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1 元の位数

群Gの元 aについて，an = 1となる最小の正の整数 nを aの位数あるいは周期

という. また, そのような nが存在するとき, aは有限位数であるという. aが有限

位数でないとき, aは無限位数であるという.

Gの元 aについて, 明らかに, aの位数が 1であることと aがGの単位元である

こととは同値である.

aがGの有限位数の元であるとき, 2つの正の整数 n, n′がともに aの位数であ

れば, an = 1かつ an′
= 1であり, 位数の最小性より n ≤ n′かつ n′ ≤ n. ゆえに

n = n′. したがって, aに対して位数は一意的に定まる.

［定理 1.1］Gを群, aをGの元とする. aが有限位数であるための必要十分条件

は, ある 0でない整数 nが存在して an = 1となることである.

［証明］aが有限位数のとき an = 1となる整数 n 6= 0が存在することは有限位数

の定義から明らかである.

ある 0でない整数 nが存在して an = 1が成り立つとすると, a−n = 1でもあるか

ら, n > 0としてもよい. このとき, 正の整数からなる集合

S = {k ∈ Z | k > 0かつ ak = 1}

は空でないから, 最小元mが存在する. このmはまさに aの位数である.

［定理 1.2］Gを群, aをGの位数 nの元とする. このとき，整数mについて，

am = 1 ⇔ n | m

が成り立つ.

［証明］(⇐) n | mのとき, ある q ∈ Zが存在してm = nq. ゆえに am = anq = 1.

(⇒) am = 1とする. mを nで割ると, ある q, r ∈ Zが存在して,

m = nq + r, 0 ≤ r < n.

このとき,

am = anq+r = anqar = ar.

ゆえに ar = 1. 位数の定義から，nは an = 1となる最小の正の整数だから r = 0

でなければならない. ゆえに n | m.
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［系 1.3］m, nを正の整数とする. a1, a2, . . ., amを群Gの元とし, 積 a1a2 · · · am

の位数は nであるとする. このとき, i = 2, 3, . . ., mに対して

aiai+1 · · · ana1a2 · · · ai−1

の位数も nである.

とくに, Gの任意の元 a, bに対して, abの位数が nならば baの位数も nである.

［証明］(a1a2 · · · am)n = 1より,

a1a2 · · · ai−1(aiai+1 · · · ana1a2 · · · ai−1)
n

= (a1a2 · · · am)na1a2 · · · ai−1 = a1a2 · · · ai−1

となる1). したがって aiai+1 · · · ana1a2 · · · ai−1は有限位数である (定理 1.1). その位

数を lとすると, l | nである (定理 1.2). 逆に,

(a1a2 · · · am)la1a2 · · · ai−1

= a1a2 · · · ai−1(aiai+1 · · · ana1a2 · · · ai−1)
l = a1a2 · · · ai−1.

ゆえに (a1a2 · · · am)l = 1. よって n | lである (定理 1.1). n, lはともに正の整数な

ので, l = nが得られる.

［系 1.4］群Gのすべての元の位数が 2以下ならば, GはAbel群である.

［証明］Gの任意の元 aに対して, 仮定より aの位数は 1または 2であるから, 定

理 1.2より a2 = 1が成り立ち, a−1 = aとなる. したがって, 任意の a, b ∈ Gに対

して,

ab = a−1b−1 = (ba)−1 = ba.

ゆえにGはAbel群である.

［定理 1.5］Gを群, aをGの位数 nの元とし, kを整数，dを k, nの (正の)最大

公約数とする. このとき，akの位数は n/dである.

1)例えば, m = n = 2のときは, a1(a2a1)(a2a1) = (a1a2)(a1a2)a1.
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［証明］mを整数とすると，

(ak)m = 1 ⇔ akm = 1 ⇔ n | km

が成り立つ (定理 1.2).

n = dn1, k = dk1, gcd(n1, k1) = 1

とおけば，

n | km ⇔ n1 | k1m ⇔ n1 | m

である. 一方，

(ak)n1 = (an)k1 = 1.

ゆえに n1は (ak)n1 = 1となる最小の正の整数である. すなわち，n1 = n/dは ak

の位数である.

［系 1.6］Gを群, aをGの位数 nの元とする. kを nと互いに素な整数とすると

き, akの位数は nである.

［証明］定理 1.5における d = 1の場合である.

［系 1.7］Gを群, aをGの位数 nの元とする. このとき, a−1の位数は nである.

［証明］定理 1.5における k = −1の場合である.

［系 1.8］Gを群, aをGの位数 nの元とする. このとき，nの任意の正の約数 d

に対して，a
n
d の位数は dである.

［証明］k = n/dとおく. kは nの正の約数なので, gcd(k, n) = kである. 定理 1.5

により, akの位数は n/k = dである.

［系 1.9］Gを群, aをGの元とする. aの位数はmnであり, m, nは互いに素で

あるとする. このとき, aに対して位数mの元 bと位数 nの元 cとの組がただ 1つ

存在して，a = bc = cbを満たす.

5



［証明］存在することの証明：m, nが互いに素だから，整数 s, tが存在して，

ms + nt = 1.

ゆえに，

a = ant+ms = antams.

そこで，b = ant, c = amsとおけば，a = bc = cbとなる.

aの位数がmnであるから，anの位数はmである (系 1.8). m, tは互いに素であ

るから，b = antの位数はmである (系 1.6). 同様に，c = amsの位数は nである.

一意性の証明：a = b′c′ = c′b′で，b′, c′の位数をそれぞれm, nとすれば，

b = ant = (b′c′)nt = b′
nt

c′
nt

= b′
nt

= b′
ms

b′
nt

= b′
ms+nt

= b′.

また，bc = a = b′c′より，c = c′. これで b, cの一意性が示された.

［定理 1.10］Gを群，a, bをGの元とし，ab = baとする. mを aの位数，nを b

の位数とする.

