
1 Q(
√
−3)の整数

1.1 Q(
√
−3)の整数

a + b
√
−3, a, b ∈ Qなる形の複素数の全体を Q(

√
−3)とおく:

Q(
√
−3) = {a + b

√
−3 | a, b ∈ Q}

定義より明らかに Q ⊆ Q(
√
−3)である. 複素数の性質より, 任意の a, b, c, d ∈ Qに対して,

a + b
√
−3 = c + d

√
−3 ⇐⇒ a + (b

√
3)
√
−1 = c + (d

√
3)
√
−1

⇐⇒ a = c, b
√

3 = d
√

3

⇐⇒ a = c, b = d

が成り立つ.

［定理 1.1］Q(
√
−3)は Cの部分体である.

［証明］Q ⊆ Q(
√
−3)より, Q(

√
−3)は空集合でない.

α, β ∈ Q(
√
−3)とし,

α = a + b
√
−3, a, b ∈ Q,

β = c + d
√
−3, c, d ∈ Q

とおくと,

α − β = (a + b
√
−3) + (c + d

√
−3)

= (a − c) + (b − d)
√
−3 ∈ Q(

√
−3),

αβ = (a + b
√
−3)(c + d

√
−3)

= (ac − bd) + (ad + bc)
√
−3 ∈ Q(

√
−3).

したがって, Q(
√
−3)は Cの部分環である.

α = a + b
√
−3 6= 0のとき, a 6= 0または b 6= 0だから, a2 + 3b2 6= 0. よって,

α−1 =
1

a + b
√
−3

=
a − b

√
−3

(a + b
√
−3)(a − b

√
−3)

=
a

a2 + 3b2
− b

a2 + 3b2

√
−3 ∈ Q(

√
−3).

ゆえに, αは Q(
√
−3)において逆元をもつ. したがって, Q(

√
−3)は体である.

1



以下, この文書の最後まで, K = Q(
√
−3)とする. さらに, 1の原始 3乗根を ζ で表す:

ζ =
−1 +

√
−3

2
.

実際に計算してみれば, 以下のことは直ちに確認できる:

• ζ3 = 1.

• ζ2 + ζ + 1 = 0.

• ζσ = (−1 −
√
−3)/2 = ζ2.

• ζ + ζσ = −1.

• ζζσ = 1.

さらに, Q(ζ) = {a + bζ | a, b ∈ Q}とおくと, K = Q(ζ)が成り立つ. 実際, 任意の a, b ∈ Qに対

して

a + bζ = a + b · −1 +
√
−3

2
=

2a − b

2
+

b

2
·
√
−3,

a + b
√
−3 = a + b + 2b · −1 +

√
−3

2
= a + b + 2bζ

が成り立つことから, Q(ζ) ⊆ K とK ⊆ Q(ζ)の両方が導かれる.

任意の a, b, c, d ∈ Qに対して,

a + bζ = c + dζ ⇐⇒ 2a − b

2
+

b

2
·
√
−3 =

2c − d

2
+

d

2
·
√
−3

⇐⇒ 2a − b = 2c − d, b = d

⇐⇒ a = c, b = d

が成り立つ.

K の元 α = a + b
√
−3, a, b ∈ Qに対して, αの複素共役のことを K における αの共役といい,

ασ で表す: ασ = x − y
√
−3. また, αとそのK における共役との積

αασ = (a + b
√
−3)(a − b

√
−3) = a2 + 3b2

= |α|2

を αのノルムといい, NKαで表す. 定義より, NKαは常に負でない有理数であり, NKα = 0とな

るのは α = 0のときだけである.

また, K の元を a + bζ, a, b ∈ Qの形で表したときには,

N(a + bζ) = (a + bζ)(a + bζσ)

= a2 + ab(ζ + ζσ) + b2ζζσ

= a2 − ab + b2

となる.
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［定理 1.2］α, β ∈ K とする. このとき,

NK(αβ) = NKαNKβ

が成り立つ.

［証明］NK(αβ) = αβ(αβ)σ = αβασβσ = αασββσ = NKαNKβ.

a + bζ, a, b ∈ Zなる形の複素数を K の整数という. これに対して, 従来の整数, すなわち Zの

元のことを有理整数と呼ぶことにする.

