
1 Gauss記号

定義 1.1. a ∈ Rに対して,
[a] := max{x ∈ Z | x ≤ a}

によって [a]を定義する. つまり, aを超えない最大の整数を [a]とする. 記号 [∗]をGauss記号と

いう.

補題 1.2. 任意の a ∈ Rに対して, あるm ∈ Zが一意的に存在してm ≤ a < m + 1が成り立つ.

証明. mの存在の証明 mの存在を背理法によって証明する.
もし仮にm ≤ a < m + 1となるようなm ∈ Zが存在しないとすると, 任意のm ∈ Zに対して,

a < mまたはm + 1 ≤ aが成り立つ.
a < mならば, 背理法の仮定から a < m− 1でなければならない. したがって, もしあるm0 ∈ Z

が存在して a < m0 ならば,
m0 > m0 − 1 > m0 − 2 > · · · > a

となる. しかしこれはm − i → −∞ (i → ∞)に矛盾する.
よって, 任意の m ∈ Z に対して m + 1 ≤ a でなければならない. ところがこれは m + 1 →

+∞ (m → ∞)に矛盾する.
以上より, あるm ∈ Zが存在してm ≤ a < m + 1となることが示された.

mの一意性の証明 m1, m2 ∈ Zとし,

m1 ≤ a < m1 + 1, m2 ≤ a < m2 + 2 (1)

であるとする.
もし仮にm1 �= m2 ならば, m1 < m2 またはm2 < m1 である. m1 < m2 であるとしても一般性

を失わない. このとき, m1 + 1 ≤ m2である. (1)の一番目の不等式より a < m1 + 1だから a < m2

である. これは (1)の二番目の不等式におけるm2 ≤ aに反する.
したがってm1 = m2 でなければならない.

命題 1.3. 任意の a ∈ Rに対して [a]が一意的に定まる.

証明. a ∈ Rとする. 補題 1.2より, あるm ∈ Zが存在してm ≤ a < m + 1となる. このとき, a

を超えない最大の整数はmである. すなわち, [a] = mである.
一意性は明らかである. 実際, 二つの [a]をそれぞれ [a]1, [a]2 とすれば, [a]1 = m = [a]2 であ
る.

命題 1.4. 任意の a ∈ Rに対して [a] ≤ a.

証明. [a]の定義 (定義 1.1)より [a] ∈ {x ∈ Z | x ≤ a}. ゆえに [a] ≤ a.
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命題 1.5. a ∈ R, m ∈ Zについて,

m ≤ a ⇐⇒ m ≤ [a].

証明. (⇒) a ∈ R, m ∈ Z, m ≤ aとすれば,

m ∈ {x ∈ Z | x ≤ a}.

よって [a]の定義 (定義 1.1)よりm ≤ [a].
(⇐) 命題 1.4より [a] ≤ aだから.

系 1.5.1. a ∈ R, m ∈ Zについて,

a < m ⇐⇒ [a] < m.

証明. 命題 1.5の対偶をとればよい.

命題 1.6. a ∈ R, m ∈ Zについて,

[a] = m ⇐⇒ m ≤ a < m + 1

が成り立つ.

証明. (⇒) [a] = mとする. このとき, m ≤ a < m + 1であることを背理法により証明する.
もし仮にm ≤ a < m + 1でないとすると, 実数の性質より a < mまたはm + 1 ≤ aが成り立つ.
a < mのとき, 命題 1.4より [a] < m. これは [a] = mに反する.
m + 1 ≤ aのとき, 命題 1.5よりm + 1 ≤ [a]. これは [a] = mに反する.
いずれにせよ, m ≤ a < m + 1でないと仮定すると矛盾が生じる. したがってm ≤ a < m + 1
でなければならない.

(⇐) m ≤ a < m + 1のとき, aを超えない最大の整数はmだから, 定義 1.1より [a] = m.

系 1.6.1. a ∈ R, m ∈ Z, n ∈ Z>0 とする.

(i) [na] = m ⇐⇒ m/n ≤ a < (m + 1)/n,

(ii) [a/n] = m ⇐⇒ nm ≤ a < n(m + 1).

証明. (i) [na] = m ⇔ m ≤ na < m + 1 ⇔ m/n ≤ a < (m + 1)/n. ここで, 最初の⇔に命題
1.6を用いた.

(ii) [a/n] = m ⇔ m ≤ a/n < m + 1 ⇔ nm ≤ a < n(m + 1). ここで, 最初の⇔に命題 1.6を
用いた.

系 1.6.2. a ∈ R, m ∈ Z, n ∈ Z>0 とする.

(i) n | mのとき, n[a] = m ⇐⇒ m/n ≤ a < m/n + 1,
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(ii) [a]/n = m ⇐⇒ nm ≤ a < nm + 1.