(i) abは有限位数の元であり, その位数はmnの約数である.

(ii) m, nが互いに素であるとき，abの位数はmnである.

(iii) m, nの最大公約数が abの位数を割れば, abの位数はm, nの最小公倍数に一

致する.

［証明］(i) ab = baと仮定したので，

(ab)mn = (am)n(bn)m = 1.

abは有限位数である (定理 1.1). また, abの位数はmnの約数である (定理 1.2).

(ii) abの位数を rとすると, ab = baより

arbr = (ab)r = 1.

よって ar = b−r. これより

arn = (bn)−r = 1.
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aの位数はmであるから，rnはmで割り切れる (定理 1.2). ところがm, nは互い

に素だから，mは rを割る. 同様に，nも rを割ることがいえる. m, nは互いに素

だから，それらの最小公倍数mnも rの約数である.

r | mnかつmn | rであり, rもmnも正なので, mn = rとなる.

(iii) dをm, nの最大公約数, lをm, nの最小公倍数とする. m = m1d, n = n1d

とおくと, gcd(m1, n1) = 1かつ l = m1n1dが成り立つ.

ad, bdの位数はそれぞれm1, n1である (系 1.8). ab = baより (ab)d = adbdなの

で, (ii)より (ab)dの位数はm1n1である. 一方, abの位数を rとすると, d | rとい

う仮定と系 1.8より, (ab)dの位数は r/dである. ゆえに r/d = m1n1. したがって

r = m1n1d = l.

［系 1.11］Gを群，a1, a2, . . ., arをどの2つも互いに可換なGの元とし，1 ≤ i ≤ r

について，aiの位数を niとする. また，n1, n2, . . ., nrはどの 2つも互いに素であ

るとする. このとき，積 a = a1 · · · anの位数は n = n1 · · ·nrである.

［証明］数学的帰納法により証明する. r = 2のときは定理 1.10によりすでに示さ

れている.

一般に，r = kのとき，上記の命題が正しいと仮定する. r = k + 1のときを

考えると，帰納法の仮定より，a′ = a1 · · · akの位数は n′ = n1 · · ·nkである. a′と

ak+1とは可換であり，n′と nk+1とは互いに素である. よって r = 2の場合から，

a = a′ak+1の位数は n = n′nr+1であることがいえる.

［系 1.12］Gを群，a1, a2, . . ., arをどの2つも互いに可換なGの元とし，1 ≤ i ≤ r

について，aiの位数を niとする. また，nを n1, n2, . . ., nrの最小公倍数とする.

このとき，位数が nであるようなGの元 aが存在する.

［証明］n = ps1
1 ps2

2 · · · psk
k を素因数分解とする. 1 ≤ j ≤ kであるような任意の j

に対して，ある niが存在して p
sj

j | niとなる. そこで，dj = ni/p
sj

j , bj = a
dj

i とお

けば，bjの位数は p
sj

j である (系 1.8). したがって，各 jに対して，位数が p
sj

j であ

るような bjが存在する. b1, b2, . . ., bkはどの 2つも可換だから，a = b1b2 · · · bkと

おけば，aの位数は nである (系 1.11).
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［定理 1.13］Abel群Gの有限位数の元の全体はGの部分群である.

［証明］Gの有限位数の元の全体をT とする. 任意の a, b ∈ T に対して, 定理 1.10

より ab ∈ T . また, 任意の a ∈ T に対して, 系 1.7より a−1 ∈ T . ゆえに T はGの

部分群である.

［注意 1.14］Gが非可換群の場合, 2つの有限位数の元の積は必ずしも有限位数

とは限らず, 無限位数になることもある. 例えば, Gを 2次の実正則行列全体から

なる乗法群とし,

A =

(
1 0

0 −1

)
, B =

(
1 1

0 −1

)
, C =

(
1 1

0 1

)

とおくと, A2 = B2 = 1, C = ABである. とくに, A, Bは有限位数である. 一方,

任意の整数 kに対して

Ck =

(
1 k

0 1

)
が成り立ち, Ck が単位行列になるのは k = 0のとき, またそのときに限る. した

がってCは無限位数である (定理 1.1).

2 巡回群

群Gが有限個の元 a1, . . ., amで生成されるとき，Gを

〈a1, . . . , am〉

という記号で表す．このとき a1, . . ., amをGの生成元という．とくに，Gがただ

一つの元 aで生成されるとき，すなわち

G = 〈a〉 = {ai | i ∈ Z}

と表されるとき，Gは巡回群であるという．

［例 2.1］加法群 Zは 1を生成元とする無限巡回群である．
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［例 2.2］正の整数 nに対して，加法群 Z/nZは 1を代表元とする剰余類 1 + nZ
から生成される位数 nの巡回群である．

［定理 2.3］巡回群GはAbel群である．

［証明］巡回群Gの生成元を aとする．Gの元はすべて ai (i ∈ Z)の形で書き表

せる．そこでGの 2つの元を ai, ajとすれば

aiaj = ai+j = aj+i = ajai

である．

［定理 2.4］Gを群，aをGの位数 nの元とする. このとき，Gの巡回部分群 〈a〉
の位数は nであり,

〈a〉 = {ai | i ∈ Z, 0 ≤ i ≤ n − 1}

= {1, a, a2, . . . , an−1}

が成り立つ.

［証明］任意の整数mに対して，整数 q, rの組がただ一つ存在して

m = nq + r, 0 ≤ r < n

が成り立つ．よって am = ar．したがって，

〈a〉 = {1, a, a2, . . . , an−1}.

aの位数は nなので, 整数 iに対して,

0 < i < n ⇒ ai 6= 1.

さらに, 2つの整数 i, jに対して,

0 ≤ i < j < n ⇒ 0 < j − i < n ⇒ aj−i 6= 1 ⇒ aj 6= ai.

