
1 数学的帰納法

整数とは,
· · · , −3, −2, −1, 0, 1, 2, 3, · · ·

のひとつひとつのことである. 整数の全体からなる集合を Zで表す.
二つの整数 a, bに対して, それらの和 a + b, 差 a − b, 積 abが定義されている.
二つの整数 a, bの間には順序関係 ≤が定義されていて, a ≤ bか b ≤ aかのどちらか一方が必ず

成り立つ. さらに, a ≤ bと b ≤ aとがともに成り立つとき, a = bとなる.
0より大きい整数を正の整数といい, 0より小さい整数を負の整数という.
また, 正の整数全体からなる集合を Z+ で表す:

Z+ = {x ∈ Z | x > 0}.

私たちは, 次の数学的帰納法の原理を以後の議論の前提とする:

定理 1.1 (数学的帰納法の原理). Z+ の部分集合 S が, 二つの条件

(i) 1 ∈ S.

(ii) n ∈ Z+ とするとき, n ∈ S =⇒ n + 1 ∈ S.

を満たすと仮定する. このとき, S = Z+ となる.

定理 1.2 (数学的帰納法). 各々の n ∈ Z+ に対して命題 P (n)が与えられたとし，それについて
次の二つのことが示されたとする.

(i) P (1)が成り立つ.

(ii) P (n)が成り立つならば P (n + 1)が成り立つ.

このとき,すべての n ∈ Zに対して P (n)は成り立つ.

証明. S = {n ∈ Z+ | P (n)が成り立つ }とおく.
条件 (i)より, 1 ∈ S.
条件 (ii)より, n ∈ Z+ について, n ∈ S ならば n + 1 ∈ S である.
ゆえに, すべての n ∈ Z+ に対して n ∈ S となる.
すなわち, すべての n ∈ Z+ に対して命題 P (n)が成り立つ.

整数は, 整列性と呼ばれる, 次の性質を持つ:

定理 1.3 (整列性). 任意の空でない Z+ の部分集合は最小元をもつ.
すなわち, S を Z+ の部分集合とすれば,

∃n ∈ S s.t. ∀x ∈ S, n ≤ x

が成り立つ.
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証明. S を Z+ の部分集合とし, S �= ∅とする.

T = {n ∈ Z+ |任意の x ∈ S に対して n ≤ xが成り立つ }

とおく.
まず, 1は Z+ における最小元であるから, 1 ∈ T が成り立つ.
次に, S �= ∅より, ある x ∈ Z+ が存在して x ∈ S となる.
x < x + 1より,

x + 1 �∈ T.

よって,
T �= Z+.

ゆえに, 定理 1.1より,

m ∈ T かつ m + 1 �∈ T

なるm ∈ Z+ が存在する.
もし仮にm �∈ S ならば，すべての x ∈ S に対してm < x, したがってm + 1 ≤ xとなる. これ

はm + 1 �∈ T に反する.
したがって, m ∈ S であって, mは S の最小元である.

定理 1.4. Z+ の部分集合 S が, 二つの条件

(i) 1 ∈ S.

(ii) n ∈ Z+ とするとき, 1 ≤ k ≤ nであるすべての k ∈ Z+ について k ∈ S ならば, n + 1 ∈ S.

を満たすと仮定する. このとき, S = Z+ となる.

証明. T = {x ∈ Z+ | x �∈ S}とおく. T = ∅を示せばよい.
背理法を用いる. もし仮に T �= ∅とすると, 整列性によって T は最小元 n0 をもつ. 仮定 (i)に

よって, n0 > 1, ゆえに n0 − 1 ∈ Z+ である. n0 の最小性によって, 1 ≤ k ≤ n0 − 1なるすべての
k ∈ Z+ について k ∈ S でなければならない. このとき, 仮定 (ii)によって n0 ∈ S. これは n0 ∈ T

に反する.

次の定理は, 前述した数学的帰納法の強化版である. これもまた数学的帰納法と呼ぶ.

定理 1.5 (数学的帰納法). 各々の n ∈ Z+ に対して命題 P (n)が与えられたとし，それについて
次の二つのことが示されたとする.

(i) P (1)が成り立つ.

(ii) n ∈ Z+ とするとき, 1 ≤ k ≤ nであるすべての k ∈ Z+ について P (n)が成り立つならば
P (n + 1)が成り立つ.

このとき,すべての n ∈ Zに対して P (n)は成り立つ.
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証明. S = {n ∈ Z+ | P (n)が成り立つ }とおく.
条件 (i)より, 1 ∈ S.
条件 (ii)より, n ∈ Z+ について, 1 ≤ k ≤ nであるすべての k ∈ Z+ について k ∈ S ならば

n + 1 ∈ S である.
ゆえに, すべての n ∈ Z+ に対して n ∈ S となる.
すなわち, すべての n ∈ Z+ に対して命題 P (n)が成り立つ.

定理 1.6 (除法の原理). a ∈ Z, b ∈ Z+ とする. このとき

a = bq + r, 0 ≤ r < b

を満たすような q, r ∈ Zがただ一組だけ存在する.
q, rを, それぞれ aを bで割ったときの商, 剰余 (または余り)という.

証明. まず, q, rの存在を示す.

r1 = min{x ∈ Z+ |ある q ∈ Zが存在して a = bq + xが成り立つ }

とおく. 整列性より, このような r1 の存在が保証される.
いま, q1 ∈ Zが存在して

a = bq1 + r1

であるとする.
もし仮に r1 > bならば,

0 < r1 − b < r1, a = b(q1 − 1) + (r1 − b)

となって r1 の最小性に反する. ゆえに r1 ≤ bである.
r1 < bのとき, q = q1, r = r1 とおけばよい.
r1 = bのとき, q = q1 + 1, r = 0とおけばよい.

次に, 一意性を示す.
a = bq + r, 0 ≤ r < b,

a = bq′ + r′, 0 ≤ r′ < b

とする.
もし仮に q �= q′ ならば,

b(q′ − q) = r′ − r.

よって,
b ≤ b|q′ − q| = |r′ − r| ≤ max{r, r′} < b.

これは矛盾である.
したがって q = q′, r = r′ でなければならない.
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系 1.6.1. a ∈ Z, b1, b2, . . ., bn ∈ Z+ とする. このとき

a = qnb1b2 · · · bn + rn−1b1b2 · · · bn−1 + · · · + r1b1 + r0,

0 ≤ ri < bi+1 (0 ≤ i ≤ n − 1)

を満たす qn, r0, . . ., rn−1 ∈ Zがただ一組だけ存在する.

証明. nに関する数学的帰納法により証明する.
n = 1のときは上の定理より明らかである.
n = kのとき, 主張が正しいと仮定すると,

a = qkb1b2 · · · bk + rk−1b1b2 · · · bk−1 + · · · + r1b1 + r0,

0 ≤ ri < bi+1 (0 ≤ i ≤ k − 1)

を満たす qk, r0, . . ., rk−1 ∈ Zがただ一組だけ存在する. さらに,

qk = qk+1bk+1 + rk, 0 ≤ rk ≤ bk+1

を満たす組 qk+1, rk ∈ Zがただ一組だけ存在する. これを一つ上の式に代入すれば

a = qk+1b1b2 · · · bk+1 + rkb1b2 · · · bk + · · · + r1b1 + r0

が得られる. したがって, n = k + 1のときも主張は正しい.
以上より, すべての nに関して主張は正しい.

