
1 記号

ω = (−1 +
√−3)/2 とおく．ω は 1 の原始 3乗根であり，1 + ω + ω2 = 0 が成り立つ．また

ω = ω2である．

R = Z[ω]とおく．Rは素元分解整域である．Rの元は a + bω (a, b ∈ Z)の形に一意的に書ける．
R× で Rの単数群を表すことにすると

R× = {±1, ±ω, ±ω2}

である．

Rの元 α, β が同伴であるとは，α = βε (∃ε ∈ R×)と表されるときにいう．同伴は R上の同値

関係である．素元と同伴な元もまた素元になる．

以下，

λ = 1 − ω

とおく．また，Rの元 αと素元 πに対して

ordπ(α) = max{k ∈ N | πk は αを割る }

と定義する．

2 n = 3におけるFermatの定理

定理 2.1 (n = 3における Fermatの定理). 方程式

(1) X3 + Y 3 = Z3

は，x �= 0, y �= 0, z �= 0なる有理整数解 (x, y, z)を持たない．

証明. x3 + y3 = z3となる有理整数 x, y, z で x �= 0, y �= 0, z �= 0となるものが存在したと仮定
する．このときmax{|x|, |y|, |z|}が最小になるものがとれる．それを改めて x, y, zで表すことに

する．このとき

x′ �= 0, y′ �= 0 z′ �= 0,

max{|x′|, |y′|, |z′|} < max{|x|, |y|, |z|}

なる有理整数解 (x′, y′, z′)が存在することを示して矛盾を導く．
x, y, zはどの 2つも互いに素である (注意 3.6)．また，y, zが奇数であると仮定することができ

る (注意 3.7)．
x3 + y3 = z3を

(2) x3 = (z − y)(z − ωy)(z − ωy)

と変形する．以下，xが 3で割り切れる場合とそうでない場合とに分けて証明する．

(I) xが 3で割り切れないとき．c ∈ Z, α ∈ Rが存在して

z − y = c3(3)

z − ωy = ωα3(4)

z − ωy = ωα3(5)
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が成り立つ (注意 3.8)．

α = a + bω (a, b ∈ Z)とおく．(4)より

(6) y = a3 − 3ab2 + b3, z = −a3 + 3a2b − b3

したがって

(7) z − y = (a + b)(2a − b)(2b − a)

となる．よって (3)より
c3 = (a + b)(2a − b)(2b − a)

を得る．ここで a + b, 2a− b, 2b− aはどの二つも互いに素である (注意 3.9)．ゆえにそれぞ
れが有理整数の 3乗になる．そこで

a + b = (z′)3, 2a − b = (x′)3, 2b − a = (y′)3

とおくと

(x′)3 + (y′)3 = (z′)3

x′, y′, z′はどの二つも互いに素なので，x′ �= 0, y′ �= 0, z′ �= 0でなければならない．さらに

max{|x′|, |y′|, |z′|} < max{|x|, |y|, |z|}

がいえる (注意 3.10)．これはmax{|x|, |y|, |z|}が最小であるという仮定に矛盾する．

(II) xが 3で割り切れるとき．c ∈ Z, α ∈ Rが存在して

z − y = 9c3(8)

z − ωy = λα3(9)

z − ωy = λα3(10)

が成り立つ (注意 3.11)．

α = a + bω (a, b ∈ Z)とおく．(9)より

(11) y = a3 − 6a2b + 3ab2 + b3, z = a3 + 3a2b − 6ab2 + b3

したがって

(12) z − y = 9ab(a− b)

となる．よって (8)より
c3 = 9ab(a− b)

を得る．ここで a, b, a− bはどの二つも互いに素である (注意 3.12)．ゆえにそれぞれが有理
整数の 3乗になる．そこで

a = (z′)3, b = (x′)3, a − b = (y′)3

とおくと

(x′)3 + (y′)3 = (z′)3
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x′, y′, z′はどの二つも互いに素なので，x′ �= 0, y′ �= 0, z′ �= 0でなければならない．さらに

max{|x′|, |y′|, |z′|} < max{|x|, |y|, |z|}

となる (注意 3.13)．これは矛盾である．

3 行間を埋める

この節では，先に述べた n = 3における Fermatの定理の証明において，省略した部分を補うこ
とを目的とする．

補題 3.1. λは Rの素元である．

証明. Rは素元分解整域であり，λは単数ではないので，ある素元 πが存在して

λ = πα (∃α ∈ R)