K の整数の全体を Z[ζ]で表す:

Z[ζ] = {a + bζ | a, b ∈ Z}.

定義から明らかに, Z ⊆ Z[ζ]である. また, 任意の a, b ∈ Zに対してN(a + bζ) = a2 − ab + b2 ∈ Z

であるから, K の整数のノルムは常に有理整数になる.

Z[
√
−3] = {a + b

√
−3 | a, b ∈ Z}とおくと, 任意の a, b ∈ Zに対して a + b

√
−3 = a− b + 2bζ が

成り立つから Z[
√
−3] ⊆ Z[ζ]であることはいえるが, ζ 6∈ Z[

√
−3]なので Z[

√
−3] 6= Z[ζ]である.

［定理 1.3］Z[ζ]はK の部分整域である. Z[ζ]をK の整数環という.

［証明］R = Z[ζ]とおく. R ⊆ K である. Z ⊆ Rより, Rは空集合でない. また, 任意の a, b,

c, d ∈ Zに対して,

(a + bζ) − (c + dζ) = (a − c) + (b − d)ζ ∈ R.

また, ζ2 + ζ + 1 = 0を用いれば,

(a + bζ)(c + dζ) = ac + (ad + bc)ζ + bdζ2

= (ac − bd) + (ad + bc − bd)ζ ∈ R.

ゆえに, Rは K の部分環である. さらに, K は体, したがって整域であるから, その部分環である

Rも整域である.

［定理 1.4］α, β をK の整数とし, β 6= 0とする. このとき, あるK の整数 κ, ρが存在して,

α = βκ + ρ, NKρ < NKβ

が成り立つ.
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［証明］任意の実数 tに対して, btcを t以下の有理整数のうちで最大のものとし,

n(t) =

btc, t ≤ (2btc + 1)/2のとき

btc + 1, t > (2btc + 1)/2のとき

とおくと,

|t − n(t)| ≤ 1
2

が成り立つ1).

z = x + yζ をK の任意の元とし, κ = n(x) + n(y)ζ とおく. このとき, κはK の整数であり,

NK(z − κ) = (x − n(x))2 − (x − n(x))(y − n(y)) + (y − n(y))2

= |x − n(x)|2 + |x − n(x)||y − n(y)| + |y − n(y)|2

≤ 3
4
.

z = α/β とおくと,

NK

(
α

β
− κ

)
≤ 3

4
.

両辺にNK(β)を掛けると,

NKβ · NK

(
α

β
− κ

)
≤ 3

4
NKβ.

定理 1.2を用いて左辺を計算すれば,

NKβ · NK

(
α

β
− κ

)
= NK

(
β ·

(
α

β
− κ

))
= NK(α − κβ).

ゆえに,

NK(α − κβ) ≤ 3
4
NKβ < NKβ.

ρ = α − βκとおけば, 求める結果が得られる.

1.2 単数

K の整数 εが単数であるとは, ある K の整数 ε′ が存在して εε′ = 1が成り立つときにいう. 単

数の全体を Z[ζ]× で表す.

［定理 1.5］K の整数で単数となるものは, ±1, ±ζ, ±(1 + ζ)の 6つである:

Z[ζ]× = {±1, ±ζ, ±(1 + ζ)}.

Z[ζ]× は −ζ を生成元とする位数 6の巡回群になる. Z[ζ]× を単数群という.

1)n(t) は t の両側に隣接する 2 つの整数のうち t に近いほうを意味する.
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［証明］まず,

1 · 1 = (−1) · (−1) = −(1 + ζ)ζ = −ζ(1 + ζ) = 1

より, ±1, ±ζ, ±(1 + ζ)は単数である.

ε = a + bζ を単数とすれば, あるK の整数 ε′ が存在して,

εε′ = 1.

両辺のノルムをとると,

NKεNKε′ = 1.

よって, NKε = a2 − ab + b2 は Zにおける 1の約数である. ノルムの値は正なので,

a2 − ab + b2 = 1.

両辺を 4倍して変形すると,

(2a − b)2 + 3b2 = 4.