系 1.6.2. a, b ∈ Z+ とする. このとき, あるm ∈ Z+ が存在して,

a = rmbm + rm−1b
m−1 + · · · + r1b + r0, 0 ≤ ri < b (0 ≤ i ≤ m)

を満たす r0, . . ., rm ∈ Zがmに対してただ一組だけ定まる.

証明. まず,
a = bq1 + r0, 0 ≤ r0 < b

を満たす q1, r0 ∈ Zがただ一組だけ存在する. さらに, n ≥ 1に対して,

qn = bqn+1 + rn, 0 ≤ rn < b

を満たす qn+1, rn ∈ Zがただ一組だけ存在する.
このとき, qn ≥ 0であるが, もしすべての n ∈ Z+ について qn > 0ならば, qn の定め方から, 無

限に続く減少列

a > q1 > q2 > · · · > qn > qn+1 > · · · > 0

が得られる. これは a以下の正の整数が有限個しかないことに反する.
したがって, ある番号mが存在して, qm+1 = 0, qm = rm となり,

a = ((· · · ((rmb + rm−1)b + rm−2) + · · · ) + r1) + r0

= rmbm + rm−1b
m−1 + · · · + r1b + r0,

0 ≤ ri < b (0 ≤ i ≤ m)

となる.

4



2 整数の整除

二つの整数の和, 差および積は整数である.
しかし, 二つの整数の商は必ずしも整数になるとは限らない.
a, b ∈ Zに対して, ある q ∈ Zが存在して

a = bq

が成り立つとき, aは bで割り切れるという. このことを記号で

b | a

と書く. またこのとき, aを bの倍数といい, bを aの約数という.

定理 2.1. a, b, c ∈ Z+ について, 次の三つの条件が成り立つ:

(i) a | a.

(ii) a | b, b | aがともに成り立てば, a = b.

(iii) a | b, b | cがともに成り立てば, a | c.

証明. (i) a = a · 1より明らか.

(ii) a | bのとき, ある q ∈ Z+ が存在して b = aqとなる.
q ≥ 1より,

a ≤ a + a(q − 1) = aq = b.

同様にして b ≤ aもいえる.
したがって, a ≤ bと b ≤ aとがともに成り立つから, a = b.

(iii) a | bのとき, ある q ∈ Z+が存在して b = aqとなる. 同様に, b | cのとき, ある q′ ∈ Z+ が

存在して c = bq′ となる. よって,
c = bq′ = aqq′.

qq′ ∈ Zであるから, c | a.

与えられた整数 a1, . . ., an (n ≥ 2)に対して, これらをすべて割り切る整数のことを a1, . . ., an

の公約数という.
公約数 dが負でない整数であって, さらに, 条件

xを a1, . . ., an の任意の約数とすれば, x | dである.

を満たすとき, dを a1, . . ., an の最大公約数といい, 記号で

gcd(a1, . . . , an)

と書く.
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定理 2.2. a1, . . ., an ∈ Zとする.

d2 = gcd(a1, a2), dn = gcd(dn−1, an) (n ≥ 3),

d′n = gcd(a1, a2, . . . , an) (n ≥ 2)

とおく. このとき,
dn = d′n (n ≥ 2)

が成り立つ.

証明. nに関する数学的帰納法によって証明する.
d2 = d′2 であるから, n = 2のとき主張は正しい.
n = kのとき, 主張が正しいと仮定すると,

dk+1 = gcd(dk, ak+1) = gcd(d′k, ak+1).

d′k+1 は a1, a2, . . ., ak を割り切るから, d′k を割り切る. さらに d′k+1 | ak+1 より d′k+1 | dk+1.
逆に, dk+1 | d′k より, dk+1 は a1, a2, . . ., ak を割り切る. さらに dk+1 | ak+1 より dk+1 | d′k+1.
したがって, d′k+1 | dk+1 かつ dk+1 | d′k+1 より, dk+1 = d′k+1.

定理 2.3. a, b, q, r ∈ Zとする.
a = bq + r

ならば

gcd(a, b) = gcd(b, r)

が成り立つ.

証明. d = gcd(a, b), d′ = gcd(b, r)とおく.
r = a − bq, d | a, d | bより, d | r. ゆえに d | d′.
逆に, a = bq + r, d′ | b, d′ | rより, d′ | a. ゆえに d′ | d.
したがって, d | d′ と d′ | dとから, d = d′ がいえる.

系 2.3.1 (Euclidの互除法). a, b ∈ Z+ とし, b < aとする.

r0 = a, r1 = b

とおき, n ≥ 2に対して, rn−1 > 0である限り, rn を

rn−2 = rn−1qn−1 + rn, 0 ≤ rn < rn−1

によって定義する.
このとき, ある番号mが存在して

rm = 0

となる. さらにこのとき
rm−1 = gcd(a, b)

が成り立つ.
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証明. まず, rm = 0となる番号mが存在することを背理法で証明する.
rm = 0となる番号mが存在しないと仮定すると, rn の定め方から, 無限に続く減少列

a = r0 > r1 > r2 > · · · > rn−2 > rn−1 > rn > · · · > 0

が得られる. ところがこれは, a以下の正の整数が有限個しかないことに反する.
したがって, rm = 0となる番号mは存在する.

rm = 0となるとき, 上の定理を繰り返し用いれば,

rm−1 = gcd(rm−1, rm)

= gcd(rm−2, rm−1)

= · · · · · ·
= gcd(r0, r1)

= gcd(a, b)

となる.

m ∈ Zに対して, mの倍数全体からなる集合をmZとおく:

mZ = {mx | x ∈ Z}.

定理 2.4. a1, . . ., an ∈ Zとし,

I = {a1x1 + · · · + anxn | xi ∈ Z}

とおく. このとき, ある d ∈ Z+ が存在して,

I = dZ

が成り立つ.
さらに, dは a1, . . ., an の最大公約数である.

証明. I に属する正整数のうちで最小のものを dとする. このとき, u1, . . ., un ∈ Zが存在して

d = a1u1 + · · · + anun

と書ける.
I = dZを示せばよいが, dZ ⊆ I は明らかなので, I ⊆ dZを示せば十分である.
z ∈ I とする. ある q, r ∈ Zが存在して

z = dq + r, 0 ≤ r < d

となる. 適当な x1, . . ., xn ∈ Zをとって

z = a1x1 + · · · + anxn
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と書けば,
r = a1(x1 − u1q1) + · · · + an(xn − unqn) ∈ I.

ところが, dの最小性により r = 0でなければならない. ゆえに I ∈ dZ.

a1, . . ., an ∈ I = dZより, dは a1, . . ., an の公約数である.
また, xを a1, . . ., an の公約数とすれば,

x | (a1u1 + · · · + anun) = d.