となる．

3 = λλ = ππαα, ππ, αα ∈ Z, ππ �= 1

であるから

ππ = 3, αα = 1

ゆえに αは単数である．すなわち πと λとは同伴である．したがって λは素元である．

補題 3.2. 3と λ2とは Rにおいて同伴である．

証明. 3 = −λ2ω2であり，−ω2は Rの単数である．

補題 3.3. y, z を互いに素な有理整数とする．Rの素元 πが

z − y, z − ωy, z − ωy

のいずれか二つを割り切れば，πと λとは同伴である．

証明. Rの素元が，例えば z − yと z − ωyを割り切れば

λy = (z − y) − (z − ωy)

を割る．π が λ と同伴でないとすると，π は y を割り切らなければならない．したがって π は

z = (z − y) + yも割り切る．しかしながらこれは y, zが互いに素であることに反する．

1 − ω = −(1 − ω)ω2, ω − ω = ω(1 − ω)

に注意すれば，残りの 2つの場合も同様にして議論することができる．

補題 3.4. 剰余環 R/2Rは四つの類からなり，

(13) 0, 1, ω, 1 + ω
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が完全代表系である．また

13 ≡ ω3 ≡ (1 + ω)3 ≡ 1 (mod 2R)(14)

±1 ≡ 1, ± ω ≡ ω, ±ω2 ≡ 1 + ω (mod 2R)(15)

が成り立つ．

証明. Rの元はすべて a + bω (a, b ∈ Z)の形で一意的に書ける．よって

a + bω ≡ c + dω (mod 2R) ⇐⇒ a ≡ c, b ≡ d (mod 2R)

であることから，(13)が R/2Rにおける完全代表系であることがわかる．

(14)および (15)は 1 + ω + ω2 = 0に注意して計算すればわかる．

補題 3.5. α1, . . ., αr を Rの 0でない元，kを自然数とし，

(16) α1 · · ·αr = βk

とする．さらに i �= j ならば αi と αj とは共通の素元では割れないとする．このとき各 αi に対し

て，Rの元 βi と単数 ui が存在して

αi = uiβ
k
i

と書ける．

証明. まず Rが素元分解整域であることに注意する．πを Rの素元とする．πが αi を割り切る

とすると，仮定より j �= iならば ordπ(αj) = 0．よって

ordπ(α1 · · ·αr) = ordπ(αi)

一方，(16)により
ordπ(αi) = k · ordπ(βi)

よって Rのすべての素元 π に対して ordπ(αi)は k の倍数になる．ゆえに Rの元 βi と単数 ui が

存在して αi = uiβ
k
i と書ける．

注意 3.6. x, y, zのどの二つも互いに素であること：例えば，x, yの 2つを割り切る素数 lが存

在したとする．x3 + y3 = z3により lは zを割る．したがって (x/l, y/l, z/l)も方程式 (1)の有理
整数解となる．ところがこれはmax{|x|, |y|, |z|}の最小性に反する．

注意 3.7. y, zを奇数と仮定できること：x, y, zはどの二つも互いに素だから，偶数は多くとも

一つである．必要に応じて (x, y, z)の代わりに (y, x, z), (z, −y, x)を考えれば，y, zを奇数と仮

定することができる．

注意 3.8. 実際，

(17) z − y, z − ωy, z − ωy

のうち二つを割る素元 πが存在すれば，補題 3.3により πと λとは同伴である．補題 3.2により 3
と λ2とは同伴であるから，π2と 3とは同伴である．よって (2)より x3が 3で割れることになり，
xが 3で割り切れてしまう．これは xが 3で割り切れないという仮定に反する．よって (17)のど
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の二つも Rの共通の素元で割り切れない．したがって補題 3.5により (17)の三つの元はそれぞれ
Rの元を 3乗したものと同伴である．

z − y = uβ3 (u ∈ R×, β ∈ R)とおくと

(z − y)2 = uβ3uβ
3

= (ββ)3, ββ ∈ Z

よって (z − y)2は有理整数の 3乗であるが，これは z − yが有理整数の 3乗であることを意味する．
次に z − ωy = vα3 (v ∈ R×, α ∈ R)とおく．(4)を示すためには v = ±ωを示せばよい．y, zが