証明. (i) n[a] = m ⇔ m ≤ [a] = m/n ⇔ m/n ≤ a < m/n + 1n. ここで, 二番目の⇔に命題
1.6を用いた.

(ii) [a]/n = m ⇔ [a] = nm ⇔ nm ≤ a < nm + 1. ここで, 二番目の⇔に命題 1.6を用い
た.

命題 1.7. a ∈ Rについて,
a ∈ Z ⇐⇒ [a] = a.

証明. (⇒) 命題 1.4より [a] ≤ aは明らか. 逆に, a ∈ {x ∈ Z | x ≤ a}であるから, [a]の定義
(定義 1.1)より a ≤ [a]. したがって [a] = a.

(⇐) [a] ∈ Zだから, a = [a]のとき a ∈ Z.

系 1.7.1. 任意の a ∈ Rに対して, [[a]] = [a].

証明. [a] ∈ Zだから, 命題 1.7より [[a]] = [a].

命題 1.8. a, b ∈ Rに対して,
a ≤ b =⇒ [a] ≤ [b].

証明. (⇒) a ≤ bと仮定する. [a]の定義 (定義 1.1)より

[a] ∈ {x ∈ Z | x ≤ a}.

一方, a ≤ bと仮定したから,

{x ∈ Z | x ≤ a} ⊆ {x ∈ Z | x ≤ b}.

ゆえに,
[a] ∈ {x ∈ Z | x ≤ b}.

[b]の定義 (定義 1.1)より,
[a] ≤ [b]

となる.

系 1.8.1. a, b ∈ Rに対して,
[a] < [b] =⇒ a < b.

証明. [a] < [b]とする. このとき, a < bであることを背理法によって証明する.
a < bでないと仮定する. 実数の性質より, b ≤ aである. 命題 1.8より, [b] ≤ [a]となる. これは

[a] < [b]に反する.
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注意 1.8.2. a < bのとき, [a] < [b]となる場合と, [a] = [b]となる場合がある. 実際, a < n ≤ b

を満たすような n ∈ Zがあれば [a] < [b]となり, なければ [a] = [b]となる.

命題 1.9. a ∈ Rに対して [a + 1] = [a] + 1.

証明. [a] ≤ aより

[a] + 1 ≤ a + 1.

命題 1.5より
[a] + 1 ≤ [a + 1]. (1)

逆に, [a + 1] ≤ a + 1より,
[a + 1] − 1 ≤ (a + 1) − 1 = a.

命題 1.5より
[a + 1] − 1 ≤ [a].

したがって

[a + 1] ≤ [a] + 1. (2)

(1), (2)より [a + 1] = [a] + 1.

系 1.9.1. a ∈ R, m ∈ Zに対して [a + m] = [a] + m.

証明. m = 0のときは明らか.
m > 0のときは, 命題 1.9を有限回用いて

[a + m] = [a + (m − 1) + 1] = [a + (m − 1)] + 1 = · · · = [a + 1] + (m − 1) = [a] + m.

(厳密にはmに関する数学的帰納法によって示される).
m < 0のとき, m′ := −m, a′ := a + mとおけば, 主張を示すことは

[a′ + m′] = [a′] + m′

を示すことに帰着される.

命題 1.10. a, b ∈ Rとする.

(i) [a] + [b] ≤ [a + b],

(ii) [a − b] ≤ [a] − [b].

証明. (i) [a] ≤ a, [b] ≤ bより, [a] + [b] ≤ a + b. 命題 1.5より [a] + [b] ≤ [a + b].
(ii) c = a − bとおくと, 主張は [c] + [b] ≤ [c + b]に帰着される.

命題 1.11. 任意の a ∈ Rに対して a < [a] + 1.
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証明. 背理法で証明する.
もし仮に [a] ≤ a − 1ならば, 命題 1.5より [a] ≤ [a − 1].
一方, 系 1.9.1より,

[a − 1] = [a] − 1 < [a].

これは矛盾である.

系 1.11.1. 任意の a ∈ Rに対して, ある r ∈ Rがただ一つ存在して,

a = [a] + r, 0 ≤ r < 1

が成り立つ.

証明. 命題 1.11より r ∈ Rの存在は明らかである.
もし, 上記の rと同じ条件を満たす r′ ∈ Zについて,

r′ = a − [a] = r

となる. よって rは一意的である.

系 1.11.2.

(i) 任意の a ∈ Z, m ∈ Z>0 に対して, ある r ∈ Zが存在して,

a = m ·
[

a

m

]
+ r, 0 ≤ r < m

が成り立つ.

(ii) a, q, r ∈ Z, m ∈ Z>0 とする. このとき,

a = mq + r, 0 ≤ r < m

が成り立つならば,

q =
[

a

m

]

である.