この方程式を満たす a, bの組を求めればよいが, 3b2 ≤ 4より b2 = 0または 1. よって, b = 0, ±1で

ある. b = 0のときは, (2a)2 = 4より a = ±1を得る. b = 1のときは, (2a − 1)2 = 1より a = 0, 1

を得る. b = −1のときは, (2a + 1)2 = 1より a = −1, 0を得る. ゆえに, すべての解は

(a, b) = (±1, 0), (0, ±1), (1, 1), (−1, −1)

の 6つである. よって, ε = ±1, ±ζ, ±(1 + ζ)を得る.

Z[ζ]× が −ζ から生成される巡回群であることは,

(−ζ)2 = ζ2 = −(1 + ζ), (−ζ)3 = −1,

(−ζ)4 = −ζ, (−ζ)5 = −ζ2 = 1 + ζ, (−ζ)6 = 1

よりわかる.

α, β を 0でないK の整数とするとき, αが β に同伴であるとは, ある単数 εが存在して α = βε

が成り立つときにいう. このことを記号で α ∼ β と書く. 2つの K の整数が同伴であるという関

係は Z[ζ]における同値関係である. 単数は ±1, ±ζ, ±(1 + ζ)の 6つなので, αに同伴なものは

±α, ±αζ, ±α(1 + ζ)

の 6つである.

［定理 1.6］εをK の整数とする. このとき, 次の 3つの条件は同値である.

(i) εは単数である.

(ii) εは 1に同伴である.
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(iii) NKε = 1.

［証明］(i)⇒(ii) εを単数とすると, ある K の整数 ε′ が存在して, εε′ = 1. このとき, ε′ もまた

単数である. したがって, εは 1に同伴である.

(ii)⇒(iii) εが 1に同伴であるとすると, ある単数 ε′ が存在して, εε′ = 1. ノルムをとり, 定理

1.2を用いて計算すると,

NKεNKε′ = NK(εε′) = NK1 = 1.

NKε, NKε′ はともに正の有理整数だから, NKε = 1となる.

(iii)⇒(i) NKε = 1とすると, ノルムの定義より εεσ = 1であり, εσ はK の整数だから, εは単

数である.

1.3 Q(
√
−3)の整数の整除

2つのK の整数 α, β に対して, あるK の整数 ξ が存在して β = αξ が成り立つとき, αは β を

割るといい, βは αで割り切れるという. このことを記号で α | βと書く. またこのとき, αを βの

約数, β を αの倍数という.

αがいくつかの β1, β2, . . ., βs ∈ Z[ζ]の約数であるとき, αをそれらの公約数という. また, αが

それらの最大公約数であるとは, 2つの条件

(i) αは β1, β2, . . ., βs の公約数である.

(ii) β1, β2, . . ., βs の任意の公約数は αの約数である.

を満たすときにいう. 「約数」を「倍数」に書き換えれば, 公倍数, 最小公倍数も同様に定義できる.

2つ以上の K の整数に対して, それらの最大公約数と同伴なものも最大公約数であり, また, 任

意の 2つの最大公約数は同伴になる. 最小公倍数についても同様である.

［定理 1.7］α, β, κ, ρをK の整数とし,

α = βκ + ρ

が成り立っているとする. このとき, α, β の最大公約数と β, ρの最大公約数とは同伴である.

［証明］α, β の最大公約数を δ とおき, β, ρの最大公約数を δ′ とおく. α = βκ + ρより, δ′ は α

を割る. δ′ は β も割るから, α, β の公約数である. ゆえに, δ′ は δ を割る. 同様に, ρ = α − βκよ

り, δが δ′ を割ることもいえる. ゆえに, δ′ | δかつ δ | δ′. したがって, δ′ ∼ δ.

［定理 1.8］α, β をK の整数とする. まず,

α = βκ0 + ρ1, NKρ1 < NKβ
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なる κ0, ρ1 を求める. NKρ1 6= 0ならば,

β = ρ1κ1 + ρ2, NKρ2 < NKρ1

なる κ1, ρ2 を求める. NKρ2 6= 0ならば,

ρ1 = ρ2κ2 + ρ3, NKρ3 < NKρ2

なる κ2, ρ3 を求める. 以下同様の操作を行うと, ある番号 n ≥ 0が存在して, ρn+1 = 0かつ ρn は

α, β の最大公約数である.