ゆえに 〈a〉の元 1, a, a2, . . ., an−1は互いに異なる．したがって 〈a〉の位数は nであ

る．
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［系 2.5］無限巡回群の単位元以外のすべての元は無限位数である.

［証明］Gを無限巡回群とし, aをGの生成元とする. すなわち, G = 〈a〉. もし仮
に aが有限位数ならば, 定理 2.4より 〈a〉の位数は有限になってしまい, 矛盾が生じ

る. ゆえに aは無限位数である.

次に, xをGの単位元以外の元とすると, ある 0でない整数 iによって x = aiと

表せる. もし xが有限位数ならば, ある正の整数 kが存在して xk = 1. したがって

aik = 1かつ ik 6= 0. これは aが無限位数であることに矛盾する (定理 1.1).

［系 2.6］Gを位数 nの有限群, aをGの元とする. このとき, aの位数は nの約

数であり, an = 1が成り立つ.

［証明］Gの巡回部分群 〈a〉の位数はGの位数の約数である2). 定理 2.4より, aの

位数は 〈a〉の位数に等しい. ゆえに, aの位数はnの約数である. したがって, an = 1

が成り立つ (定理 1.2).

［系 2.7］素数位数の群は巡回群である．

［証明］Gを位数が素数 pの群とする. Gの位数は 1より大きいので, 単位元とは

異なる元 aが存在し, その位数を nとおくと n > 1である. 定理 2.4より, Gの巡回

部分群 〈a〉の位数は nである. 一般に群Gの部分群の位数はGの位数の約数であ

るから, n = pでなければならない. 〈a〉 ⊆ Gであり, なおかつ両者の群の位数は一

致するので, G = 〈a〉となる.

［定理 2.8］Gを巡回群, aをGの元とする. このとき, 次の 3つの条件は同値で

ある.

(i) aはGの生成元である. すなわちG = 〈a〉.

(ii) bをGの生成元とするとき, ある整数 kが存在して b = ak.

(iii) Gの任意の元 xに対して, ある整数 lが存在して x = al.

2)有限群の部分群の位数に関する Lagrangeの定理より.
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［証明］(i)⇒(ii) b ∈ G = 〈a〉より明らか.

(ii)⇒(iii) x ∈ Gとすると, bはGの生成元なので, ある整数 iが存在して x = bi

となる. また, (ii)より, ある整数 kが存在して b = akとなる. ゆえに x = aik. よっ

て l = ikとおけばよい.

(iii)⇒(i) (iii)はG ⊆ 〈a〉を意味する. 逆に, 任意の整数 iに対して ai ∈ Gだか

ら, 〈a〉 ⊆ G. ゆえにG = 〈a〉.

［定理 2.9］Gを位数 nの有限群, aをGの元とする. このとき, 次の 2つの条件

は同値である.

(i) Gは aを生成元とする巡回群である.

(ii) aの位数は nである.

［証明］(i)⇒(ii) Gの位数は nなので, a, a2, . . ., an+1の n + 1個の元うち少な

くともどれか 2つは一致する. よって, ある正の整数 i, jが存在して, ai = ajかつ

i 6= jが成り立つ. このとき, aj−i = 1かつ j − i 6= 0である. ゆえに, aは有限位数

である (定理 1.1). aの位数はG = 〈a〉の位数 nに一致する (定理 2.4)．

(ii)⇒(i) H = 〈a〉とおくと，H ⊆ Gである．一方，H は aを生成元とする巡

回群である．ゆえにHの位数は nである (定理 2.4)．すなわちHの位数はGの位

数に一致する．したがってH = G.

［例 2.10］有限体Z/41Zの乗法群 (Z/41Z)×は位数 40の群である．

41を法としての 2の冪を計算すると，

21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 16, 25 ≡ 32, 26 ≡ 64 ≡ −18,

27 ≡ −36 ≡ 5, 28 ≡ 10, 29 ≡ 20, 210 ≡ 40 ≡ −1.

ゆえに，220 ≡ 1 (mod 41)となって，2の位数は 20であることがわかる．

次に，41を法としての 3の冪を計算すると，

31 ≡ 3, 32 ≡ 9, 33 ≡ 27 ≡ −14, 34 ≡ −42 ≡ −1.

ゆえに，38 ≡ 1 (mod 41)となって，3の位数は 8であることがわかる．
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さて，2
20
5 = 24の位数は 5である．5, 8の最大公約数は 1だから，

24 · 3 ≡ 48 ≡ 7 (mod 41)

の位数は 40である．ゆえに，乗法群 (Z/41Z)×は 7を代表とする剰余類を生成元

にもつ巡回群である．

［定理 2.11］Gを無限巡回群とし，aをGの生成元とする．このとき，Gの生成

元は a, a−1の 2つしかない．

［証明］kを整数とし，Gが akによって生成されるとすると，ある整数 xが存在

して a = (ak)xと書ける．よって akx−1 = 1となる．aは無限位数の元であるから，

kx− 1 = 0でなければならない (定理 1.1)．ゆえに kx = 1．k, xはともに整数だか

ら，k = ±1でなければならない.

逆に, a = (a−1)−1だから，a−1はGの生成元である (定理 2.8)．

［定理 2.12］Gを群，aをGの位数 nの元とする. さらに，kを整数，dを k, n

の最大公約数とする．このとき，

〈ak〉 = 〈ad〉

が成り立つ．また，〈ak〉の位数は n/dである．

［証明］dは kの約数なので，k = dk1とおくと，

ak = (ad)k1 ⇒ ak ∈ 〈ad〉 ⇒ 〈ak〉 ⊆ 〈ad〉.