証明. (i) 系 1.11.1より, ある r ∈ Zが存在して

a

m
=

[
a

m

]
+ r1, 0 ≤ r1 < 1

となる. r := mr1 とおけば

a = m ·
[

a

m

]
+ r, 0 ≤ r < m

となる. よって rの存在が示された.
(ii) 0 ≤ r < mより

0 ≤ r

m
< 1.
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一方, a = mq + rより
a

m
= q +

r

m
.

よって

q =
[
q +

r

m

]
=

[
a

m

]
.

例 1.11.3. m ∈ Z>0, a, b ∈ Zとする.
a = m · [a/m] + α, b = m · [b/m] + β とおく (系 1.11.2). このとき, 0 ≤ α + β < 2mである.
(i) 0 ≤ α + β < mのとき, 0 ≤ (α − β)/m < 1であるから,[

a + b

m

]
=

[
([m/a] + [m/b]) · m

m
+

α + β

m

]
=

[
a

m

]
+

[
b

m

]
.

(ii) 1 ≤ α + β < 2mのとき, 1 ≤ (α + β)/m < 2であるから,[
a + b

m

]
=

[
([m/a] + [m/b]) · m

m
+

α + β

m

]
=

[
a

m

]
+

[
b

m

]
+ 1.

例 1.11.4. m ∈ Z>0, a, b ∈ Zとする.
a = m · [a/m] + α, b = m · [b/m] + β とおく (系 1.11.2). このとき, −m < α − β < mである.
(i) 0 ≤ α − β < mのとき, 0 ≤ (α − β)/m < 1であるから,[

a − b

m

]
=

[
([m/a] − [m/b]) · m

m
+

α − β

m

]
=

[
a

m

]
−

[
b

m

]
.

(ii) −m < α − β < 0のとき, 0 < 1 + (α − β)/m < 1であるから,[
a − b

m

]
=

[
([m/a] − [m/b]) · m

m
− 1 +

(
1 +

α − β

m

)]
=

[
a

m

]
−

[
b

m

]
− 1.

系 1.11.5. 任意の n ∈ Z>0 と x ∈ Rに対して[
[nx]
n

]
= [x]

が成り立つ.

証明. 系 1.11.2より, ある r ∈ Zが存在して

[nx] = n ·
[
[nx]
n

]
+ r, 0 ≤ r ≤ n − 1

と表せる. 一方, 系 1.11.1より, ある s ∈ Rが存在して

nx = [nx] + s, 0 ≤ s < 1

と表せる. よって

x =
[
[nx]
n

]
+

r + s

n
.

r + s < nだから,

[x] =
[
[nx]
n

]
となる.
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例 1.11.6. x ∈ R>0 に対して,
[10kx]
10k

(k ≥ 0)

は, 小数点 k + 1位以下を切り捨てた数になる.
例えば, x := 3.14159について,

102x = 314.159,

[102x] = 314,

[102x]
102

= 3.14

となる.

命題 1.12. 任意の a ∈ R \ Zに対して [a] + [−a] = −1.

証明. 系 1.11.1より
a = [a] + r, 0 < r < 1

と表せる. 命題 1.6より
[r] = 0, [−r] = −1

である. このとき

[a] + [−a] = [[a] + c] + [−[a] − c]

= [a] + [c] − [a] + [−c] (∵系 1.9.1)

= −1.

命題 1.13. 任意の a ∈ R \ Zとm ∈ Zに対して [a] + [m − a] = m − 1.

証明. a ∈ R \ Z, m ∈ Zとする. 系 1.9.1より

[m − a] = [−a] + m.

また, 命題 1.12より
[a] + [−a] = −1.

よって

[a] + [m − a] = [a] + [−a] + m = m − 1.

命題 1.14. 任意の a ∈ Rに対して 0 ≤ a − [a] < 1.

証明. 命題 1.4と命題 1.11からわかる.
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命題 1.15. a, b ∈ Rとする.

(i) [a + b] ≤ [a] + [b] + 1,

(ii) [a] − [b] ≤ [a − b] + 1.

証明. (i) 命題 1.11より
a < [a] + 1, b < [b] + 1.

よって

a + b < [a] + [b] + 2.

一方, 命題 1.4より [a + b] ≤ a + bだから

[a + b] < [a] + [b] + 2.

[a + b] ∈ Z, [a] + [b] + 2 ∈ Zだから,

[a + b] ≤ [a] + [b] + 1

となる.
(ii) 命題 1.12と命題 1.10 (i)より

[a] − [b] = [a] + [−b] + 1 ≤ [a − b] + 1.

命題 1.16. 任意の a1, . . . an ∈ Rに対して

[a1] + · · · + [an] ≤ [a1 + · · · + an] ≤ [a1] + · · · + [an] + (n − 1).

が成り立つ.