奇数であるという仮定を用いれば，

vα3 ≡ z − ωy ≡ 1 − ω ≡ ω (mod 2R)

よって補題 3.4から α3 ≡ 1 (mod 2R)であって

v ≡ ω (mod 2R)

ゆえに v = ±ωを得る．

(5)は (4)の両辺の共役をとることにより得られる．

注意 3.9. a + b, 2a − b, 2b − aがどの二つも互いに素であること：仮に素数 lが a + b, 2a − b,
2b − aのうち二つを割り切るとすると，lは

3a = (a + b) + (2a − b) = 2(a + b) + (a − 2b) = 2(2a− b) − (a − 2b),

3b = 2(a + b) − (2a − b) = (a + b) − (a − 2b) = (2a − b) − 2(a − 2b)

を割る．また lは z − yを割り，その倍数 x3を割るから，xを割る．xが 3で割り切れないという
仮定から l �= 3でなければならない．よって lは a, bを割る．(6)より lは y, z の両方を割る．こ

れは y, z が互いに素であることに反する．

注意 3.10. (2)，(7)より

max{|x′|3, |y′|3, |z′|3} ≤ |z − y| < |x|3 ≤ max{|x|3, |y|3, |z|3}

ゆえに

max{|x′|, |y′|, |z′|} < max{|x|, |y|, |z|}
が成り立つ．ここで |z − y| �= |x|3は次のようにして示される．もし仮に |z − y| = |x|3ならば，(2)
より

|(z − ωy)(z − ωy)| = 1

(4)，(5)および |ω| = 1より
|αα|3 = 1 ∴ |αα| = 1

α = a + bωとおいたから，計算すると

(2a − b)2 + 3b2 = 4

を得る．このとき (a, b) = (1, 1)または (1, 0)でなければならない．前者の場合は a + b = 2，後
者の場合は 2a− b = 2．このことは a + b, 2a − bが有理整数の 3乗であることに反する．
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注意 3.11. 実際，xが 3で割り切れると仮定したから，補題 3.2より xは λで割り切れる．また

z − y ≡ z − ωy ≡ z − ωy (mod λR)

だから，z − y, z − ωy, z − ωyのすべてが λで割り切れる．一方

(18) ordλ(z − ωy) = ordλ(z − ωy) = 1

である．なぜなら

z − ωy ∈ λ2R ⇐⇒ z − ωy ∈ 3R ⇐⇒ z ≡ y ≡ 0 (mod 3Z)

z, yが互いに素であることから z−ωy /∈ λ2Rでなければならない．z −ωyについても同様である．

m = ordλ(x), n = ordλ(z − y)とおくと，(2)，(18)により

3m = n + 1 + 1

xは 3で割れるから補題 3.2によりm ≥ 2．したがって n ≥ 4．よって，ある r ∈ Z, ξ ∈ Rが存在

して

z − y = 9r, z − ωy = λξ, z − ωy = λ ξ

となる．これを (2)に代入すれば，(x/3)3 = rξξ を得る．(18)と補題 3.3より r, ξ, ξ のどの二つ

も Rの共通の素元では割れない．よって補題 3.5により r, ξ, ξはそれぞれRの単数とRの元を 3
乗したものとの積である．したがって

z − y = 9c3 (∃c ∈ Z),

z − ωy = vλα3 (∃v ∈ R×, ∃α ∈ R)

となる．あとは v = ±1を示せばよい．y, zが奇数であると仮定しているから

λ ≡ z − ωy ≡ vλα3 (mod 2R)

補題 3.4より α3 ≡ λ3 ≡ 1 (mod 2R)，よって v ≡ 1 (mod 2R)となり，これより v = ±1を得る．

注意 3.12. a, b, a− bがどの二つも互いに素であること：仮に素数 lが a, b, a− bのうち二つを

割り切るとすれば，lは a, bを割る．したがって (11)より lは y, zを割る．これは y, z が互いに

素であることに反する．

注意 3.13. (2)，(12)より

max{|x′|3, |y′|3, |z′|3} < |z − y| ≤ |x|3 ≤ max{|x|3, |y|3, |z|3}

ゆえに

max{|x′|, |y′|, |z′|} < max{|x|, |y|, |z|}
が成り立つ．
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