〈ak〉の位数と 〈ad〉の位数とは互いに等しく n/dである (定理 1.5，定理 2.4)．とく

に有限位数だから，〈ak〉 = 〈ad〉がいえる．

［系 2.13］Gを位数 nの巡回群, aをGの生成元とする. このとき, 整数 kにつ

いて,

akがGの生成元⇔ gcd(k, n) = 1

が成り立つ. さらに, 位数 nの巡回群 Gの生成元の個数は ϕ(n)である．ただし，

ϕ(n)は Eulerの関数である．
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［証明］(⇐) 定理 2.12において d = 1の場合を考えれば, gcd(k, n) = 1より,

〈ak〉 = 〈a〉 = G.

(⇒) 定理 2.12において d > 1の場合を考えれば, gcd(k, n) > 1のとき 〈ak〉の
位数は nより小さいから 〈ak〉 6= G. よって akはGの生成元ではない.

以上より, 系の主張の前半が示された. さらに, Gの元は

ak, k ∈ Z, 0 ≤ k ≤ n − 1

がすべてである (定理 2.4). 主張の前半より, このうちで gcd(k, n) = 1を満たすも

の, またそれのみがGの生成元であり, その個数は ϕ(n)である.

［定理 2.14］巡回群Gの部分群Hは巡回群である．

［証明］Gの生成元を a，単位元を 1で表す．Hの元はすべて ai (i ∈ Z)の形で書

き表せる．

a = 1のとき, すなわちGが単位元のみからなる群であるときは明らかである．

また, Hが単位元 1のみからなるGの部分群であるとき，Hは巡回群である．

a 6= 1とし, Hは単位元 1のほかにも元をもつとする. 正の整数からなる集合

S = {i ∈ Z | i > 0かつ ai ∈ H}

を考える．Hについての仮定と

a−i ∈ H ⇔ ai ∈ H

とから，Sは空集合でないことがわかる．したがって Sは最小元 nをもつ．

このとき, H = 〈an〉が成り立つ．実際，〈an〉 ⊆ Hは明らかである．逆に，Hの

元を am (m ∈ Z)とする．mを nで割ると, ある整数 q, rの組が一意的に存在して

m = nq + r, 0 ≤ r < n

が成り立つから

ar = ama−nq ∈ H.

nの最小性により r = 0．ゆえにm = nq. これより

am = anq ∈ 〈an〉

がいえる. したがってH ⊆ 〈an〉.
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［定理 2.15］Gを位数 nの巡回群とする．nの任意の正の約数 dに対して，Gの

位数 dの部分群がただ 1つ存在する．aをGの生成元とすれば, 〈an
d 〉がその部分群

である.

1

d

n

{e}

〈an
d 〉

G = 〈a〉

-¾

-¾

-¾

［証明］aをGの生成元とする．定理 2.9より, aの位数は nである. 存在：nの約

数 d > 0に対して，〈an
d 〉はGの位数 dの部分群である (系 1.8, 定理 2.4)．

一意性：HをGの位数 dの部分群とする．Hは巡回群 (定理 2.14)なので, ある

整数 kが存在して,

H = 〈ak〉, 0 ≤ k < n

となる．k, nの最大公約数を d′とすれば，定理 2.12より

〈ak〉 = 〈ad′〉, d =
n

d′ .

ゆえに,

H = 〈a
n
d 〉.

したがって，Gの位数 dの部分群はすべて 〈an
d 〉に一致する．これは一意性を示し

ている．

［例 2.16］Gを位数 12の巡回群とし，生成元のひとつを aとする．このとき，G

の元のうちで，生成元になるものは ϕ(12) = 4個あって

a, a5, a7, a11

である．また，12の約数 1, 2, 3, 4, 6, 12 に対応するGの部分群はそれぞれ

{e}, 〈a6〉, 〈a4〉, 〈a3〉, 〈a2〉, G

であり，これらが巡回群Gの部分群のすべてである．
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［定理 2.17］Gを位数 nの巡回群とする. nの正の約数 dに対して, Gに含まれ

る位数 dの元の個数は ϕ(d)である. さらに,

n =
∑

d|n, d>0

ϕ(d)

が成り立つ. ただし, ϕ(n)は Eulerの関数である.

［証明］aをGの生成元とすると, 定理 2.15より, nの任意の約数 d > 0に対して

〈an
d 〉がGにおけるただ 1つの位数 dの部分群である. xをGに属する位数 dの元

とすれば, 〈x〉はGの位数 dの巡回部分群となる (定理 2.4). Gにおける位数 dの部

分群はただ 1つだから, 〈x〉 = 〈an
d 〉. よって, x ∈ 〈an

d 〉である. 定理 2.9より, xは

〈an
d 〉の生成元である. 逆に, 〈an

d 〉の生成元はすべて位数 dである (定理 2.9). ゆえ

に, Gの位数 dの元の全体は 〈an
d 〉の生成元の全体に等しい. また, 〈an

d 〉の生成元の
個数はϕ(d)である (定理 2.13). これで定理の前半が示された. さらに, 集合の直和

G =
∪

d|n,d>0

{x ∈ G | xの位数は d}

が成り立つ (系 2.6)から,

|G| =
∑

d|n, d>0

#{x ∈ G | xの位数は d}.

これより求める等式が得られる.

［定理 2.18］Gを有限群とする．任意の正の整数 lに対して，xl = 1となるGの

元 xの個数が l以下ならば，Gは巡回群である．

［証明］Gの位数を nとする. Gのすべての元について, その位数は nの約数であ

る (系 2.6). nの正の約数 dに対して，Gに含まれる位数 dの元の個数をNd(G)と

すれば ∑
d|n, d>0

Nd(G) = n

が成り立つ．
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Nd(G) 6= 0であるような dに対して，位数 dの元 aが存在する．Hを aにより生

成されるGの巡回部分群とする．Hの元 xはすべて xd = 1を満たす．ところが，

Hの元の個数は d個 (定理 2.4)だから，仮定より

H = {x ∈ G | xd = 1}.