証明. n = 2のときは命題 1.10と命題 1.15より明らか.
n = kのときまで正しいと仮定すると,

[a1] + · · · + [ak] ≤ [a1 + · · · + ak] ≤ [a1] + · · · + [ak] + (k − 1).

このとき, 帰納法の仮定と n = 2の場合の結果を用いれば

[a1] + · · · + [ak] + [ak+1] ≤ [a1 + · · · + ak] + [ak+1]

≤ [a1 + · · · + ak+1]

≤ [a1] + · · · + [ak−1] + [ak + ak+1] + (k − 1)

≤ [a1] + · · · + [ak−1] + [ak] + [ak+1] + k.

ゆえに n = k + 1のときも正しい.

命題 1.17. 任意の a, b ∈ R>0 に対して [a][b] ≤ [ab].

8



証明. a = [a] + α, b = [b] + β とおく (系 1.11.1)と,

ab = [a][b] + αa + βb + αβ.

a, b ∈ R>0 より, αa + βb + αβ ≥ 0. ゆえに

[a][b] ≤ ab.

したがって, 命題 1.5より
[a][b] ≤ [ab].

系 1.17.1. a ∈ R>0, m ∈ Z>0 とする.

(i) m[a] ≤ [ma].

(ii) [a/m] ≤ [a]/m.

証明. (i) 命題 1.7よりm = [m]. よって, 命題 1.17より

m[a] = [m][a] ≤ [ma].

(ii) a′ = a/m とおけば, [a/m] ≤ [a]/m を示すことは m[a′] ≤ [ma′] を示すことに帰着され
る.

例 1.17.2. m = 2, a = 1/2とすれば, m[a] = 0, [ma] = 1. よってこの場合, m[a] < [ma].

命題 1.18. x ∈ R, m ∈ Z>0, 0 ≤ l ≤ m − 1とする. このとき,

l

m
≤ x − [x] <

l + 1
m

=⇒ [mx] − m[x] = l

が成り立つ.

証明. l/m ≤ x − [x] < (l + 1)/mと仮定する.

l

m
≤ x − [x] =⇒ l ≤ mx − m[x]

=⇒ l + m[x] ≤ mx

=⇒ l + m[x] ≤ [mx] (∵命題 1.5)

=⇒ l ≤ [mx] − m[x].

ゆえに

l ≤ [mx] − m[x]. (1)

一方, 命題 1.4より [mx] ≤ mxだから

[mx] − m[x] ≤ mx − m[x].

9



一方,

x − [x] <
l + 1
m

=⇒ mx − m[x] < l + 1.

ゆえに

[mx] − m[x] < l + 1. (2)

[mx] − m[x] ∈ Zだから, (1), (2)より

[mx] − m[x] = l.

命題 1.19. a, b ∈ Rについて

[a] = [b] =⇒ −1 ≤ a − b ≤ 1.

証明.

[a] = [b] ⇐⇒ [a] − [b] = 0

=⇒ [a − b] ≤ 0 ≤ [a − b] + 1 (∵命題 1.10と命題 1.15)

⇐⇒ −1 ≤ [a − b] ≤ 0

⇐⇒ [a − 1] = −1 または [a − b] = 0

⇐⇒ −1 ≤ a − b < 1. (∵命題 1.6)

命題 1.20. 任意の x ∈ R, n ∈ Z>0 に対して,

n−1∑
i=0

[
x +

i

n

]
= [nx]

が成り立つ.

証明. l, m ∈ Zとし,

m +
l

n
≤ x < m +

l + 1
n

, 0 ≤ l ≤ n − 1 (1)

とする. (1)より
nm + l ≤ nx < nm + l + 1

であるから

[nx] = nm + l.

一方, (1)より

m +
i + l

n
≤ x +

i

n
< m +

i + l + 1
n

.

よって [
x +

i

n

]
=

{
m + 1, i ≥ n − l

m, i < n − l
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であるから
n−1∑
i=0

[
x +

i

n

]
= nm + l.

したがって, 求める等式が得られる.

命題 1.21. 任意の n ∈ Z>0 と x1, . . ., xn, a1, . . ., an に対して,

n∑
i=1

ai ≥ n − 1 =⇒
[ n∑

i=1

xi

]
≤

n∑
i=1

[xi + ai]

が成り立つ.

証明. [ n∑
i=1

xi

]
+ (n − 1) =

[ n∑
i=1

xi + (n − 1)
]

(∵系 1.9.1)

≤
[ n∑

i=1

(xi + ai)
]

(∵命題 1.8)

≤
n∑

i=1

[xi + ai] + (n − 1) (∵命題 1.16)

より [ n∑
i=1

xi

]
≤

n∑
i=1

[xi + ai].

命題 1.22. a, b ∈ Rとする.