［証明］もし仮に, 任意の番号 i ≥ 1に対して NKρi 6= 0であるとすると, 定理 1.4を繰り返し用

いて,

NKβ > NKρ1 > NKρ2 > · · · > NKρl > 0, l = NKβ

なる減少列が作れる. ところが, 各 iに対してNKρi ≤ NKβ − iであるから, NKρl ≤ NKβ − l = 0

となってNKρl > 0と矛盾する. よって, ある番号 n ≥ 0が存在して, NKρn+1 = 0となる. このと

き, ρn+1 = 0であるから, ρn−1 = ρnκn となり, ρn は ρn−1, ρn の最大公約数である.

いま, 2つのK の整数 ξ, ηの最大公約数を (ξ, η)で表すことにすれば, 定理 1.7より,

(α, β) ∼ (β, ρ1) ∼ (ρ1, ρ2) ∼ · · · ∼ (ρn−1, ρn) ∼ ρn.

ゆえに, ρn は α, β の最大公約数である.

［定理 1.9］α, βを 0でないK の整数とし, α, βの最小公倍数を λ, 最大公約数を δとする. この

とき, αβ は λδに同伴である.

［証明］λは α, β の公倍数であるから, ある α1, β1 が存在して,

λ = αβ′ = βα′. (1)

一方, αβ は α, β の倍数であるから, それらの最小公倍数である λの倍数である. よって, ある K

の整数 δ′ が存在して,

αβ = λδ′. (2)

(1)を (2)に代入すると,

αβ = αβ′δ′ = βα′δ′.

これより,

α = α′δ′, β = β′δ′ (3)
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を得る. よって, δ′ は α, β の公約数であるから, それらの最大公約数である δの約数である. すな

わち, あるK の整数 εが存在して,

δ = δ′ε. (4)

δ′ は α, β を割るから, ある α′′, β′′ が存在して,

α = δ′εα′′, β = δ′εβ′′.

これを (3)に代入すると,

δ′εα′′ = δ′α′, δ′εβ′′ = δ′β′.

もし仮に δ′ = 0ならば, (2)より αβ = 0となって α, β がともに 0でないことに反する. したがっ

て, δ′ 6= 0であるから,

εα′′ = α′, εβ′′ = β′.

ゆえに, εは α′, β′ の公約数である. これを (1)に代入すると,

λ = αεβ′′ = βεβ′′.

各辺に ε−1 を掛けると,

λε−1 = αβ′′ = βα′′.

よって, λε−1 は α, β の公倍数であり, したがって λの倍数である. すなわち, あるK の整数 ε′ が

存在して, λε−1 = λε′. ゆえに, ε−1 = ε′. これより εε′ = 1となるから, εは単数である. また, (2),

(4)より,

αβε = λδ

が得られる. すなわち, αβ は λδに同伴である.

2つ以上のK の整数が互いに素であるとは, 単数以外の公約数が存在しないときにいう. 互いに

素であることは, 最大公約数が単数であることと同値である.

［定理 1.10］α, β, γ を K の整数とする. α, β は互いに素であり, ともに 0でないとする. この

とき,

α | βγ =⇒ α | γ

が成り立つ.

［証明］α, βは互いに素だから, それらの最大公約数は単数である. よって, 定理 1.9より, α, βの

最小公倍数は αβ に同伴である. また, α | βγ より, βγ は α, β の公倍数である. ゆえに, βγ は αβ

の倍数となる. すなわち, あるK の整数 ξが存在して,

βγ = αβξ.

β 6= 0であるから, 両辺を β で割ると, γ = αξ. すなわち, α | γ.
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1.4 既約元分解とその一意性

π を 0でも単数でもない K の整数とする. π が既約元であるとは, 任意の K の整数 α, β に対

して,

π = αβ =⇒ αまたは β が単数

が成り立つときにいう. また, πが素元であるとは, 任意のK の整数 α, β に対して,

π | αβ =⇒ π | αまたは π | β

が成り立つときにいう.