ゆえに dは a1, . . ., an の最大公約数である.

系 2.4.1. a1, . . ., an の最大公約数を dとすれば, 適当な u1, . . ., un によって

d = a1u1 + · · · anun

と書ける.

証明. 主張は d ∈ I と同値であるが, これは定理より明らかである.

系 2.4.2. a1, . . ., an, b ∈ Zとし, a1, . . ., an の最大公約数を dとする.
方程式

a1x1 + · · · + anxn = b

が整数解 x1, . . ., xn をもつための必要十分条件は, bが dで割り切れることである.

証明. 方程式が整数解をもつ⇐⇒ b ∈ I ⇐⇒ b ∈ dZ ⇐⇒ d | b.

系 2.4.3. m ∈ Z+ とするとき,

gcd(ma1, . . . , man) = m · gcd(a1, . . . , an).

証明. d = gcd(a1, . . . , an), d′ = gcd(ma1, . . . , man)とおく.
適当な u1, . . ., un ∈ Zをとって

d = a1u1 + · · · + anun

と書き, 両辺にmを掛けると,

md = (ma1)u1 + · · · + (man)un.

ゆえに d′ | md.
逆に, 適当な u′

1, . . ., u′
n ∈ Zをとって

d′ = (ma1)u′
1 + · · · + (man)u′

n

と書けば,
d′ = m(a1u

′
1 + · · · + anu′

n).

a1u
′
1 + · · · + anu′

n は dで割り切れるから, md | d′. したがって d′ = md.
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a, bを整数とする. gcd(a, b) = 1が成り立つとき, aと bとは互いに素であるという.

定理 2.5. a, b, c ∈ Zとし, gcd(a, b) = 1とする. このとき, a | bcならば a | cである.

証明. gcd(a, b) = 1より, ある x, y ∈ Zが存在して

ax + by = 1.

両辺に cを掛ければ,
acx + bcy = c.

a | bcであるから, この左辺は aの倍数である. ゆえに a | c.

系 2.5.1. a, b, c ∈ Zとする. このとき

gcd(a, b) = gcd(a, c) = 1 ⇐⇒ gcd(a, bc) = 1.

証明. (⇒) gcd(a, b) = gcd(a, c) = 1を仮定して gcd(a, bc) = 1を証明する.
d = gcd(a, bc)とおくと, d | a, d | bc.
もし仮に gcd(d, b) > 1ならば, d | aより gcd(a, b) > 1となる. これは gcd(a, b) = 1に反する.
よって gcd(d, b) = 1.
したがって上の定理より d | c.
ところが, d | aより dは a, cの公約数である. 仮定より gcd(a, c) = 1であったから, d = 1でな
ければならない.

(⇐) gcd(a, b) > 1 ならば gcd(a, bc) > 1 となることは明らかである. gcd(a, c) > 1 ならば
gcd(a, bc) > 1となることも同様に明らかである. よって,

gcd(a, b) > 1または gcd(a, c) > 1 =⇒ gcd(a, bc) > 1.

対偶をとれば

gcd(a, bc) = 1 =⇒ gcd(a, b) = gcd(a, c) = 1

となる.

与えられた整数 a1, . . ., an (n ≥ 2)に対して, これらすべての倍数であるような整数のことを a1,
. . ., an の公倍数という.
公倍数 lが負でない整数であって, さらに, 条件

xを a1, . . ., an の任意の倍数とすれば, l | xである.

を満たすとき, lを a1, . . ., an の最小公倍数といい, 記号で

lcm(a1, a2, . . . , an)

と書く.
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定理 2.6. a1, . . ., an ∈ Zとする.

l2 = lcm(a1, a2), ln = lcm(ln−1, an) (n ≥ 3),

l′n = lcm(a1, a2, . . . , an) (n ≥ 2)

とおく. このとき,
ln = l′n (n ≥ 2)

が成り立つ.

証明. nに関する数学的帰納法によって証明する.
l2 = l′2 であるから, n = 2のとき主張は正しい.
n = kのとき, 主張が正しいと仮定すると,

lk+1 = lcm(lk, ak+1) = lcm(l′k, ak+1).

a1, a2, . . ., akは l′k+1を割り切るから, l′kは l′k+1を割り切る. さらに ak+1 | l′k+1より lk+1 | l′k+1.
逆に, l′k | lk+1 より, a1, a2, . . ., ak は lk+1 を割り切る. さらに ak+1 | lk+1 より l′k+1 | lk+1.
したがって, lk+1 | l′k+1 かつ l′k+1 | lk+1 より, lk+1 = l′k+1.

定理 2.7. a, b ∈ Z+ の最大公約数を d, 最小公倍数を lとする. このとき

ab = dl

が成り立つ.

証明. a = a′d, b = b′dとおく. このとき

gcd(a′, b′) =
gcd(a, b)

d
= 1.

lは aの倍数であるから, ある k ∈ Z+ が存在して

l = ak = a′kd.

lは b = b′dの倍数でもあるから, d �= 0より b′ | a′kが得られる. gcd(a′, b′) = 1であるから, b′ | k

である. したがって, ある t ∈ Z+ が存在して k = b′t. このとき,

l = ak = ab′t = a′db′t = a′bt.

ゆえに,
l

t
= ab1 = ba1.

したがって l/tは a, bの公倍数である. lの最小性より t = 1でなければならない. ゆえに ab = ld

が得られる.
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3 素因数分解

n ∈ Z, n > 1とする.
nの正の約数が 1と nだけであるとき, nは素数であるといい, そうでないとき, nは合成数であ

るという.
素数全体からなる集合を Pとおく.

定理 3.1. p ∈ P, a, b ∈ Zとする. このとき

p | ab =⇒ p | a または p | b.

証明. 任意の n ∈ Z+ に対して,

gcd(p, n) = 1 ⇐⇒ p � n

が成り立つことに注意する.

gcd(p, a) = gcd(p, b) = 1 =⇒ gcd(p, ab) = 1

なので

p � aかつ p � b =⇒ p � ab.

対偶をとれば

p | ab =⇒ p | aまたは p | b.

系 3.1.1. p ∈ P, a1, . . ., an ∈ Z+ とする.
このとき, p | (a1 · · · an)ならば, pはいずれかの ai を割り切る.

証明. nに関する数学的帰納法によって証明する.
n = 2のときは上の定理より明らか.
n = kのとき主張が成り立つと仮定する.
p | (a1 · · · akak+1)ならば, 上の定理より, p | (a1 · · · ak)または p | ak+1 である.
p | ak+1 ならば, これ以上すべきことはない.
p � ak+1ならば p | (a1 · · · ak)である. 帰納法の仮定により pは a1, . . . ak のうちのいずれかを割

り切る.
したがって, pは a1, . . . ak, ak+1 のいずれかを割り切る.
以上より, すべての nについて系の主張が成り立つことが示された.