(i) [x] + [y] + [x + y] ≤ [2x] + [2y].

(ii) [x] + [y] + [2x + y] + [x + 2y] ≤ [4x] + [4y].

証明. (i)

[2x] + [2y] = [x] + [y] +
[
x +

1
2

]
+

[
y +

1
2

]
(∵命題 1.20)

≥ [x] + [y] + [x + y] (∵命題 1.21).

(ii)

[4x] + [4y] = [2x] + [2y] +
[
2x +

1
2

]
+

[
2y +

1
2

]
(∵命題 1.20)

= [x] + [y] +
[
x +

1
2

]
+

[
y +

1
2

]
+

[
2x +

1
2

]
+

[
2y +

1
2

]
(∵命題 1.20)

≥ [x] + [y] + [2x + y] + [x + 2y] (∵命題 1.21).
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命題 1.23. m, n ∈ Z>0 とする. このとき, nの倍数でm以下のものの個数は [m/n]である.

証明. m < nのとき, nの倍数でm以下のものの個数は 0である. 一方, m < nならば [m/n] = 0.
よってm < nのとき主張は正しい.

n ≤ mのとき, nの倍数でm以下のものは

1 · n, 2 · n, . . . ,

[
m

n

]
· n

の [m/n]個である. 実際, [
m

n

]
· n ≤ m

n
· n = m (命題 1.4),([

m

n

]
+ 1

)
· n >

m

n
· n = m (命題 1.11)

である.

系 1.23.1. m ∈ Zに対して

ordp(m) := max{k ∈ Z≥0 | pk はmを割る }

とおく. このとき, 任意の n ∈ Z>0 に対して

ordp(n!) =
[logp n]∑

k=1

[
n

pk

]

が成り立つ.

証明. n!の因数
1, 2, 3, . . . , n

の中に, pの倍数が n1 個, p2 の倍数が n2 個, . . ., p[logp n] の倍数が n[logp n] 個あるとすれば,

ordp(n!) = n1 + n2 + · · · + n[logp n]

である. したがって命題 1.23より求める等式が得られる.

系 1.23.2. p1, p2, . . ., pnは二つずつ互いに素な整数であるとする. x ∈ Rに対して, xを超えな

い正の整数mのうちで pi � m (i = 1, 2, . . . , n)であるものの個数を N(x; p1, p2, . . . , pn)とする.
このとき,

N(x; p1, p2, . . . , pn) = [x] −
n∑

i=1

[
x

pi

]
+

∑
1≤i<j≤n

[
x

pipj

]
−

∑
1≤i<j<k≤n

[
x

pipjpk

]
+ · · ·

が成り立つ.
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証明. nに関する数学的帰納法により証明する.
n = 1のとき, 命題 1.23より,

N(x; p1) = [x] −
[

x

p1

]

が成り立つ.
n = lのとき主張が正しいと仮定する. このとき, 命題 1.23より, N(x/pl+1; p1, p2, . . . , pl)は

1 · pl+1, 2 · pl+1, . . ., [x/pl+1] · pl+1 の中で p1, p2, . . ., pl のいずれでも割れないものの個数に一致

することがいえる. したがって,

N(x; p1, p2, . . . , pl+1) = N(x; p1, p2, . . . , pl) − N(x/pl+1; p1, p2, . . . , pl)

=
(

[x] −
l∑

i=1

[
x

pi

]
+

∑
1≤i<j≤l

[
x

pipj

]
− · · ·

)

−
([

x

pl+1

]
−

l∑
i=1

[
x

pipl+1

]
+

∑
1≤i<j≤l

[
x

pipjpl+1

]
− · · ·

)

= [x] −
l+1∑
i=1

[
x

pi

]
+

∑
1≤i<j≤l+1

[
x

pipj

]
− · · ·

となる.

注意 1.23.3. ϕを Eulerの関数とする. すなわち, x ∈ Zに対して, ϕ(x)を x以下の正の整数で

xと互いに素なものの個数とする.
p1, p2, . . ., pnをxのすべての素因数として,系1.23.2を適用すれば, ϕ(x) = N(x; p1, p2, . . . , pn)
が成り立つ.

命題 1.24. x ∈ R>0, n ∈ Z>0 とする. このとき,

x, 2x, . . . , nx

がすべて整数でなければ,
1
x

,
2
x

, . . . ,
[nx]
x

もまたすべて整数ではない.

証明. 対偶を証明する. ある i ∈ Zが存在して, 1 ≤ i ≤ [nx]かつ i/x ∈ Zと仮定する.
j := i/xとおくと, jx = i ∈ Z. また, i/x > 0より j ≥ 1. さらに, 命題 1.4より [nx] ≤ nxだ

から,
jx = i ≤ [nx] ≤ nx.

x > 0だから, j ≤ nが得られる.