［定理 1.11］ (i) 既約元と同伴なK の整数は既約元である.

(ii) 素元と同伴なK の整数は素元である.

［証明］(i) πを既約元, εと単数とする. α, β をK の整数とし, πε = αβ とすると, π = αβε−1

より, αまたは βε−1は単数である. βε−1が単数のときは, あるKの整数 ε′が存在して βε−1ε′ = 1

となるから, β は単数である. ゆえに, αまたは β は単数である. したがって, πεもまた既約元で

ある.

(ii) πを素元, εと単数とする. α, β をK の整数とし, πε | αβ とすると, あるK の整数 ξ が存

在して, αβ = πεξ. 両辺に (ε−1)2 を掛けると,

(αε−1)(βε−1) = πε−1ξ.

よって, π | (αε−1)(βε−1). ゆえに, π | αε−1 または π | βε−1. これより, πε | αまたは πε | β が得

られる. したがって, πεもまた素元である.

［定理 1.12］πをK の整数とし, πσ を πの共役とする.

(i) πが既約元ならば πσ も既約元である.

(ii) πが素元ならば πσ も素元である.

［証明］(i) πを既約元とする. α, β をK の整数とし, πσ = αβ とする.

π = (πσ)σ = (αβ)σ = ασβσ

であるから, ασ または βσ は単数である. よって, αまたは β も単数である. したがって, πσ は既

約元である.

(ii) πを素元とする. α, βをK の整数とし, πσ | αβとする. このとき, あるK の整数 ξが存在

して, αβ = πσξ. ゆえに,

ασβσ = (αβ)σ = (πσξ) = πξσ.
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πは素元だから, π | ασまたは π | βσとなる. π | ασのとき,あるKの整数 ξ′が存在して, ασ = πξ′.

よって,

α = (ασ)σ = (πξ′)σ = πσξ′σ.

ゆえに, πσ | α. 同様に, π | βσ のとき, πσ | βとなる. ゆえに, πσ | αまたは πσ | β. したがって, π

は素元である.

［定理 1.13］πをK の整数とする. このとき, 次の 2つの条件は同値である.

(i) πは既約元である.

(ii) πは素元である.

［証明］(i)⇒(ii) πを既約元, α, β をK の整数とし, π | αβ とする. δを π, αの最大公約数とす

ると, δ は π の約数だから, δ は単数であるか, または π に同伴である. δ が単数であるとき, αと

πは互いに素だから, 定理 1.10より, β が πで割り切れる. 一方, δ が πに同伴であるとき, αは δ

で割り切れるから, πでも割り切れる. ゆえに, π | αまたは π | β である. したがって, πは素元で

ある.

(ii)⇒(i) πを素元, α, βをKの整数とし, π = αβとする. π | αβであるから, π | αまたは π | β

が成り立つ. π | αのとき, あるK の整数 ξが存在して α = πξとなるから,

π = αβ = πξβ.

π 6= 0より, 1 = ξβ. ゆえに, β は単数である. 同様に, π | β のとき, αが単数であることが導かれ

る. ゆえに, αまたは β は単数である. したがって, πは既約元である.

［定理 1.14］αをK の整数とする. このとき, NKαが素数ならば αは既約元である.

［証明］対偶を示す. αが既約元でないとすると, あるK の整数 β, γ が存在して,

α = βγ, β, γ は単数でない.

ノルムをとると, 定理 1.2, 定理 1.6より,

NKα = NKβNKγ, NKβ > 1, NKγ > 1.

ゆえに,

1 < NKβ < NKα, 1 < NKγ < NKα.

したがって, NKαは素数でない.
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［定理 1.15］αを 0でも単数でもないK の整数とする. このとき, αは既約元の積で表される.

［証明］ノルムの定義より, NKαは正の有理整数であり,

NKα = 0 ⇐⇒ α = 0.

また, 定理 1.6より,

NKα = 1 ⇐⇒ αは単数.

したがって, すべての有理整数 n ≥ 2に対して, nに関する命題

(Pn) NKα = nなるK の整数 αは既約元の積で表される.

