなり, 番号を適当に付け替えることで πi ∼ π′
i (i = 2, . . ., r)となる. し

たがって, rのときも既約元の積による表し方の一意性が成り立つ.

1.5 イデアル

Z[
√
−1]の空でない部分集合 aが, 次の 2つの条件

(i) 任意の α, β ∈ aに対して, α − β ∈ a.

(ii) 任意の γ ∈ Z[
√
−1], α ∈ aに対して, γα ∈ a.

を満たすとき, aを Z[
√
−1]のイデアルという.

Gauss整数 α1, α2, . . ., αr に対して,

{
x1α1 + x2α2 + · · · + xrαr | xi ∈ Z[

√
−1]

}
は Z[

√
−1]のイデアルである. これを α1, α2, . . ., αr から生成されるイデアルといい,

(α1, α2, . . . , αr)

という記号で表す. また, α1, α2, . . ., αr をイデアル (α1, α2, . . . , αr)の生成元という. また, ただ 1

つの元 α ∈ Z[
√
−1]から生成されるイデアル

(α) =
{
xα | x ∈ Z[

√
−1]

}
を単項イデアルという.
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α, β を Gauss整数とする. このとき,

(α) = (β) ⇐⇒ β ∈ (α)かつ α ∈ (β)

⇐⇒ α | β かつ β | α

⇐⇒ α ∼ β

が成り立つ.

0だけからなる集合 {0}は, 0から生成される単項イデアルである. すなわち, {0} = (0). これを

零イデアルという. 任意のイデアルは零イデアルを含む.

また, Z[
√
−1]自身は, 1から生成される単項イデアルである. すなわち, Z[

√
−1] = (1).

［定理 1.17］Z[
√
−1]のすべてのイデアルは単項イデアルである.

［証明］零イデアル (0)は単項イデアルだから, それ以外の Z[
√
−1]のイデアルが単項イデアルで

あることを示せばよい.

a 6= (0)を Z[
√
−1]のイデアルとすると, {NKγ | γ ∈ a, γ 6= 0}は正の有理整数からなる空で

ない集合である. 自然数の整列性により, この集合には最小元が存在する. そこで, aの 0でない

元でノルムの値が最小であるようなものを β とする. 定理 1.4より, 任意の α ∈ aに対して, ある

κ, ρ ∈ Z[
√
−1]が存在して,

α = βκ + ρ, NKρ < NKβ

が成り立つ. もし仮に ρ 6= 0とすれば,

ρ = α − βκ ∈ a

となり, βの最小性に反する. ゆえに, ρ = 0. したがって, α = βκ ∈ (β)となり, a ⊆ (β)がいえる.

逆の包含関係は明らかだから, a = (β)であり, aは単項イデアルである.

［定理 1.18］α1, α2, . . ., αr を Gauss整数とし, それらの最大公約数を δとする. このとき,

(α1, α2, . . . , αr) = (δ)

が成り立つ.

［証明］定理 1.17より, Z[
√
−1]のすべてのイデアルは単項イデアルだから, あるGauss整数 βが

存在して,

(α1, α2, . . . , αr) = (β).

このとき, β ∈ (α1, α2, . . ., αr)であるから, ある Gauss整数 ξ1, ξ2, . . ., ξr が存在して,

β = α1ξ1 + α2ξ2 + · · · + αrξr.

よって, δは β を割る. 逆に, 各 iについて αi ∈ (β)であるから, β は α1, α2, . . ., αr の公約数であ

る. よって, βは δの約数である. ゆえに, δは βに同伴である. したがって, (δ) = (β)となる.
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1.6 素数のGauss数体での分解

pを素数とする. Z[
√
−1]において,

p ∼ πe1
1 πe2

2 · · ·πeg
g

と互いに同伴でない既約元の冪積で表すことができる. ノルムをとると,

p2 = (NKπ1)e1(NKπ2)e2 · · · (NKπg)eg .