命題 1.25. x ∈ R>0, n ∈ Z>0 とする. このとき,

x, 2x, . . . , nx

13



がすべて整数でなければ,
n∑

i=1

[ix] +
[nx]∑
j=1

[
j

x

]
= n[nx]

が成り立つ.

証明. x ∈ R>0 とすると, i, j ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ [nx] + 1について,

[ix] = j − 1 ⇐⇒ j − 1 ≤ ix < j

⇐⇒ j − 1
x

≤ i <
j

x

⇐⇒ j − 1
x

≤ i ≤
[

j

x

]
(∵命題 1.5).

仮定と命題 1.24より (j − 1)/x �= i. よって系 1.5.1より

[ix] = j − 1 ⇐⇒
[
j − 1

x

]
< i ≤

[
j

x

]
.

さらに, 命題 1.11より nx ≤ [nx] + 1. よって

n ≤ [nx] + 1
x

.

命題 1.5より

n ≤
[
[nx] + 1

x

]
.

したがって,

[x] + [2x] + · · · + [nx] = 0 ·
[

1
x

]
+ 1 ·

([
2
x

]
−

[
1
x

])
+ · · ·

+ ([nx] − 1)
([

[nx]
x

]
−

[
[nx] − 1

x

])

+ [nx]
([

n −
[
[nx]
x

])

= n[nx] −
[

1
x

]
−

[
2
x

]
− · · · −

[
[nx]
x

]
.

補題 1.26. p, q ∈ Z>0, gcd(p, q) = 1とする. このとき,

q

p
,

2q

p
, . . . ,

(p − 1)q
p

はすべて整数ではない.

証明. ある i ∈ Zが存在して

1 ≤ j ≤ p − 1,
jq

p
∈ Z

が成り立つと仮定する. k := jq/pとおくと,

jq = pk, k ∈ Z>0.
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gcd(p, q) = 1だから, ある k1 ∈ Z>0 が存在して k = qk1 となる. よって

jq = pqk1.

ゆえに

j = pk1 ≥ p.

これは仮定に反する.

命題 1.27. m, p, q ∈ Z>0, gcd(p, q) = 1とする. このとき

p ≡ q ≡ 1 (mod m)

ならば,
(p−1)/m∑

i=1

[
iq

p

]
+

(q−1)/m∑
j=1

[
jp

q

]
=

(p − 1)(q − 1)
m2

が成り立つ.

証明. q < pとしても一般性を失わない. このとき

p(q − 1) = pq − p < pq − q = (p − 1)q

より
q − 1
m

<
(p − 1)q

mp
.

また, (p − 1)/p < 1より
(p − 1)q

mp
<

q

m
≤ q − 1

m
+ 1.

ゆえに [
(p − 1)q

mp

]
=

q − 1
m

.

x := q/p, n := (p − 1)/mとすれば,

[nx] =
[
(p − 1)q

mp

]
=

q − 1
m

.

このとき, 補題 1.26と命題 1.25によって, 求める等式が得られる.

系 1.27.1.

(i) p, q ∈ Z>0, gcd(p, q) = 1とする. このとき

p−1∑
i=1

[
iq

p

]
+

q−1∑
j=1

[
jp

q

]
= (p − 1)(q − 1)

が成り立つ.
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(ii) p, q ∈ Z>0, gcd(p, q) = 1とする. さらに, p, qは奇数であるとする. このとき

(p−1)/2∑
i=1

[
iq

p

]
+

(q−1)/2∑
j=1

[
jp

q

]
=

(p − 1)(q − 1)
4

が成り立つ.

証明. (i) 命題 1.27において, m = 1の場合である.
(ii) 命題 1.27において, m = 2の場合である.

2 平方剰余の相互法則

pを奇素数とし, a ∈ Zとする.
合同式

x2 ≡ a (mod p)

が解を持つとき, aを pの平方剰余といい, 解を持たないとき平方非剰余という．gcd(a, p) = 1で
あるとき, (

a

p

)
=

{
1, aが平方剰余のとき

−1, aが平方非剰余のとき

と定める．(a/p)を Legendre記号と呼ぶ．

定理 2.1. pを奇素数, a, b ∈ Z, gcd(a, p) = gcd(b, p) = 1とする．このとき

a ≡ b (mod p) =⇒
(

a

p

)
=

(
b

p

)

が成り立つ.
特に, pの平方剰余と合同なものはまた平方剰余であり, 平方非剰余と合同なものはまた平方非
剰余である．

証明. a ≡ b (mod p)ならば, 合同式 x2 ≡ a (mod p)が解を持つことと合同式 x2 ≡ b (mod p)が
解を持つこととは同値である．

pの平方剰余は 1, 2, . . ., p − 1の平方のいずれかと pを法として合同な整数である．

x2 ≡ (p − x)2 (mod p)