が成り立つことを示せばよい. nに関する数学的帰納法により証明する.

n = 2のとき, 2は素数だから, 定理 1.14より, NKα = 2を満たす αは既約元である.

n > 2のとき, 2 ≤ k ≤ n − 1なるすべての有理整数 kに対しては命題 (Pk)が成り立つと仮定す

る. αを NKα = nなるK の整数とする. αが既約元でないとすると, あるK の整数 β, γ が存在

して,

α = βγ, β, γ は単数でない.

ノルムをとると, 定理 1.2, 定理 1.6より,

NKα = NKβNKγ, NKβ > 1, NKγ > 1.

ゆえに,

2 ≤ NKβ < NKα, 2 ≤ NKγ < NKα.

帰納法の仮定より, β, γはともに既約元の積で表される. ゆえに, αも既約元の積で表される. した

がって, nのときも命題 (Pn)は正しい.

［定理 1.16］K の整数 αを既約元の積で表す仕方は同伴を除き一意的である.

［証明］証明すべきことは, K の整数 αが既約元の積で

α ∼ π1π2 · · ·πr ∼ π′
1π

′
2 · · ·π′

s

と 2通りに表されたとき, r = sかつ適当に番号を付け替えれば πi ∼ π′
i (i = 1, 2, . . ., r)となるこ

とである. ここで, ∼は同伴であることを表す.

rに関する数学的帰納法により証明する.

r = 1のとき.

α ∼ π1 ∼ π′
1π

′
2 · · ·π′

s.
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とすると, ある単数 εが存在して,

π1 = π′
1π

′
2 · · ·π′

sε.

もし仮に s ≥ 2とすると, π1 は既約元なので, π′
1 または π′

2 · · ·π′
sεが単数である. π′

1 は既約元であ

り, したがって単数でないから, π′
2 · · ·π′

sεが単数である. 定理 1.2, 定理 1.6より,

NKπ′
2 · · ·NKπ′

s = NKπ′
2 · · ·NKπ′

sNKε

= N ′
K(π′

2 · · ·π′
sε) = 1.

ところが, π′
2, . . ., π′

sは単数でないから, NKπ′
2 · · ·NKπ′

sは 1より大きい. これは矛盾である. した

がって, s = 1となり, π1 = π′
1εとなる.

r > 1のとき. r − 1に対しては既約元の積による表し方の一意性が成り立つと仮定する.

α ∼ π1π2 · · ·πr ∼ π′
1π

′
2 · · ·π′

s

とすると, ある単数 εが存在して,

π1π2 · · ·πr = π′
1π

′
2 · · ·π′

sε.

このとき, π′
1 | π1π2 · · ·πr である. 定理 1.13より π′

1は素元であるから, いずれかの πiを割るが, 番

号を適当に付け替えて π′
1 | π1としてもよい. すなわち, あるK の整数 ε1が存在して π1 = π′

1ε1と

なる. π1 は既約元だから, ε1 が単数になる. よって,

π2 · · ·πr = π′
2 · · ·π′

sεε1

かつ εε1 は単数である. すなわち,

π2 · · ·πr ∼ π′
2 · · ·π′

s.

帰納法の仮定より, r = sとなり, 番号を適当に付け替えることで πi ∼ π′
i (i = 2, . . ., r)となる. し

たがって, rのときも既約元の積による表し方の一意性が成り立つ.

1.5 イデアル

Z[ζ]の空でない部分集合 aが, 次の 2つの条件

(i) 任意の α, β ∈ aに対して, α − β ∈ a.

(ii) 任意の γ ∈ Z[ζ], α ∈ aに対して, γα ∈ a.

を満たすとき, aを Z[ζ]のイデアルという.

K の整数 α1, α2, . . ., αr に対して,

{x1α1 + x2α2 + · · · + xrαr | xi ∈ Z[ζ]}
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は Z[ζ]のイデアルである. これを α1, α2, . . ., αr から生成されるイデアルといい,

(α1, α2, . . . , αr)

という記号で表す. また, α1, α2, . . ., αr をイデアル (α1, α2, . . . , αr)の生成元という. また, ただ 1

つの元 α ∈ Z[ζ]から生成されるイデアル

(α) = {xα | x ∈ Z[ζ]}

を単項イデアルという.