したがってGの位数 dの元はすべてH に含まれる．よってNd(G) = Nd(H)．一

方，Hの生成元，すなわち位数 dの元の個数はϕ(d)である (系 2.13)．ここでϕは

Eulerの関数である．よって

Nd(G) 6= 0 ⇒ Nd(G) = Nd(H) = ϕ(d).

したがって, Nd(G) = 0または ϕ(d)である. ところが, もし仮に nのある正の約数

d0 > 0が存在してNd0(G) = 0ならば,

n =
∑

d|n, d>0

Nd(G) <
∑

d|n, d>0

ϕ(d) = n

となり矛盾が生じる (最後の等式は定理 2.15). ゆえに，nのすべての正の約数 dに

対してNd(G) = ϕ(d)でなければならない．とくに

Nn(G) = ϕ(n) 6= 0

となるから，Gは位数 nの元を含む．よってGは巡回群である (定理 2.9)．

［系 2.19］巡回群ではない任意の有限群Gに対して, ある正の整数 lが存在して,

xl = 1を満たす x ∈ Gが l個より多く存在する.

［証明］定理 2.18の対偶を考えればよい.

［系 2.20］整域Rの単元全体からなる乗法群R×の有限部分群は巡回群である．

［証明］R×の有限部分群をGとする．Rは整域なので, 任意の正の整数 lに対し

て，多項式X l − 1 ∈ R[X]の根は l個以下である．よってGの元 xで xl = 1とな

るものは l個以下である．ゆえに定理 2.18よりGは巡回群である．
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［定理 2.21］Gを有限群とし, そのすべての部分群の位数は互いに異なるとする.

このとき, Gは巡回群である.

［証明］有限群Gの位数 nに関する数学的帰納法によって証明する.

n = 1のとき, Gは単位元だけからなる巡回群となり, 定理の主張は明らかに成

り立つ.

n > 1のとき, nより小さい位数の有限群については定理の主張が正しいと仮定

する. 単位元とは異なるGの元で位数が最小のものが存在する. それを aとおく.

aの位数は素数である. なぜなら, もし aの位数が真の約数 dをもてば, adの位数

は aの位数の真の約数であり (系 1.8), aの最小性に反する. aの位数を pとおく.

N を aによって生成されるGの巡回部分群とする. N の位数は pであり (定理

2.4), pはGの位数 nの約数である. 任意の x ∈ Gに対して xNx−1もまたGの部

分群であり, その位数はN の位数に等しい. 定理の仮定より, N = xNx−1となる.

すなわち, N はGの正規部分群である. よって, 剰余群G/N が定まる.

自然な準同型 π : G → G/N により, N を含むようなGの部分群全体とG/N の

部分群全体とは 1対 1に対応し, Gの任意の部分群Hに対して π(H) = H/N が成

り立つ. このことから, G/N のすべての部分群の位数が互いに異なることがいえ

る. さらに,

(G : N) =
|G|
|N |

< |G|.

帰納法の仮定より, G/N は巡回群である. その生成元は, ある b ∈ Gによって bN

と表せる.

Kを bで生成されるGの巡回部分群とする. KNはGの部分群であり, NはKN

の正規部分群なので, 剰余群KN/N が定義できる. b ∈ KN より bN ∈ KN/N な

ので, G/N ⊆ KN/N . また, KN ⊆ Gより逆の包含関係もいえて, G/N = KN/N

となる. 位数を比較すると,

|G|
|N |

= (G : N) = (KN : N) =
|KN |
|N |

.

ゆえに |G| = |KN |である. KN , Gはともに有限集合であり, KN ⊆ Gだから,

G = KN が成り立つ.

p | |K|のとき, K は位数 pの部分群をもつ (定理 2.15)が, 定理の仮定によりそ

れはN に一致し, N ⊆ Kがいえる. よってKN = Kが成り立つ. ゆえにG = K

となり, Gは巡回群である.
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p - |K|のとき, |K|と |N |とは互いに素である. もし x ∈ K ∩ N ならば, xの位

数は, |K|と |N |との公約数だから, 1でなければならない. ゆえに x = 1. したがっ

てK ∩ N = {1}である. このとき,

|KN | =
|K| · |N |
|K ∩ N |

= |K| · |N |.

N がGの正規部分群であることを示したのと同様にKもまたGの正規部分群で

あることがいえる. このことから, aba−1 ∈ K, ba−1b−1 ∈ N がいえるので,

aba−1b−1 ∈ K ∩ N = {1}.

これより ab = baが得られる. aの位数と bの位数は互いに素だから, abの位数は

|K| · |N |に, したがって |KN |に一致する (定理 1.10). ゆえにKN は abによって

生成される (定理 2.9). したがって, Gは巡回群である.

以上より, すべての nについて定理の主張が証明された.

［系 2.22］有限群Gの位数 nの各約数 d > 0に対して, Gの位数 dの部分群がた

だ 1つだけ存在するならば, Gは巡回群である.

［証明］仮定より, 位数が nの約数であるような 2つの異なるGの部分群は異な

る位数をもつ. 一方, 有限群Gの部分群の位数は常にGの位数の約数である. ゆえ

に, 任意の 2つの異なるGの部分群は異なる位数をもつ. したがって定理 2.21よ

りGは巡回群である.

［定理 2.23］自明な部分群しか持たない群Gは {1}であるか，または位数が素数
の巡回群である．

［証明］G 6= {1}と仮定する．Gの単位元 1でない元 aに対して，〈a〉はGの部

分群である．〈a〉 6= {1}であるから，仮定よりG = 〈a〉．したがってGは巡回群で

ある．もし仮にGが無限群ならば, 〈a2〉は aを含まないGの巡回部分群になり, G

が自明な部分群しかもたないという仮定に反する. したがって, Gは有限巡回群で

ある.