定理 3.2. n ∈ Z, n > 1とする.
nは素数の積として表せる. しかもその表し方は積の順序を除いて一意的である.
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証明. まず, nが素数の積として表せることを, nに関する数学的帰納法によって証明する.
n = 2のとき, 2は素数である.
2 ≤ k ≤ nであるようなすべての k ∈ Zについて, kが素数の積として表せると仮定する.
n + 1が素数ならば, これ以上すべきことはない.
n + 1が合成数ならば, 適当な l, m ∈ Z+ をとって

n + 1 = lm, 2 ≤ l < n + 1, 2 ≤ m < n + 1

と書ける. 帰納法の仮定から, l, mはそれぞれ素数の積で表せる. したがって n + 1も素数の積で
表せる.
以上より, すべての n ∈ Z, n > 1について, nが素数の積として表せることが示された.

次に, 表し方の一意性を証明する.
上に述べたことから, n ∈ Z, n > 1なる任意の nに対して, ある k ∈ Z+が存在して, nは k個の

素数の積で表すことができる:
n = p1p2 · · · pk.

そこで, kに関する数学的帰納法によって, 表し方の一意性を証明する.
nが素数のとき, n = p1p2 · · · pk (pi は素数)と書けたとすると, k = 1, p1 = nでなければなら

ない.
nが少なくとも k個の素数の積で書けるならば, 表し方は一意的であると仮定する.

n = p1p2 · · · pk+1 = q1q2 · · · ql, pi, qj は素数

のとき, 帰納法の仮定から k + 1 ≤ lである. p1 | (q1q2 · · · ql)より, ある iについて p1 | qi. 積の順
序を考えなければ, p1 | q1 としてもよい. q1 は素数だから, p1 = q1. よって

n

p1
= p2 · · · pk+1 = q2 · · · ql.

帰納法の仮定より, l = k + 1, pi = qi でなければならない.
以上より, すべての kに関して, 表し方の一意性が証明された.
したがって, すべての n ∈ Z, n > 1について, nの素数の積での表し方は一意的である.

整数 n (n > 1)を素数の積として表すことを, nの素因数分解という.
また, nを割り切る素数を nの素因数という.

定理 3.3. 素数は無限に存在する.

証明. 背理法により証明する.
いま, 素数が有限個しかないと仮定し, p1, p2, . . ., pk が素数のすべてであるとする.

n = p1p2 · · · pk + 1

とおく.
nは素因数分解できる. よって nは素数の約数を持つ.
ところが, p1, p2, . . ., pk はすべて nを割らない. これは nが素数の約数を持つことに反する.
したがって素数は無限に存在する.
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4 法mに関する剰余類

a, b ∈ Z, m ∈ Z+ とする.
m | (a − b)

となるとき, aと bとはmを法として合同であるといい, 記号で

a ≡ b (mod m)

と書く.
また, ≡の入った式を合同式という.
例えば,

3 ≡ 1 (mod 2)

や, 未知数 xの入った式

7x ≡ 3 (mod 10)

は合同式である.

定理 4.1. a, b, c ∈ Z, m ∈ Z+ とする.

(i) a ≡ a (mod m).

(ii) a ≡ b (mod m)ならば b ≡ a (mod m).

(iii) a ≡ b (mod m), b ≡ c (mod m)がともに成り立てば, a ≡ c (mod m).

証明. (i) 任意の a ∈ Z, m ∈ Z+ に対して,

a − a = 0 = m · 0.

よってm | (a − a). したがって a ≡ a (mod m).

(ii) a ≡ b (mod m)のとき, ある t ∈ Zが存在して

a − b = mt.

このとき

b − a = m(−t).

ゆえにm | (b − a). したがって b ≡ a (mod m).

(iii) a ≡ b (mod m), b ≡ c (mod m)がともに成り立つとき, ある s, t ∈ Zが存在して

a − b = ms, b − c = mt.

このとき

a − c = (a − b) + (b − c) = m(s + t).

ゆえにm | (a − c). したがって a ≡ c (mod m).
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m ∈ Z+ を一つ固定する. a ∈ Z+ に対して

C(a) = {x ∈ Z | x ≡ a (mod m)}

とおく. C(a)を法mに関する剰余類という.
またこのとき, aを剰余類 C(a)の代表元という.

定理 4.2. a, b ∈ Z, m ∈ Z+ とする. C(∗)は法mに関する剰余類を表すものとする.

(i) a ≡ b (mod m) =⇒ C(a) = C(b).

(ii) a �≡ b (mod m) =⇒ C(a) ∩ C(b) = ∅.

証明. (i) x ∈ C(a)とすれば, x ≡ a (mod m). これと a ≡ b (mod m)という仮定から, x ≡ b

(mod m)がいえる. ゆえに x ∈ C(b). したがって C(a) ⊆ C(b).
同様に C(b) ⊆ C(a)もいえる. よって C(a) = C(b).

(ii) C(a) ∩ C(b) �= ∅と仮定すると, ある x ∈ Zが存在して,

x ∈ C(a)かつ x ∈ C(b).

すなわち,

x ≡ a (mod m)かつ x ≡ b (mod m).

このことから

a ≡ b (mod m)

が導かれる. したがって
C(a) ∩ C(b) �= ∅ =⇒ a ≡ b (mod m).

あとは, この対偶をとればよい.

m ∈ Z+ に対して, 法mに関する剰余類の全体からなる集合を Z/mZとおく:

Z/mZ = {C(a) | a ∈ Z} = {C(0), C(1), . . . , C(m − 1)}.

Z/mZはm個の元からなる有限集合である.

定理 4.3. a, a′, b, b′ ∈ Z, m ∈ Z+ とする.

a ≡ a′ (mod m), b ≡ b′ (mod m)

がともに成り立つとき, 次のことが成り立つ:

(i) a + b ≡ a′ + b′ (mod m).

(ii) a − b ≡ a′ − b′ (mod m).

(iii) ab ≡ a′b′ (mod m).
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証明. (i) (a + b) − (a′ + b′) = (a − a′) + (b − b′)よりわかる.

(ii) (a − b) − (a′ − b′) = (a − a′) − (b − b′)よりわかる.

(ii) ab − a′b′ = a(b − b′) + b′(a − a′)よりわかる.

Z/mZの二つの元 C(a)と C(b)との和 C(a) + C(b), 差 C(a)−C(b), 積 C(a)C(b)を次のように
定義する:

C(a) + C(b) = C(a + b), C(a) − C(b) = c(a − b), C(a)C(b) = C(ab).

この定義は, 剰余類の代表元の選び方に依存しない.

定理 4.4. a, b, c ∈ Z, c �= 0, m ∈ Z+ とする.

ca ≡ cb (mod m)

が成り立つとき, d = gcd(c, m)とおけば

a ≡ b (mod
m

d
)

が成り立つ.

証明. ca ≡ cb (mod m)のとき, ある t ∈ Zが存在して,

c(a − b) = mt.

c = dc′, m = dm′ とおくと,
c′(a − b) = m′t.

よって

m′ | c′(a − b).

gcd(c′, m′) = 1であるから, m′ | (a − b)でなければならない. ゆえに

a ≡ b (mod m′).