α, β をK の整数とする. このとき,

(α) = (β) ⇐⇒ β ∈ (α)かつ α ∈ (β)

⇐⇒ α | β かつ β | α

⇐⇒ α ∼ β

が成り立つ.

0だけからなる集合 {0}は, 0から生成される単項イデアルである. すなわち, {0} = (0). これを

零イデアルという. 任意のイデアルは零イデアルを含む.

また, Z[ζ]自身は, 1から生成される単項イデアルである. すなわち, Z[ζ] = (1).

［定理 1.17］Z[ζ]のすべてのイデアルは単項イデアルである.

［証明］零イデアル (0)は単項イデアルだから, それ以外の Z[ζ]のイデアルが単項イデアルである

ことを示せばよい.

a 6= (0)を Z[ζ]のイデアルとすると, {NKγ | γ ∈ a, γ 6= 0}は正の有理整数からなる空でない集

合である. 自然数の整列性により, この集合には最小元が存在する. そこで, aの 0でない元でノル

ムの値が最小であるようなものを βとする. 定理 1.4より, 任意の α ∈ aに対して, ある κ, ρ ∈ Z[ζ]

が存在して,

α = βκ + ρ, NKρ < NKβ

が成り立つ. もし仮に ρ 6= 0とすれば,

ρ = α − βκ ∈ a

となり, βの最小性に反する. ゆえに, ρ = 0. したがって, α = βκ ∈ (β)となり, a ⊆ (β)がいえる.

逆の包含関係は明らかだから, a = (β)であり, aは単項イデアルである.

［定理 1.18］α1, α2, . . ., αr をK の整数とし, それらの最大公約数を δとする. このとき,

(α1, α2, . . . , αr) = (δ)

が成り立つ.
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［証明］定理 1.17より, Z[ζ]のすべてのイデアルは単項イデアルだから, あるK の整数 β が存在

して,

(α1, α2, . . . , αr) = (β).

このとき, β ∈ (α1, α2, . . ., αr)であるから, あるK の整数 ξ1, ξ2, . . ., ξr が存在して,

β = α1ξ1 + α2ξ2 + · · · + αrξr.

よって, δは β を割る. 逆に, 各 iについて αi ∈ (β)であるから, β は α1, α2, . . ., αr の公約数であ

る. よって, βは δの約数である. ゆえに, δは βに同伴である. したがって, (δ) = (β)となる.

1.6 素数のQ(
√
−3)での分解

pを素数とする. Z[ζ]において,

p ∼ πe1
1 πe2

2 · · ·πeg
g

と互いに同伴でない既約元の冪積で表すことができる. ノルムをとると,

p2 = (NKπ1)e1(NKπ2)e2 · · · (NKπg)eg .

各NKπi は正の有理整数なので, NKπ = pfi の形であり,

2 = e1f1 + e2f2 + · · · + egfg

が成り立つ. したがって, 次の 3つの場合が可能である:

(D1) g = 2, e1 = e2 = 1, f1 = f2 = 1.

(D2) g = 1, e1 = 1, f1 = 2.

(D3) g = 1, e1 = 2, f1 = 1.

それぞれの場合に応じて,

(D1) p ∼ π1π2, π1 6∼ π2, NKπ1 = NKπ2 = p.

(D2) p ∼ π1, NKπ1 = p2.

(D3) p ∼ π2
1 , NKπ1 = p.

(D1), (D2), (D3)のとき, それぞれ pはK/Qで完全分解する, 惰性する, 完全分岐するという.

［定理 1.19］πを素元とする2). πの倍数であるような有理整数の中で最小のものを pとする. こ

のとき, pは素数である.

2)K の整数においては, 既約元であることと素元であることとは同値である (定理 1.13).
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［証明］πは単数でないから, p 6= 1. もし仮に pが合成数であるとすれば, ある正の有理整数 a, b

が存在して,

p = ab, 1 < a < p, 1 < b < p.

一方, π | p = abであるから, π | aまたは π | b. これは pの最小性に反する. したがって, pは素数

である.