だから, pの平方剰余はすべて 1, 2, . . . , (p − 1)/2の平方のいずれかに pを法として合同である．

x, y ∈ Zに対して,

x2 ≡ y2 (mod p) =⇒ (x − y)(x + y) ≡ 0 (mod p)

=⇒ x − y ≡ 0 (mod p) または x + y ≡ 0 (mod p).

x, yの範囲を考慮して, 1 ≤ x ≤ (p − 1)/2, 1 ≤ y ≤ (p − 1)/2とすれば,

x2 ≡ y2 (mod p) =⇒ x ≡ y (mod p) =⇒ x = y
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となる．ゆえに 1, 2, . . . , (p − 1)/2の平方はどの 2つも pを法として合同ではない．

したがって, 1, 2, . . ., p − 1のうち, pの平方剰余, 平方非剰余はそれぞれ (p − 1)/2個ずつある．

定理 2.2 (Eulerの規準). pを奇素数, a ∈ Z, gcd(a, p) = 1とする．このとき(
a

p

)
≡ a

p−1
2 (mod p)

が成り立つ．

証明. 1 ≤ x ≤ p − 1となる xに対し, gcd(x, p) = 1であるから,

xy ≡ a (mod p), 1 ≤ y ≤ p − 1

となる y ∈ Zがただ一つ存在する．この yを aに関する xの配偶と呼ぶことにする．このとき,

aが平方剰余 ⇐⇒ x ∈ Zが存在して, x自身が aに関する xの配偶になる.

と言いかえることができる．

aが平方剰余のとき, 合同式 x2 ≡ a (mod p)の解を x0 (1 ≤ x0 ≤ p − 1)とする.

(p − x0)2 = p2 − 2px0 + x2
0 ≡ x2

0 ≡ a (mod p)

であるから, p − x0 も解となり, 1 ≤ p − x0 ≤ p − 1である．
pは奇数だから, p − x0 �= x0 である．

よって, 1から p− 1までの中で x0と p− x0の 2つだけが自分自身を配偶に持ち, 他は自分と異
なる配偶を持つ．

1から p − 1までを並び替えて

x0, p − x0, x1, . . . , x(p−3)/2, y1, y2, . . . , y(p−3)/2

とする．ただし yi は aに関する xi の配偶である．すると,

(p − 1)! = x0(p − x0)(x1 · y1)(x2 · y2) · · · (x(p−3)/2 · y(p−3)/2)

≡ x0(−x0) · a · · · · · a
≡ −a

p−1
2 (mod p).

特に a = 1のとき, aは平方剰余であるから

(p − 1)! ≡ −1 (mod p) (1)

となる．この式を再び上の式に代入すると

a
p−1
2 ≡ 1 (mod p)

を得る．

aが平方非剰余のときは, 自分自身を配偶に持つ整数はない. そこで, 1から p − 1までの数を並
べ替えて

x1, x2, . . . , x(p−1)/2, y1, y2, . . . , y(p−1)/2
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とおく．ただし yi は aに関する xi の配偶である．このとき,

(p − 1)! = (x1 · y1)(x2 · y2) · · · (x(p−1)/2 · y(p−1)/2)

≡ a · · · · · a (mod p)

≡ a
p−1
2 (mod p)

となる．よって (1)より
a

p−1
2 ≡ −1 (mod p)

が得られる．

系 2.2.1 (Wilsonの定理). n ∈ Z, n > 1とするとき

nは素数である⇐⇒ (n − 1)! ≡ −1 (mod n).

証明. (⇒) nが奇素数の場合は, Eulerの規準を証明する途中で既に示されている．n = 2のと
きは明らか．

(⇐) nが合成数であるとすると, ある b, c ∈ Zによって

n = bc, 1 < b < n

と表せる．bは (n − 1)!の約数である．よって bは (n − 1)! + 1の約数ではない．nは bの倍数だ

から (n − 1)! + 1を割り切ることができない．

系 2.2.2. pを奇素数, a, b ∈ Z, gcd(a, p) = gcd(b, p) = 1とする．このとき(
ab

p

)
=

(
a

p

)(
b

p

)
.

証明. Eulerの規準により(
ab

p

)
≡ (ab)

p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p).