Gの位数を nとおく. もし仮に nが合成数ならば, ある正の約数m > 1が存在す

る. Gは巡回群だから, 定理 2.15より位数mの部分群が存在する. これは仮定に

反する．ゆえに nは素数である. したがってGは巡回群である (系 2.7).
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［系 2.24］可換な単純群は {1}か位数が素数の巡回群である．

［証明］Abel群の部分群はすべて正規部分群である．よって可換な単純群は自明

な部分群しか持たない．このことに注意して定理 2.23を適用すればよい．

3 巡回群の自己同型

［定理 3.1］G, G′を群とし, aをGの有限位数の元, f : G → G′を群の準同型写

像とする.

(i) f(a)は有限位数であり, その位数は aの位数の約数である.

(ii) f が同型写像ならば, f(a)の位数は aの位数に一致する.

［証明］aの位数を nとおく.

(i) f の準同型性と an = 1より

f(a)n = f(an) = 1.

定理 1.1より, f(a)は有限位数である. また, 定理 1.2より, f(a)の位数は nの約数

である.

(ii) f(a)の位数をmとし, b = f(a)とおく. fは同型写像だから, 逆写像 f−1が

存在し, f−1は準同型である. よって,

am = f−1(b)m = f−1(bm) = f−1(1) = 1.

定理 1.2より n | mである. (i)よりm | nであり, m, nはともに正の整数だから,

m = nとなる.

［定理 3.2］f : G → G′ を群の準同型写像とする．Gが巡回群ならば，f の像

f(G)も巡回群である．aをGの生成元とすれば f(a)が f(G)の生成元である．
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［証明］f(G)のすべての元は，ある x ∈ Gによって f(x)と表される. また, Gの

任意の元 xは，ある i ∈ Zによって x = aiと表される．f の準同型性から，

f(x) = f(ai) = f(a)i.

したがって f(G)は f(a)によって生成される巡回群である．

［系 3.3］巡回群Gの部分群Hによる剰余群G/Hは巡回群である．aをGの生

成元とすれば aHがG/Hの生成元になる．

［証明］自然な全射準同型写像

G → G/H, x 7→ xH

に対して定理 3.2を適用すればよい．

［系 3.4］群Gが巡回群であるための必要十分条件は，全射準同型Z → Gが存在

することである．

［証明］Gが巡回群であるとき，aをGの生成元とし, 写像

Z → G, i 7→ ai

を考えれば，これは全射準同型である．逆は定理 3.2より明らかである.

［定理 3.5］Gを群とする．

(i) Gが無限巡回群であるための必要十分条件は，Gが加法群Zと同型であるこ
とである．

(ii) Gが位数 nの巡回群であるための必要十分条件は，Gが加法群Z/nZと同型
であることである．
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［証明］(i) Gを無限巡回群，Gの生成元を aとする．準同型写像

Z → G, i 7→ ai

は全単射である．実際，上の写像の核はただ 1つの元からなる．逆は明らか．

(ii) Gを位数 nの巡回群，aをGの生成元とする．このとき，準同型写像

Z → G, i 7→ ai

は全射であり, その核は nZである (定理 1.2)．よって準同型定理からG ∼= Z/nZ
を得る．逆は明らか．

［定理 3.6］Gを群, aをGの生成元, f をGからG自身への準同型写像とする.

f がGの自己同型であるための必要十分条件は, f(a)がGの生成元となることで

ある.

［証明］f がGの自己同型ならば, f は全射である. よって f(G) = G. 一方, 定理

3.2により, f(a)は f(G)の生成元である. ゆえに f(a)はGの生成元である.

逆に, f(a)がGの生成元とすれば, 任意の x ∈ Gに対して, ある k ∈ Zが存在
して

x = f(a)k = f(ak) ∈ f(G).

よってGのすべての元は f(G)に属する. ゆえにG ⊆ f(G). 逆の包含関係は明ら

かだから, f(G) = G.

［定理 3.7］無限巡回群 〈a〉から群Gへの準同型写像は, 各 x ∈ Gに対して

fx : 〈a〉 → G, ak 7→ xk (k ∈ Z)

によって定まるものがすべてである.

［証明］aは無限位数なので, 任意の k, l ∈ Zに対して

ak = al ⇒ k = l ⇒ xk = xl
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となるから, fxはwell-definedである. また, 任意の k, l ∈ Zに対して

fx(a
k)fx(a

l) = xkxl = xk+l = fx(a
k+l) = fx(a

kal).

よって fxは準同型である. さらに, f を任意の準同型写像とするとき, y = f(a)と

おけば, 任意の k ∈ Zに対して

f(ak) = f(a)k = yk = fy(a
k).

ゆえに f = fy.

［定理 3.8］位数 nの巡回群 〈a〉から群Gへの準同型写像は, xn = 1をみたす各

x ∈ Gに対して

fx : 〈a〉 → G, ak 7→ xk (k ∈ Z)

によって定まるものがすべてである.

［証明］aの位数は nなので, 任意の k, l ∈ Zに対して

ak = al ⇒ k ≡ l (mod n) ⇒ xk−l = 1 ⇒ xk = xl

となるから, fxはwell-definedである. また, 任意の k, l ∈ Zに対して

fx(a
k)fx(a

l) = xkxl = xk+l = fx(a
k+l) = fx(a

kal).

よって fxは準同型である. さらに, f を任意の準同型写像とするとき, y = f(a)と

おけば,

yn = f(a)n = f(an) = f(1) = 1.

さらに, 任意の k ∈ Zに対して

f(ak) = f(a)k = yk = fy(a
k).

ゆえに f = fy.

［定理 3.9］巡回群Gの自己同型群Aut GはAbel群である.
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［証明］巡回群Gの生成元を aとする. Gの任意の自己同型写像 σに対して, ある

整数 nが存在して

σ(a) = an.

したがって, τ も Gの自己同型写像とすれば, τ(a) = am となる整数 mがある.

よって

τσ(a) = (am)n = amn = (an)m = στ(a).

Gの任意の元 xは生成元 aの冪であるから, 任意の x ∈ Gに対して

στ(x) = τσ(x).