法mに関する剰余類はm個ある.
その各々から 1つずつ代表元をとって作ったm個の整数の組を, 法mに関する完全剰余系という.
例えばm = 7のとき,

0, 1, 2, 3, 4, 5, 6

や

−3, −2, −1, 0, 1, 2, 3

は完全剰余系である.
一般に, 完全剰余系の選び方は無数にある.
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定理 4.5. m ∈ Z+, c ∈ Zとし, gcd(c, m) = 1とする. a1, a2, . . ., amを法mに関する完全剰余

系とすれば, ca1, ca2, . . ., cam もまた法mに関する完全剰余系である.

証明. ある番号 i, j が存在して

cai ≡ caj (mod m)

であるとする. 仮定 gcd(c, m) = 1より,

ai ≡ aj (mod m).

したがって,
C(ai) = C(aj).

完全剰余系の定義の仕方から, i = j でなければならない.
よって, ca1, ca2, . . ., cam は別々の剰余類に属する.

定理 4.6. a, b ∈ Z, m ∈ Z+ とする. d = gcd(a, m)とおく.
合同式

ax ≡ b (mod m)

が整数解を持つための必要十分条件は, dが bを割り切ることである.
さらに, mを法として考えたとき, 上の合同式の整数解の個数は dである.

証明. 上の合同式が整数解 x0 を持つと仮定すると, ある t ∈ Zが存在して

ax − b = mt.

ゆえに

d | (ax − mt) = b.

逆に, dが bを割り切ると仮定すると, 方程式

ax + my = b

は解 x, y ∈ Zを持つ. このとき,
ax ≡ b (mod m)

となっている. よって, 与えられた合同式は解 x ∈ Zを持つ.

さらに, x0 ∈ Zを与えられた合同式の解の一つとし,

a = a′d, m = m′d, b = b′d

とおく. 与えられた合同式の任意の解 x ∈ Zに対して,

a′x ≡ b′ (mod m′), a′x0 ≡ b′ (mod m′)

であるから,
a′x ≡ a′x0 (mod m′).
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gcd(a′, m′) = 1であるから,
x ≡ x0 (mod m′).

したがって, xはmを法として

x0, x0 + m′, x0 + 2 · m′, . . . , x0 + (d − 1) · m′

の d個のうちのいずれかと合同である.
逆に, これらの d個はすべて与えられた合同式の解である.
したがって, 与えられた合同式の解はmを法としてちょうど d個ある.

定理 4.7. a1, a2 ∈ Z, m1, m2 ∈ Z+ とする. 連立合同式

x ≡ a1 (mod m1), x ≡ a2 (mod m2)

が整数解を持つための必要十分条件は, d = gcd(m1, m2)とおくとき,

a1 ≡ a2 (mod d)

が成り立つことである.
さらに, 上の連立合同式が整数解を持つとき, その解はm1, m2 の最小公倍数を法として一意的

である.

証明. 上の連立合同式が解 x ∈ Zを持つとする:

x ≡ a1 (mod m1), x ≡ a2 (mod m2).

m1, m2 はともに dで割り切れるから,

x ≡ a1 (mod d), x ≡ a2 (mod d).

ゆえに

a1 ≡ a2 (mod d).

逆に, a1 ≡ a2 (mod d)が成り立つと仮定すると, 合同式

m1t ≡ a2 − a1 (mod m2)

は解 t ∈ Zを持つ. このとき,
x = a1 + m1t

とおけば,
x ≡ a1 (mod d), x ≡ a2 (mod d)

となる.

最後に, 解の一意性を証明する.
もし, x1, x2 ∈ Zがともに与えられた連立合同式の解であるとすると,

x1 ≡ a1 (mod m1), x1 ≡ a2 (mod m2),

x2 ≡ a2 (mod m1), x2 ≡ a2 (mod m2).
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よって,
x1 ≡ x2 (mod m1), x1 ≡ x2 (mod m2).

言い換えると,
m1 | (x1 − x2), m2 | (x1 − x2).

したがって, l = lcm(m1, m2)とおくと, 最小公倍数の性質から,

l | (x1 − x2).

すなわち,
x1 ≡ x2 (mod l).

系 4.7.1 (中国剰余定理). a1, a2, . . ., an ∈ Z, m1, m2, . . ., mn ∈ Z+, n ≥ 2とする.
i �= j のとき, gcd(mi, mj) = 1と仮定する.
このとき, 連立合同式

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

· · · · · · ,

x ≡ an (mod mn)

は, 積m1m2 · · ·mn を法としてただ一つの整数解を持つ.

証明. 合同式の個数 nに関する数学的帰納法によって証明する.
n = 2のときは, 上の定理より明らかである.
n = kのとき, 主張が正しいと仮定すると, 連立合同式

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

· · · · · · ,

x ≡ ak (mod mk)

は解 b0 ∈ Zを持ち, すべての整数解 xは

x ≡ b0 (mod m1m2 · · ·mk)

を満たす. ここで, i �= j のとき gcd(mi, mj) = 1という仮定から, m1, m2, . . ., mk の最小公倍数

が積m1m2 · · ·mk になることに注意する.
さらに合同式 x ≡ ak+1 (mod mk+1)を追加したとき, k + 1個の合同式

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

· · · · · · ,

x ≡ ak (mod mk),

x ≡ ak+1 (mod mk+1)
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の整数解 xは, 連立合同式

x ≡ b0 (mod m1m2 · · ·mk), x ≡ ak+1 (mod mk+1)

の解である. そして上の定理より, この連立方程式は解 b′0 ∈ Zを持ち, すべての整数解 x′ は

x′ ≡ b′0 (mod m1m2 · · ·mkmk+1)

を満たす. したがって k + 1のときも主張は正しい.

5 Eulerの関数

整数 1, 2, . . ., nのうち nと互いに素なものの個数を ϕ(n)と書く．これにより定まる Z+ から

Z+ 自身への写像 ϕを Eulerの関数という．

定理 5.1. nが r個の異なる素数 p1, p2, . . ., pr で割れるとき，1, 2, . . ., nの中で p1, p2, . . ., pr

と互いに素なものの個数を ϕr(n)とすれば

ϕr(n) = n
r∏

i=1

(
1 − 1

pi

)

が成り立つ．

証明. rに関する数学的帰納法により証明する．

r = 1のとき．1, 2, . . ., nの中で p1 と互いに素でないものは p1 の倍数

p1, 2p1, . . . ,
n

p1
· p1

であり，個数は n/p1 である．これらを除いたものが p1 と互いに素になる．よって

ϕ1(n) = n − n

p1
= n

(
1 − 1

p1

)
.

rまで正しいとして，r + 1の場合を考える．
そのために, ϕr(n)−ϕr+1(n)の値を考える．この値は p1, p2, . . ., pr と互いに素な数の個数から

p1, p2, . . ., pr+1 と互いに素な数の個数を引いたものである．

つまり, ϕr(n) − ϕr+1(n)は p1, p2, . . ., pr と互いに素であって，pr+1 で割り切れる数の個数で

ある．

pr+1 で割り切れる数は

pr+1, 2pr+1, . . . ,
n

pr+1
· pr+1

である．この中で p1, p2, . . ., pr と互いに素な数の個数は

1, 2, . . . ,
n

pr+1
(1)

の中で p1, p2, . . ., pr と互いに素なものの個数に等しい．なぜなら，pr+1 で割っても p1, p2, . . .,
pr と互いに素か否かという関係は変わらないからである．
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(1)の中で p1, p2, . . ., pr と互いに素なものの個数は ϕr(n/pr+1)である．
n/pr+1 が p1, p2, . . ., pr で割り切れることに注意すると，帰納法の仮定から

ϕr

(
n

pr+1

)
=

n

pr+1

r∏
i=1

(
1 − 1

pi

)
. (2)

となる．(2)は ϕr(n) − ϕr+1(n)に等しいから

ϕr+1(n) = ϕr(n) − (ϕr(n) − ϕr+1(n))

= ϕr(n) − ϕr

(
n

pr+1

)

= n
r∏

i=1

(
1 − 1

pr

)
− n

pr+1

r∏
i=1

(
1 − 1

pi

)

= n

r+1∏
i=1

(
1 − 1

pi

)
.