各NKπi は正の有理整数なので, NKπ = pfi の形であり,

2 = e1f1 + e2f2 + · · · + egfg

が成り立つ. したがって, 次の 3つの場合が可能である:

(D1) g = 2, e1 = e2 = 1, f1 = f2 = 1.

(D2) g = 1, e1 = 1, f1 = 2.

(D3) g = 1, e1 = 2, f1 = 1.

それぞれの場合に応じて,

(D1) p ∼ π1π2, π1 6∼ π2, NKπ1 = NKπ2 = p.

(D2) p ∼ π1, NKπ1 = p2.

(D3) p ∼ π2
1 , NKπ1 = p.

(D1), (D2), (D3)のとき, それぞれ pはK/Qで完全分解する, 惰性する, 完全分岐するという.

［定理 1.19］πを素元とする2). πの倍数であるような有理整数の中で最小のものを pとする. こ

のとき, pは素数である.

［証明］πは単数でないから, p 6= 1. もし仮に pが合成数であるとすれば, ある正の有理整数 a, b

が存在して,

p = ab, 1 < a < p, 1 < b < p.

一方, π | p = abであるから, π | aまたは π | b. これは pの最小性に反する. したがって, pは素数

である.

［定理 1.20］pを素数とする. このとき,

pはK/Qで完全分岐する⇐⇒ p = 2

が成り立つ.

2)Gauss 整数においては, 既約元であることと素元であることとは同値である (定理 1.13).
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［証明］pが完全分岐するとすれば, ある既約元 πが存在して,

p ∼ π2, p = NKπ = ππσ.

既約元の積による表し方の一意性から, π ∼ πσ. また, 単元は ±1, ±
√
−1の 4つであるから,

π = ±πσ, ±πσ
√
−1

である. π = x + y
√
−1, x, y ∈ Zとおくと,

x + y
√
−1 = ±(x − y

√
−1), ±(y + x

√
−1).

右辺のそれぞれに対して, 関係式 x = x

y = −y,

 x = −x

y = y,

 x = y

y = x,

 x = −y

y = −x

が得られる. これらを使って変数を減らすと,

π = x, y
√
−1, x(1 +

√
−1), x(1 −

√
−1).

NK

√
−1 = 1, NK(1 +

√
−1) = NK(1 −

√
−1) = 2であるから,

p = NKπ = x2, y2, 2x2.

したがって, p = 2でなければならない.

逆に,

NK(1 +
√
−1) = (1 +

√
−1)(1 +

√
−1)σ

= (1 +
√
−1)(1 −

√
−1) = 2

= −
√
−1(1 +

√
−1)2

∼ (1 +
√
−1)2.

まとめると,

2 ∼ (1 +
√
−1)2, NK(1 +

√
−1) = 2.

定理 1.14より, 1 +
√
−1は既約元である. したがって, 2はK/Qで完全分岐する.

［定理 1.21］pを奇素数とする.

(i) pはK/Qで完全分解する⇐⇒ p ≡ 1 (mod 4).

(ii) pはK/Qで惰性する⇐⇒ p ≡ 3 (mod 4).
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［証明］pは奇素数なので, p ≡ 1または 3 (mod 4). また, 定理 1.20より, pはK/Qで完全分解す

るか惰性するかしかない. よって, (i)を証明すれば十分である.

pが完全分解するとすれば, Nπ = pとなる. π = x + y
√
−1, x, y ∈ Zとおくと, x2 + y2 = p. こ

のとき, x, yのどちらか一方が奇数, もう一方が偶数である. ゆえに, p ≡ 1 (mod 4)となる.

逆に, p ≡ 1 (mod 4)とすると, −1は pを法とする平方剰余だから, ある有理整数 xが存在して,

(x +
√
−1)(x −

√
−1) = x2 + 1 ∈ pZ ⊆ pZ[

√
−1].