すなわち στ = τσ.

［定理 3.10］Gを巡回群とし, Aut Gを自己同型群とする.

(i) |G| = ∞ならば, Aut G ∼= Z/2Z.

(ii) |G| = d < ∞ならば, Aut G ∼= (Z/dZ)×.

［証明］巡回群Gの生成元を aとする. 任意の準同型写像 σ : G → Gに対して,

ある整数 nが存在して, σ(a) = anと書ける. とくに σが自己同型ならば, anはG

の生成元でなければならない (定理 3.6)から

(an)l = a

となる整数 lが存在する.

(i) |G| = ∞のとき, nl = 1となり, n = ±1. σ(a) = a−1によって定まる準同型

写像 σがAut Gの単位元以外の元となる. ゆえにAut Gは位数 2の巡回群である.

(ii) |G| = d < ∞のとき,

nl ≡ 1 (mod d)

となるから, nは dと互いに素である. よって写像

Φ : Aut G → (Z/dZ)×, σ 7→ n (mod d)

が定まる. ここに nは σ(a) = anを満たす.
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dを法として互いに合同ではない整数m, nを与えれば, σ(a) = an, τ(a) = amに

よって定まる 2つの準同型写像 σ, τ は互いに異なる. これはΦが単射であること

を意味する.

また, nが dと互いに素であれば, anは Gの生成元となる (定理 2.13). よって

σ(a) = anによって準同型写像 σを定めると, σはGの自己同型になる. ゆえにΦ

は全射である.

さらに, τ を τ(a) = am, gcd(m, d) = 1で定まる自己同型とすれば

τσ(a) = τ(an) = amn

より

Φ(τσ) ≡ mn ≡ Φ(τ)Φ(σ) (mod d).

ゆえにΦは準同型である.

［例 3.11］無限巡回群Gの自己同型写像は

idG : G → G, x 7→ x,

σ : G → G, x 7→ x−1

の 2つだけである. このとき

Aut G = {idG, σ} = 〈σ〉, σ2 = idG

である. Aut Gは位数 2の巡回群である.

［例 3.12］Gを素数 pを位数とする巡回群とすれば, Aut G ∼= (Z/pZ)×なので,

Aut Gは位数 p − 1の巡回群になる.

［例 3.13］Gを位数 8の巡回群とし, aをGの生成元とする. Aut Gの元は

σ(a) = ak, gcd(k, 8) = 1

によって定まる準同型 σである. このとき k = 1, 3, 5, 7であるから,

idG(a) = a, σ1(a) = a3, σ2(a) = a5, σ3(a) = a7
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とすれば,

Aut G = {idG, σ1, σ2, σ3}, σ2
1 = σ2

2 = σ2
3 = idG

となる. ゆえに

Aut G ∼= Z/2Z × Z/2Z.

とくに, Gが巡回群であっても, Aut Gは一般には巡回群ではないことがわかる.

4 Zについて
m ∈ Zに対して, mの倍数全体からなる集合をmZとおく. すなわち,

mZ = {mx | x ∈ Z}

とおく. mZは, mによって生成される Zの巡回部分群である.

a1, a2, . . ., an ∈ Zで生成されるZの部分群は,

a1Z + a2Z + · · · + anZ = {a1x1 + a2x2 + · · · + anxn | xi ∈ Z}

である.

［定理 4.1］ (i) 加法群 Zの部分群H は巡回群であり, ある整数 nが存在して

H = nZと書ける.

(ii) dを 2つの整数 a, bの最大公約数とすれば

aZ + bZ = dZ

が成り立つ.

(iii) lを 2つの整数 a, bの最小公倍数とすれば

aZ ∩ bZ = lZ

が成り立つ.
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［証明］(i) 定理 2.14を適用すればよい.

(ii) (i)より, ある整数 dがあって

aZ + bZ = dZ

と書ける. −dZ = dZだから, d > 0としてよい.

a ∈ dZより, ある k ∈ Zが存在して a = kd. よって d | a. 同様にして b | dもい

える. ゆえに, dは a, bの公約数である.

d ∈ aZ + bZより, ある x, y ∈ Zが存在して

d = ax + by.

したがって, 任意の整数 d1に対して,

d1 | a, d1 | b ⇒ d1 | d.

ゆえに, dは a, bの公約数のうちで最大のものである.

(iii) (i)より, ある整数 lがあって

aZ ∩ bZ = lZ

と書ける. −lZ = lZだから, l > 0としてよい.

l ∈ aZ ∩ bZより, a, bはともに lを割る. ゆえに, lは a, bの公倍数である.

任意の整数 l1に対して,

a | l1, b | l1 ⇒ l1 ∈ aZ ∩ bZ ⇒ l1 ∈ lZ ⇒ l | l1.

ゆえに, lは a, bの公倍数のうちで最小のものである.

［定理 4.2］a, bを 0でない整数, dを a, bの最大公約数, lを a, bの最小公倍数と

する. このとき, 同型

aZ/lZ ∼= dZ/bZ

が成り立つ.

［証明］dZ = aZ + bZであり, lZ = aZ∩ bZである (定理 4.1)から, 群の第 2同型

定理より,

aZ/lZ = aZ/(aZ ∩ bZ) ∼= (aZ + bZ)/aZ = dZ/bZ

が成り立つ.
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［定理 4.3］n, m, dを正の整数とし, n = dmであるとする. このとき, 2つの同型

Z/mZ ∼= dZ/nZ,
Z/nZ
dZ/nZ

∼= Z/dZ

が成り立つ.

［証明］n = dmなので, 任意の k, k′ ∈ Zに対して

k ≡ k′ (mod m) ⇔ dk ≡ dk′ (mod n).

よって, 写像

f : Z/mZ ∼= dZ/nZ, k + mZ 7→ dk + nZ

はwell-definedかつ単射である. f が全射準同型であることは容易に確かめられる.

dは nの約数なので, 任意の k, k′ ∈ Zに対して

k ≡ k′ (mod n) ⇒ k ≡ k′ (mod d).