したがって r + 1の場合も正しい．

系 5.1.1. n ∈ Z+ とする．このとき

ϕ(n) = n
∏
p|n

(
1 − 1

p

)

が成り立つ．ただし pは nの素因数全体を動く．

証明. nの素因数の個数を rとする．nと互いに素な整数とは，nのどの素因数とも互いに素な整

数のことであるから，ϕ(n) = ϕr(n)．したがって定理 5.1より上の等式は正しい．

系 5.1.2. p ∈ P，e ∈ Z+ とする．このとき

ϕ(pe) = pe−1(p − 1).

証明. 系 5.1.1において，nの素因数が一つしかない場合である．

系 5.1.3. m, n ∈ Z+ とし, gcd(mn) = 1とする．このとき

ϕ(m)ϕ(n) = ϕ(mn).

証明. 系 5.1.1により

ϕ(m) = m
∏
p|m

(
1 − 1

p

)
, ϕ(n) = n

∏
p|n

(
1 − 1

p

)

と表せる．ただし pは素数である．
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gcd(m, n) = 1よりmの素因数と nの素因数とで一致するものはないから,

ϕ(m)ϕ(n) = m
∏
p|m

(
1 − 1

p

)
· n

∏
p|n

(
1 − 1

p

)

= mn
∏

p|mn

(
1 − 1

p

)

= ϕ(mn)

となる．

定理 5.2. nを正の整数とする．このとき

∑
d|n

ϕ(d) = n

が成り立つ．ただし dは nの正の約数全体を動く．

証明. 1, 2, . . ., nのどの数も nとの最大公約数が nの約数になる. ゆえに,

Nd = {x ∈ Z+ | 1 ≤ x ≤ n, gcd(x, n) = d}

とおけば,
{1, 2, . . . , n} =

⋃
d|n

Nd (集合の直和) (3)

となる. ただし, dは nの正の約数全体を動く．

nの正の約数 dを一つ固定する. n = d′dとおくと, Nd の元 xは

x = x′d, 1 ≤ x′ ≤ d′, gcd(x′, d′) = 1

と書ける.
x′ は,

d, 2d, 3d, . . . , d′d = n

を dで割った

1, 2, 3, . . . , d′

のうち, d′ と互いに素になるもの全体を動く．
したがって, nの各々の約数 dに対して x′ は ϕ(d′)個ある．
一方,

Nd = {x′d | 1 ≤ x′ ≤ d′, gcd(x′, d′) = 1}
であるから, Nd の元 xの個数もまた ϕ(d′)である.
ゆえに, (3)において, 集合の個数を比較すれば,

n =
∑
d|n

ϕ(d′)
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が得られる.

N = {d ∈ Z+ | dはmの約数 },
N ′ =

{n

d
∈ Z+ | dはmの約数

}
とおくと, N = N ′ が成り立つ. したがって,

∑
d|n

ϕ(d) =
∑
d∈N

ϕ(d) =
∑

d′∈N ′
ϕ(d′) =

∑
d|n

ϕ(d′) = n.

m ∈ Z+ を一つ固定する.
法mに関する剰余類 C(a) (a ∈ Z)について, C(a)のある一つの元がmと互いに素ならば, C(a)
に属するすべての元はmと互いに素である.
代表元 aがmと互いに素であるとき, 剰余類 C(a)を既約剰余類という.
各々の既約剰余類からそれぞれ一つずつ代表元をとって作った ϕ(m)個の整数の組を, 法mに関

する既約剰余系という.
完全剰余系から, mと互いに素なものだけを選んで並べたものは既約剰余系になる.

定理 5.3. m ∈ Z+, c ∈ Zとし, gcd(c, m) = 1とする. a1, a2, . . ., ar (r = ϕ(m))を法mに関す

る既約剰余系とすれば, ca1, ca2, . . ., car もまた法mに関する既約剰余系である.

証明. ある番号 i, j が存在して

cai ≡ caj (mod m)

であるとすれば,
m | c(ai − aj).

仮定 gcd(c, m) = 1より,
m | (ai − aj).

ゆえに

ai ≡ aj (mod m).

したがって

C(ai) = C(aj).

既約剰余系の定義の仕方から, i = j でなければならない.
よって, ca1, ca2, . . ., car は別々の剰余類に属する.

仮定より,
gcd(c,m) = 1, gcd(a1, m) = · · · = gcd(ar, m) = 1.

ゆえに,
gcd(ca1, m) = · · · = gcd(car, m) = 1.

すなわち, ca1, ca2, . . ., car はすべて既約剰余類の代表元である.
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定理 5.4 (Eulerの定理). m ∈ Z+, a ∈ Zとし, gcd(a, m) = 1とする. このとき,

aϕ(m) ≡ 1 (mod m)

が成り立つ.

証明. x1, . . ., xr (r = ϕ(m))を法mに関する既約剰余系とする. このとき, ax1, . . ., axr もまた

法mに関する既約剰余系である.
したがって, x1, . . ., xr の順序を適当に並べかえたものを xi1 , . . ., xir

として,

ax1 ≡ xi1 (mod m),

ax2 ≡ xi2 (mod m),

· · · · · · ,

axr ≡ xir
(mod m)

となるようにできる. これら r個の合同式の両辺をそれぞれ掛け合わせれば,

arx1 · · ·xr ≡ xi1 · · ·xir
= x1 · · ·xr (mod m).

x1 · · ·xr とmとは互いに素だから, 両辺を x1 · · ·xr で割れば,

ar ≡ 1 (mod m)

が得られる.

定理 5.5 (Fermatの定理). p ∈ P, a ∈ Zとし, gcd(a, p) = 1とする. このとき,

ap−1 ≡ 1 (mod p)

が成り立つ.

証明. ϕ(p) = p − 1より明らか.