もし仮に pがK/Qで惰性するならば, pはZ[
√
−1]の既約元,したがって素元であるから, p | x+

√
−1

または p | x −
√
−1となる. p | x +

√
−1のとき, ある Gauss整数 x′ + y′√−1, x′, y′ ∈ Zが存在

して,

x +
√
−1 = p(x′ + y′√−1) = px′ + py′√−1.

これより py′ = 1となり, 矛盾が生じる. p | x −
√
−1のときも, 同様にして矛盾が導かれる. ゆえ

に, pはK/Qで惰性しない. したがって, pはK/Qで完全分解する.

1.7 方程式 x2 + y2 = r

rを正の有理整数とする. 方程式

x2 + y2 = r

の解 (x, y)のうち, gcd(x, y) = 1を満たすものを原始解という.

r = 1のとき, 方程式 x2 + y2 = 1の有理整数解は (x, y) = (±1, 0), (0, ±1)である. 実際, 有理

整数解 (x, y)は x2 ≤ 1かつ y2 ≤ 1を満たさなければならないことに注意すれば, 解を決定するこ

とは容易である.

以下, r > 1のときを考える.

［定理 1.22］pを素数とする. x, yについての方程式

x2 + y2 = p (5)

に有理整数解が存在するための必要十分条件は,

p = 2 または p ≡ 1 (mod 4)

となることである.

また, (x, y)を方程式 (5)の有理整数解とすれば, gcd(x, y) = 1が必ず成り立つ.

［証明］(条件の必要性) 対偶を示す. 条件が成り立たないとすると, p ≡ 3 (mod 4)である. この

とき, pはK/Qで惰性する. すなわち, pは Z[
√
−1]における既約元である. もし仮に pに対して

方程式 (5)に有理整数解 (x, y)が存在するならば, π = x + y
√
−1とおくと,

p = x2 + y2 = ππσ = NKπ.
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NKπは素数だから, πは Z[
√
−1]における既約元である. 既約元の共役もまた既約元だから, πσ も

既約元である. したがって, p = ππσ は pの既約元分解である. 分解の一意性より, これは p自身が

既約元であることに反する. したがって, 条件を満たさない pに対しては, 方程式 (5)に有理整数解

は存在しない.

(条件の十分性) 条件が成り立つとき, pはK/Qで完全分岐するか完全分解するかである. どちら

の場合にも,ある既約元 πが存在してNKπ = pが成り立つ. πはGauss整数だから, π = x+y
√
−1,

x, y ∈ Zの形に表せる. ゆえに,

p = NKπ = ππσ = (x + y
√
−1)(x − y

√
−1) = x2 + y2.

よって, (x, y)は方程式 (5)の有理整数解である.

(gcd(x, y) = 1であること) (x, y)を方程式 (5)の有理整数解とし, dを x, yの公約数とすれば,

d2 | x2 + y2 = p.

pは素数だから, d2 = 1. ゆえに, d = ±1. したがって, gcd(x, y) = 1.

［定理 1.23］方程式 (5)の有理整数解は本質的にはただ 1つである. すなわち, (a, b)を有理整数

解の 1つとすると, すべての有理整数解は

(±a, ±b), (±b, ±a)

で与えられる. ただし, ±は複号任意とする.

［証明］(x, y)を方程式 (5)の有理整数解とし, π = x + y
√
−1とおくと,

p = (x + y
√
−1)(x − y

√
−1) = ππσ = NKπ.

NKπは素数だから, πは Z[
√
−1]における既約元である. 既約元の共役もまた既約元だから, πσ も

既約元である. したがって, p = ππσ は pの既約元分解である. 特に, π1 = a + b
√
−1とおけば,

p = π1π
σ
1 は pの Z[

√
−1]での既約元分解である. 分解の一意性より,

π ∼ π1 または π ∼ πσ
1 .

Gauss整数で単数となるものは ±1, ±
√
−1の 4つであるから,

π = ±π1, ±π1

√
−1, ±πσ

1 , ±πσ
1

√
−1.