両辺とも ±1であり, 1 �≡ −1 (mod p)であるから等号が成り立つ．

定理 2.3 (Gaussの補題). pを奇素数, a ∈ Z, gcd(a, p) = 1とする．このとき

1 · a, 2 · a, . . . ,
p − 1

2
· a

を pで割ったときの剰余の中に p/2よりも大きいものが n個あったとすれば(
a

p

)
= (−1)n.
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証明.
±1, ±2, . . . , ±p − 1

2
の p − 1個の整数は法 pに関する既約剰余系である．

gcd(a, p) = 1だから,

±1 · a, ±2 · a, . . . , ±p − 1
2

· a
もまた法 pに関する既約剰余系である．

xa (1 ≤ x ≤ (p − 1)/2)を pで割ったときの剰余が p/2より大きいということは, xaが −1, −2,
. . ., −(p − 1)/2のいずれかと pを法として合同なことと同値である．

そこで, 1 · a, 2 · a, . . . , (p− 1)/2 · aのうち−1, −2, . . . , −(p− 1)/2 のいずれかと合同なものの
個数を nとする．このとき,

(1 · a) · (2 · a) · · · · ·
(

p − 1
2

· a
)

≡ (−1)n · 1 · 2 · · · · · p − 1
2

(mod p).

1 · 2 · · · · · (p − 1)/2と pとは互いに素であるから, 両辺を 1 · 2 · · · · · · · (p − 1)/2で割ると

a
p−1
2 ≡ (−1)n (mod p).

Eulerの規準により, (
a

p

)
≡ (−1)n (mod p)

となる．

pを奇素数, q ∈ Z>0, gcd(p, q) = 1とする.
t := (p − 1)/2とおく. 系 1.11.2より, ある r1, r2, . . ., rt ∈ Zが存在して

q = p

[
q

p

]
+ r1, 0 ≤ r1 < p

2q = p

[
2q

p

]
+ r2, 0 ≤ r2 < p

· · · · · ·

tq = p

[
tq

p

]
+ rt, 0 ≤ rt < p

となる.

系 2.3.1 (第一補充法則). pを奇素数とするとき,(−1
p

)
= (−1)

p−1
2 .

証明. q = p− 1の場合を考える. このとき, r1, r2, . . ., rtはすべて p/2より大きい. ゆえにGauss
の補題により (−1

p

)
= (−1)t = (−1)

p−1
2 .

19



補題 2.4. p, q, t, r1, r2, . . ., rt は上述の通りとする.
r1, r2, . . ., rt のうち, p/2より大きいものの個数を sとし,

N :=
[
q

p

]
+

[
2q

p

]
+ · · · +

[
tq

p

]

とおく. このとき
s ≡ N +

1
8
(p2 − 1)(q − 1) (mod 2)

が成り立つ.

証明. r1, r2, . . ., rt のうち, p/2より大きいものを a1, a2, . . ., as, そうでないものを b1, b2, . . .,
bt−s とする. さらに,

A := a1 + a2 + · · · + as,

B := b1 + b2 + · · · + bt−s

とおく. このとき
1
8
(p2 − 1)q = Np + A + B. (1)

一方,

±1, ±2, . . . , ±p − 1
2

の p − 1個の整数は法 pに関する既約剰余系である．gcd(p, q) = 1だから,

±1 · q, ±2 · q, . . . , ±p − 1
2

· q

もまた法 pに関する既約剰余系である．よって −a1, −a2, . . ., −as, b1, b2, . . ., bt−sは pを法とし

て互いに合同ではない. ゆえに

{p − a1, p − a2, . . . , p − as, b1, b2, . . . , bt−s} = {1, 2, . . . ,
1
2
(p − 1)}.

これより
1
8
(p2 − 1) = 1 + 2 + · · · + 1

2
(p − 1) = sp − A + B. (2)

(1), (2)より
1
8
(p2 − 1)(q − 1) = (N − s)p + 2A.

pは奇数だから, 2を法として考えれば, 求める等式が得られる.

系 2.4.1 (第二補充法則). pを奇素数とするとき,(
2
p

)
= (−1)

p2−1
8 .

証明. q = 2の場合を考えると, N = 0である. よって, 補題 2.4より

s ≡ 1
8
(p2 − 1) (mod 2).

Gaussの補題より, (
2
p

)
= (−1)s = (−1)

p2−1
8 .
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定理 2.5 (平方剰余の相互法則). p, qを奇素数とし, gcd(p, q) = 1とする. このとき,(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 .

証明. p, qは奇数だから,
1
8
(p2 − 1)(q − 1) ≡ 0 (mod 2).

ゆえに, 補題 2.4より,
s ≡ N (mod 2).

さらに, Gaussの補題より (
q

p

)
= (−1)s = (−1)N .

同様に, t′ := (q − 1)/2とおき,

N ′ :=
[
p

q

]
+

[
2p

q

]
+ · · · +

[
t′p
q

]

とおけば, 補題 2.4と Gaussの補題より (
p

q

)
= (−1)N ′

が得られる.
さて, 系 1.27.1 (ii)より

N + N ′ =
p − 1

2
· q − 1

2
.

したがって, (
q

p

)(
p

q

)
= (−1)N · (−1)N ′

= (−1)N+N ′
= (−1)

p−1
2

q−1
2 .
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