6 Legendre記号

p ∈ P \ {2}, a ∈ Zとする.
合同式

x2 ≡ a (mod p)

が解を持つとき，aを pの平方剰余といい，解を持たないとき平方非剰余という．gcd(a, p) = 1で
あるとき, (

a

p

)
=

{
1, aが平方剰余のとき

−1, aが平方非剰余のとき

と定める．(a/p)を Legendre記号と呼ぶ．
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定理 6.1. p ∈ P \ {2}，a, b ∈ Zとし, gcd(a, p) = gcd(b, p) = 1とする．このとき

a ≡ b (mod p) =⇒
(

a

p

)
=

(
b

p

)

が成り立つ.
特に，pの平方剰余と合同なものはまた平方剰余であり，平方非剰余と合同なものはまた平方非

剰余である．

証明. a ≡ b (mod p)ならば，合同式 x2 ≡ a (mod p)が解を持つことと合同式 x2 ≡ b (mod p)が
解を持つこととは同値である．

pの平方剰余は 1, 2, . . ., p − 1の平方のいずれかと pを法として合同な整数である．

x2 ≡ (p − x)2 (mod p)

だから，pの平方剰余はすべて 1, 2, . . . , (p − 1)/2の平方のいずれかに pを法として合同である．

x, y ∈ Zに対して,

x2 ≡ y2 (mod p) =⇒ (x − y)(x + y) ≡ 0 (mod p)

=⇒ x − y ≡ 0 (mod p) または x + y ≡ 0 (mod p).

x, yの範囲を考慮して，1 ≤ x ≤ (p − 1)/2, 1 ≤ y ≤ (p − 1)/2とすれば,

x2 ≡ y2 (mod p) =⇒ x ≡ y (mod p) =⇒ x = y

となる．ゆえに 1, 2, . . . , (p − 1)/2の平方はどの 2つも pを法として合同ではない．

したがって, 1, 2, . . ., p− 1のうち，pの平方剰余，平方非剰余はそれぞれ (p− 1)/2個ずつある．

定理 6.2 (Eulerの規準). p ∈ P \ {2}，a ∈ Zとし, gcd(a, p) = 1とする．このとき(
a

p

)
≡ a

p−1
2 (mod p)

が成り立つ．

証明. 1 ≤ x ≤ p − 1となる xに対し，gcd(x, p) = 1であるから,

xy ≡ a (mod p), 1 ≤ y ≤ p − 1

となる y ∈ Zがただ一つ存在する．この yを aに関する xの配偶と呼ぶことにする．このとき,

aが平方剰余 ⇐⇒ x ∈ Zが存在して, x自身が aに関する xの配偶になる.

と言いかえることができる．

aが平方剰余のとき，合同式 x2 ≡ a (mod p)の解を x0 (1 ≤ x0 ≤ p − 1)とする.

(p − x0)2 = p2 − 2px0 + x2
0 ≡ x2

0 ≡ a (mod p)

であるから，p − x0 も解となり，1 ≤ p − x0 ≤ p − 1である．
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pは奇数だから, p − x0 �= x0 である．

よって, 1から p − 1までの中で x0 と p − x0 の 2つだけが自分自身を配偶に持ち，他は自分と
異なる配偶を持つ．

1から p − 1までを並び替えて

x0, p − x0, x1, . . . , x(p−3)/2, y1, y2, . . . , y(p−3)/2

とする．ただし yi は aに関する xi の配偶である．すると,

(p − 1)! = x0(p − x0)(x1 · y1)(x2 · y2) · · · (x(p−3)/2 · y(p−3)/2)

≡ x0(−x0) · a · · · · · a
≡ −a

p−1
2 (mod p).

特に a = 1のとき，aは平方剰余であるから

(p − 1)! ≡ −1 (mod p) (4)

となる．この式を再び上の式に代入すると

a
p−1
2 ≡ 1 (mod p)

を得る．

aが平方非剰余のときは，自分自身を配偶に持つ整数はない. そこで, 1から p− 1までの数を並
べ替えて

x1, x2, . . . , x(p−1)/2, y1, y2, . . . , y(p−1)/2

とおく．ただし yi は aに関する xi の配偶である．このとき,

(p − 1)! = (x1 · y1)(x2 · y2) · · · (x(p−1)/2 · y(p−1)/2)

≡ a · · · · · a (mod p)

≡ a
p−1
2 (mod p)

となる．よって (4)より
a

p−1
2 ≡ −1 (mod p)

が得られる．

系 6.2.1 (Wilsonの定理). n ∈ Z, n > 1とするとき

nは素数である⇐⇒ (n − 1)! ≡ −1 (mod n).

証明. (⇒) nが奇素数の場合は，Eulerの規準を証明する途中で既に示されている．n = 2のと
きは明らか．

(⇐) nが合成数であるとすると，ある b, c ∈ Zによって

n = bc, 1 < b < n

と表せる．bは (n − 1)!の約数である．よって bは (n − 1)! + 1の約数ではない．nは bの倍数だ

から (n − 1)! + 1を割り切ることができない．
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系 6.2.2. p ∈ P \ {2}，a, b ∈ Zとし, gcd(a, p) = gcd(b, p) = 1とする．このとき(
ab

p

)
=

(
a

p

)(
b

p

)
.

証明. Eulerの規準により(
ab

p

)
≡ (ab)

p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p).

両辺とも ±1であり，1 �≡ −1 (mod p)であるから等号が成り立つ．

定理 6.3 (Gaussの補題). p ∈ P \ {2}，a ∈ Zとし, gcd(a, p) = 1とする．このとき

1 · a, 2 · a, . . . ,
p − 1

2
· a

を pで割ったときの剰余の中に p/2よりも大きいものが n個あったとすれば(
a

p

)
= (−1)n.

証明.
±1, ±2, . . . , ±p − 1

2
の p − 1個の整数は法 pに関する既約剰余系である．

gcd(a, p) = 1だから,

±1 · a, ±2 · a, . . . , ±p − 1
2

· a
もまた法 pに関する既約剰余系である．

xa (1 ≤ x ≤ (p− 1)/2)を pで割ったときの剰余が p/2より大きいということは，xaが−1, −2,
. . ., −(p − 1)/2のいずれかと pを法として合同なことと同値である．

そこで, 1 · a, 2 · a, . . . , (p− 1)/2 · aのうち−1, −2, . . . , −(p− 1)/2 のいずれかと合同なものの
個数を nとする．このとき,

(1 · a) · (2 · a) · · · · ·
(

p − 1
2

· a
)

≡ (−1)n · 1 · 2 · · · · · p − 1
2

(mod p).

1 · 2 · · · · · (p − 1)/2と pとは互いに素であるから，両辺を 1 · 2 · · · · · · · (p − 1)/2で割ると

a
p−1
2 ≡ (−1)n (mod p).

Eulerの規準により, (
a

p

)
≡ (−1)n (mod p)

となる．

系 6.3.1 (第一補充法則). p ∈ P \ {2}とするとき,(−1
p

)
= (−1)

p−1
2 .
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証明. Gaussの補題における a = −1の場合を考える．
−1, −2, . . . , −(p − 1)/2はすべて pで割ったときの剰余が p/2以上になる．
よって, Gaussの補題により求める式が得られる．

系 6.3.2 (第二補充法則). p ∈ P \ {2}とするとき,(
2
p

)
= (−1)

p2−1
8 .