［定理 1.20］pを素数とする. このとき,

pはK/Qで完全分岐する⇐⇒ p = 2

が成り立つ.

［証明］pが完全分岐するとすれば, ある既約元 πが存在して,

p ∼ π2, p = NKπ = ππσ.

既約元の積による表し方の一意性から, π ∼ πσ. また, 単元は±1, ±ζ, ±(1 + ζ)の 6つであるから,

π = ±πσ, ±πσζ, ±πσζ2.

ここで, 1 + ζ = −ζ2 を用いた. π = x + yζ, x, y ∈ Zとおくと,

x + yζ = ±(x + yζσ), ±(x + yζσ)ζ, ±(x + yζσ)ζ2.

右辺を計算すると,

x + yζσ = x + yζ2 = x − y(1 + ζ)

= (x − y) − yζ,

(x + yζσ)ζ = (x + yζ2)ζ = y + xζ,

(x + yζσ)ζ2 = (x + yζ2)ζ2 = xζ2 + yζ

= −(1 + ζ)x + yζ

= − (x + (x − y)ζ) .

ゆえに,

x + yζ = ±((x − y) − yζ), ±(y + xζ), ∓ (x + (x − y)ζ) .

右辺のそれぞれに対して, 関係式 x = x − y

y = −y,

 x = y − x

y = y,

 x = y

y = x,

 x = −y

y = −x,

 x = −x

y = y − x

 x = x

y = x − y,
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が得られる. これらを使って変数を減らすと,

π = x, y, x(1 + ζ), x(1 − ζ), x(1 + 2ζ), x(2 + ζ).

NK(1 + ζ) = 1, NK(1 − ζ) = NK(1 + 2ζ) = NK(2 + ζ) = 3であるから,

p = NKπ = x2, y2, 3x2.

したがって, p = 3でなければならない.

逆に,

NK(1 − ζ) = (1 − ζ)(1 − ζσ)

= (1 − ζ)(1 − ζ2) = 3

= −ζ2(1 − ζ)2

∼ (1 − ζ)2.

まとめると,

3 ∼ (1 − ζ)2, NK(1 − ζ) = 3.

定理 1.14より, 1 − ζ は既約元である. したがって, 3はK/Qで完全分岐する.

［定理 1.21］pを 3ではない素数とする.

(i) pはK/Qで完全分解する⇐⇒ p ≡ 1 (mod 3).

(ii) pはK/Qで惰性する⇐⇒ p ≡ 2 (mod 3).

［証明］pは 3ではないので, p ≡ 1または 2 (mod 3). また, 定理 1.20より, pはK/Qで完全分解

するか惰性するかしかない. よって, (i)を証明すれば十分である.

pが完全分解するとすれば, Nπ = pとなる. π = x + yζ, x, y ∈ Zとおくと,

x2 − xy + y2 = p.

両辺を 4倍して変形すると,

(2x − y)2 + 3y2 = 4p.

よって,

(2x − y)2 ≡ p (mod 3).

したがって, pは 3を法として平方剰余である. ゆえに, p ≡ 1 (mod 3).

逆に, p ≡ 1 (mod 3)とすると, pは 3を法とする平方剰余である. 平方剰余の相互法則と第 1補

充法則により, −3は pを法とする平方剰余である. ゆえに, ある有理整数 xが存在して,

(x −
√
−3)(x +

√
−3) = x2 + 3 ∈ pZ ⊆ pZ[ζ].
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もし仮に pがK/Qで惰性するならば, pは Z[ζ]の既約元, したがって素元であるから, p | x+
√
−3

または p | x −
√
−3となる. p | x +

√
−3のとき, あるK の整数 x′ + y′ζ, x′, y′ ∈ Zが存在して,

x + 1 + 2ζ = x +
√
−3 = p(x′ + y′ζ) = px′ + py′ζ.

これより py′ = 2となり, p = 2を得るが, これは p ≡ 1 (mod 3)に反する. p | x−
√
−3 = x−1−2ζ

のときも, 同様にして矛盾が導かれる. ゆえに, pはK/Qで惰性しない. したがって, pはK/Qで

完全分解する.
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