すなわち,

x + y
√
−1 = ±(a ± b

√
−1), ±(b ± a

√
−1) (複号任意)

となる. これより,

(x, y) = (±a, ±b), (±b, ±a) (複号任意)

が得られる.
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［定理 1.24］eを正の有理整数, pを素数とし, p ≡ 1 (mod 4)であるとする. このとき, x, yにつ

いての方程式

x2 + y2 = pe (6)

には原始解が存在する.

［証明］p ≡ 1 (mod 4)のとき, 定理 1.22より, 方程式 (5)には有理整数解が存在する. それを (a, b)

とする. π1 = a + b
√
−1とおくと,

p = π1π
σ
1 = NKπ1.

πe
1 = x + y

√
−1, x, y ∈ Zと表すと,

(πσ
1 )e = (πe

1)
σ = x − y

√
−1.

ゆえに,

pe = πe
1(π

σ
1 )e = πe

1(π
e
1)

σ = (x + y
√
−1)(x − y

√
−1) = x2 + y2.

したがって, (x, y)は方程式 (6)の有理整数解である.

さて, NKπ1 は素数だから, π1 は Z[
√
−1]における既約元である. 既約元の共役もまた既約元だ

から, πσ
1 も既約元である. したがって, p = π1π

σ
1 は pの既約元分解である. p ≡ 1 (mod 4)より p

はK/Qで完全分解するから, π1 6∼ πσ
1 . ゆえに, πe

1 と (πσ
1 )e とは互いに素である. x, yの公約数は

πe
1, (πσ

1 )e の公約数になるから, gcd(x, y) = 1でなければならない.

［定理 1.25］pを素数とし, p ≡ 1 (mod 4)とする. 方程式 (6)の原始解がもし存在すれば, 本質的

にはただ 1つである. すなわち, (x0, y0)を原始解の 1つとすると, すべての原始解は

(±x0, ±y0), (±y0, ±x0)

で与えられる. ただし, ±は複号任意とする.

［証明］(x, y)を方程式 (6)の有理整数解とし, α = x + y
√
−1とおくと,

pe = (x + y
√
−1)(x − y

√
−1) = αασ.

一方, (a, b)を方程式 (5)の有理整数解とし, π1 = a + b
√
−1とおくと,

p = (a + b
√
−1)(a − b

√
−1) = π1π

σ
1 = NKπ1.

ゆえに,

αασ = πe
1(π

σ
1 )e.

NKπ1 は素数だから, π1 は Z[
√
−1]における既約元である. 既約元の共役もまた既約元だから, πσ

1

も既約元である. したがって, 右辺は既約元の積である. さらに, p ≡ 1 (mod 4)より pはK/Qで
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完全分解するから, π1 6∼ πσ
1 である. もし仮に p = π1π

σ
1 が αを割るとすれば, ある Gauss整数

x′ + y′√−1, x′, y′ ∈ Zが存在して,

x + y
√
−1 = p(x′ + y′√−1) = px′ + py′√−1.

よって, x = px′, y = py′となり, pは x, yの両方を割る. これは gcd(x, y) = 1に反する. したがっ

て, π1π
σ
1 - αとなる. ゆえに,

α ∼ πe
1 または α ∼ (πσ

1 )e = (πe
1)

σ

が得られる. Gauss整数で単数となるものは ±1, ±
√
−1の 4つであるから,

α = ±πe
1, ±πe

1

√
−1, ±(πe

1)
σ, ±(πe

1)
σ
√
−1.

πe
1 = x0 + y0

√
−1, x0, y0 ∈ Zとすると,

x + y
√
−1 = ±(x0 ± y0

√
−1), ±(y0 ± x0

√
−1) (複号任意)

となる. これより,

(x, y) = (±x0, ±y0), (±y0, ±x0) (複号任意)

が得られる.

［定理 1.26］r > 1を有理整数とし, r =
∏s

i=1 pei
i を素因数分解とする. このとき, x, yについて

の方程式

x2 + y2 = r (7)

が原始解を持つための必要十分条件は, 4 - r かつ各 iについて pi 6≡ 3 (mod 4)が成り立つことで

ある.