証明. Gaussの補題における a = 2の場合を考える．

1 · 2, 2 · 2, . . . ,
p − 1

2
· 2 = p − 1

のうち, p/2より大きいものの個数を nとする. これは,

1 = p − p − 1
2

· 2, 3 = p − p − 3
2

· 2, 5 = p − p − 5
2

· 2,

. . . , p − 4 = p − 2 · 2, p − 2 = p − 1 · 2
のうち, p/2より小さいものの個数に一致する.
すなわち, nは奇数 1, 3, 5, . . ., p − 2のうち, p/2より小さいものの個数に一致する.
よって, (p − 1)/2が奇数のとき,

n ≡ 1 + 3 + 5 + · · · + p − 1
2

(mod 2),

(p − 1)/2が偶数のとき,

n ≡ 1 + 3 + 5 + · · · + p − 3
2

(mod 2).

いずれにせよ,

n ≡ 1 + 2 + 3 + · · · + p − 1
2

(mod 2)

=
1
2
· p − 1

2

(
p − 1

2
+ 1

)

=
p2 − 1

8
.

したがって Gaussの補題から求める式を得る．

定理 6.4 (平方剰余の相互法則). p, q ∈ P \ {2}とし, p �= qとする. このとき,(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 .

証明. 集合 S の元の個数を |S|で表すことにする.

A = {(x, y) ∈ Z × Z | 1 ≤ x ≤ (p − 1)/2, 1 ≤ y ≤ (q − 1)/2},
B = {qx − py | (x, y) ∈ A},

B1 = {qx − py | (x, y) ∈ A, qx − py < −p/2},
B2 = {qx − py | (x, y) ∈ A, −p/2 < qx − py < 0},
B3 = {qx − py | (x, y) ∈ A, 0 < qx − py < q/2},
B4 = {qx − py | (x, y) ∈ A, q/2 < qx − py}
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とおく.

Step 1 まず,
B = B1 ∪ B2 ∪ B3 ∪ B4 (集合の直和)

を証明する. そのためには, 0 �∈ B を証明すれば十分である.
(x, y) ∈ Z × Zが存在して

qx − py = 0

が成り立つとすると, gcd(p, q) = 1より,

x ≡ 0 (mod p), y ≡ 0 (mod q)

が得られる. よって (x, y) �∈ A. したがって, 0 �∈ B が示された.

Step 2 次に,

|B| =
p − 1

2
· q − 1

2
を証明する.

(x, y), (x′, y′) ∈ Z × Zについて,

qx − py = qx′ − py′

が成り立つとすると,
q(x − x′) = p(y − y′).

gcd(p, q) = 1より,
x ≡ x′ (mod p), y ≡ y′ (mod q).

よって, qx − pyの値は (x, y) ∈ Aごとに異なる. ゆえに

|B| = |A| =
p − 1

2
· q − 1

2
.

Step 3 次に,
|B1| = |B4|

が成り立つ. このことは, 写像

B1 −→ B4, qx − py �−→q

(
p + 1

2
− x

)
− p

(
q + 1

2
− y

)

=
q − p

2
− (qx − py)

が, 逆写像

B4 −→ B1, qx′ − py′ �−→q

(
p + 1

2
− x′

)
− p

(
q + 1

2
− y′

)

=
q − p

2
− (qx′ − py′)

を持つことからわかる.
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Step 4

C2 = {x ∈ Z | 1 ≤ x ≤ (p − 1)/2,

∃y ∈ Z s.t. 1 ≤ y ≤ (q − 1)/2, −p/2 < qx − py < 0 },
C ′

2 = {x ∈ Z | 1 ≤ x ≤ (p − 1)/2,

qxは pを法として −1, −2, . . . −(p − 1)/2のいずれかと合同 }

とおく.

Step 4-1 まず, |B2| = |C2|を証明する.
1 ≤ x ≤ (p − 1)/2なる x ∈ Zに対して, y ∈ Zがただ一つ存在して

−p

2
< qx − py <

p

2

となる.
実際, qxを pで割ったとき,

qx = py1 + r1, 0 ≤ r1 < p

を満たすような組 y1, r1 ∈ Zがただ一つ存在する.
gcd(qx, p) = 1より, r1 �= 0.
0 < r1 < p/2のとき, y = y1 とおく.
p/2 < r1 < pのとき, y = y1 + 1とおく.
以上より, 求める yが得られる.
このことから |B2| ≤ |C2|が得られる.

(x, y), (x′, y′) ∈ Aについて

qx − py = qx′ − py′

であるとすれば,
　 q(x − x′) = p(y − y′).

gcd(p, q) = 1より,
x ≡ x′ (mod p), y ≡ y′ (mod q)

が得られる. よって, 逆の不等号 |C2| ≤ |B2|も成り立つ.

以上より, |B2| ≤ |C2|と |C2| ≤ |B2|とがともに成り立つから, |B2| = |C2|.

Step 4-2 次に, |C2| = |C ′
2|を証明する.

1 ≤ x ≤ (p − 1)/2なる x ∈ Zについて, ある y ∈ Zが存在して

−p

2
< qx − py < 0

が成り立つとき, qxは pを法として −1, −2, . . ., −(p − 1)/2のいずれかに合同である. すなわち,
C2 ⊆ C ′

2.
逆に, 1 ≤ x ≤ (p − 1)/2なる x ∈ Zについて, qxが pを法として −1, −2, . . ., −(p − 1)/2 のい
ずれかと合同であるとする. このとき, y ∈ Zが存在して

−p

2
< qx − py < 0

29



でなければならない. さらに,

y <
1
2

+
q

p
x ≤ 1

2
+

q

p
· p − 1

2
<

q + 1
2

および

y >
q

p
x ≥ q

p
> 0

より,

1 ≤ y ≤ q − 1
2

が得られる. すなわち, C ′
2 ⊆ C2.

C2 ⊆ C ′
2 と C ′

2 ⊆ C2 とがともに成り立つから, C2 = C ′
2 となる.

以上より,
|B2| = |C2| = |C ′

2|
が示された.
よって, n = |B2|とおけば, Gaussの補題より(

q

p

)
= (−1)n

が成り立つ．

Step 5 m = |B3|とおけば, 1 ≤ y ≤ (q − 1)/2なる y ∈ Zに対して Step 4と同様の議論を行
うことによって (

p

q

)
= (−1)m

が得られる.

以上より,

p − 1
2

· q − 1
2

= |B| = |B1| + |B2| + |B3| + |B4|
= 2|B1| + n + m

≡ n + m (mod 2).

さらに, (
q

p

)(
p

q

)
= (−1)n(−1)m = (−1)n+m = (−1)

p−1
2

q−1
2

となる.
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記 号

Z: 整数全体からなる集合
Z+: 正の整数全体からなる集合
P: 素数全体からなる集合
P \ {2}: 2以外の素数全体からなる集合
mZ: mの倍数全体からなる集合

Z/mZ: 法mに関する剰余類全体からなる集合

b | a: aは bで割りきれる

gcd: 最大公約数
lcm: 最小公倍数
C(a): aを代表元とする剰余類

ϕ: Eulerの関数
(a/p): Legendre記号
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