［証明］(条件の必要性) 方程式 (7)が原始解 (x, y)を持つとする. このとき, x, y のどちらか一

方は必ず奇数である. よって, x2 + y2 ≡ 1, 2 (mod 4)となり, 4 - rがいえる.

また, pi ≡ 3 (mod 4)なる piが存在したとする. piはK/Qで惰性する. すなわち, piは Z[
√
−1]

における既約元であり, したがって素元でもある.

pi | r = x2 + y2 = (x + y
√
−1)(x − y

√
−1)

より, piは x+ y
√
−1, x + y

√
−1のどちらかを割るが, どちらにせよ x, yを割ることになり, (x, y)

が原始解であることに反する.

(条件の十分性) 条件が成り立つとき, rの各素因数はK/Qで完全分解するか完全分岐するかで

ある. よって, i = 1, 2, . . ., sに対して, ある既約元 πi が存在して, pi = NKπi = πiπ
σ
i となる. そ

こで,

x + y
√
−1 = πe1

1 πe2
2 · · ·πes

s , x, y ∈ Z (8)
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とおけば, (x, y)は方程式 (7)の有理整数解になる. pi 6= 2のとき, piはK/Qで完全分解するから,

π1 6∼ πσ
1 . よって, πe

1 と (πσ
1 )e とは互いに素である. x, yの公約数は x + y

√
−1と x − y

√
−1との

公約数になるから, 奇素数は x, yの公約数にならない. さらに, もし仮に 2が x, yの公約数ならば,

4 | x2 + y2 = rとなり, 4 - rに反する. したがって, gcd(x, y) = 1となる.

［注意 1.1］r > 1を有理整数とする. eが偶数のとき, e = 2e1 とおくと, 方程式 x2 + y2 = re は

常に有理整数解 (x, y) = (0, re1)を持つ. これはもちろん原始解ではない.

［注意 1.2］原始解でなければ, e ≥ 2のときでも方程式 x2 + y2 = 2e は有理整数解を持つ.

eが偶数のとき, e = 2e1 (e1 ≥ 1)とおくと, (x, y) = (0, 2e1)が解になる.

eが奇数のとき, e = 2e2 + 1 (e2 ≥ 1)とおくと, (x, y) = (2e2 , 2e2)が解になる.

［定理 1.27］r > 2のとき, rの pi ≡ 1 (mod 4)を満たす相異なる素因子 piの個数を tとする. 方

程式 (7)に原始解が存在すれば, その個数は, 符号と x, yの順番の差を除くと, 2t−1 個である3).

［証明］定理 1.26の証明中の (8)において, 各 iごとに πi と πσ
i のどちらをとるかによって原始

解 (x, y)が変化する. また, (x, y)に符号の変化あるいは x, yの交換が起こるのは, x + y
√
−1が

同伴, 共役, 共役の同伴のいずれかに置き換わるとき, またそのときに限られる.

いくつかの πi を同伴なものに置き換えたときは, x + y
√
−1も同伴なものに変わる. 特に, 2は

K/Qで完全分岐するので, pi = 2のとき πσ
i は πiに同伴であり, これらを置き換えても x + y

√
−1

は同伴なものに変わるだけである.

pi ≡ 1 (mod 4)のとき, pi は K/Qで完全分解するので, πi 6∼ πσ
i である. 既約元分解の一意性

より, (8)においていくつかの πi を πσ
i に置き換えて得られるものは, もとの x + y

√
−1と同伴で

はない. これにより 2t個の解が得られるが, そのうちの半分はカウントから除外しなければならな

い. なぜなら, すべての iに対して πiを一斉に πσ
i に置き換えるとき, x + y

√
−1は x− y

√
−1に変

わるからである.

［注意 1.3］r = 2のとき, 方程式 x2 + y2 = 2の有理整数解は (x, y) = (±1, ±1)である.
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