よって, 写像

g : Z/nZ → Z/dZ, k + nZ 7→ k + dZ

はwell-definedである. 全射準同型であることは容易に確かめられる. gの核は

ker g = {k + nZ | k ∈ dZ} = dZ/nZ

である. 準同型定理によって, 求める同型が得られる.

［定理 4.4］m, nを正の整数とし, d = gcd(m,n), m = dm′, n = dn′とする. こ

のとき, m倍写像

[m] : Z/nZ → Z/nZ, x + nZ 7→ mx + nZ

について,

ker [m] = n′Z/nZ, [m](Z/nZ) = dZ/nZ

が成り立つ.
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［証明］任意の x ∈ Zに対して,

x + nZ ∈ ker [m] ⇔ mx + nZ = 0 + nZ

⇔ mx ≡ 0 (mod n)

⇔ m′x ≡ 0 (mod n′)

⇔ x ≡ 0 (mod n′)

⇔ x + nZ ∈ n′Z/nZ.

ゆえに, ker [m] = n′Z/nZ.

次に, 任意の x ∈ Zに対して,

mx + nZ = dm′x + nZ ∈ dZ/nZ.

ゆえに, [m](Z/nZ) ⊆ dZ/nZ. 逆に, 任意の x ∈ Zに対して, gcd(m′, n) = 1より,

ある y ∈ Zが存在して, m′y ≡ x (mod n). よって,

dx + nZ = dm′y + nZ = my + nZ ∈ [m](Z/nZ).

ゆえに, dZ/nZ ⊆ [m](Z/nZ). したがって, [m](Z/nZ) = dZ/nZが示された.

［定理 4.5］pを素数, l, k, vを整数とし,

0 ≤ l < k ≤ v

を満たしているとする. このとき, 全射準同型

πk : plZ/pvZ → Z/pk−lZ, plx + pvZ 7→ x + pk−lZ (x ∈ Z)

が定まる. ker πk = pkZ/pvZであり, 同型

plZ/pvZ
pkZ/pvZ

∼= Z/pk−lZ

が成り立つ. 特に, πvは同型写像であり, 同型

plZ/pvZ ∼= Z/pv−lZ

が成り立つ.
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［証明］0 ≤ l < k ≤ vのとき, 写像

πk : plZ/pvZ → Z/pk−lZ, plx + pvZ 7→ x + pk−lZ (x ∈ Z)

を考える. 任意の x, y ∈ Zに対して

plx ≡ ply (mod pv) ⇒ x ≡ y (mod pv−l) ⇒ x ≡ y (mod pk−l)

なので, πkはwell-definedである. 全射準同型であることはすぐにわかる. また,

ker πk = {plx + pvZ | x ∈ pk−lZ} = {x + pvZ | x ∈ pkZ} = pkZ/pvZ

である. 準同型定理により

plZ/pvZ
pkZ/pvZ

∼= Z/pk−lZ

が成り立つ.

特に, 全射準同型 πv : plZ/pvZ → Z/pv−lZ は, ker πv = 0であることから単射,

したがって同型である.

［定理 4.6］pを素数, vを正の整数とする. また, mを正の整数とし, ある負でな

い整数 kと正の整数m1が存在して

m = pkm1, gcd(p,m1) = 1

と表されているものとする. さらに, k ≤ vである仮定とする. このとき,

m · Z/pvZ = pkZ/pvZ.

が成り立つ.

［証明］まず,

pkZ/pvZ = {x + pvZ | x ∈ pkZ},

m · Z/pvZ = {mx + pvZ | x ∈ Z}

はともに Z/pvZの部分群である. m = pkm1より, 任意の x ∈ Zに対して

mx + pvZ = pk(m1x) + pvZ ∈ pkZ/pvZ.
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ゆえにm · Z/pvZ ⊆ pkZ/pvZ.

逆に, gcd(m1, p) = 1より, 任意の a ∈ Zに対して, 1次合同式

m1x ≡ a (mod pv)

は pvを法としてただ 1つの解 x ≡ x0 (mod pv)をもつ. すなわち

a + pvZ = m1x0 + pvZ.

したがって,

pka + pvZ = mx0 + pvZ.

ゆえに pkZ/pvZ ⊆ m · Z/pvZ.

［定理 4.7］pを素数, vを正の整数とする. また, m, nを正の整数とし, ある負で

ない整数 k, lと正の整数m1, n1が存在して

m = pkm1, gcd(p,m1) = 1,

n = pln1, gcd(p, n1) = 1

と表されているものとする. さらに, l ≤ kである仮定とする. このとき,

n · Z/pvZ
m · Z/pvZ

∼=


0, k = lまたは v ≤ lのとき

Z/pk−lZ, l < k ≤ vのとき

Z/pv−lZ, l < v < kのとき

(1)

が成り立つ.

［証明］定理 4.6より,

n · Z/pvZ = plZ/pvZ,

m · Z/pvZ = pkZ/pvZ

が成り立つ.

k = lのとき, n ·Z/pvZ = m ·Z/pvZがいえるので, (1)の最初の同型が得られる.

v ≤ lのとき, l ≤ kという仮定から v ≤ kである. よって,

n · Z/pvZ = m · Z/pvZ = 0.
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したがって (1)の最初の同型が成り立つ.

l < k ≤ vのとき, 定理 4.5より同型

plZ/pvZ
pkZ/pvZ

∼= Z/pk−lZ

が成り立つ. よって, (1)の 2番目の同型が得られる.

l < v < kのとき, m · Z/pvZ = 0であるから

n · Z/pvZ
m · Z/pvZ

∼= n · Z/pvZ = plZ/pvZ.

定理 4.6より, plZ/pvZ ∼= Z/pv−lZ. ゆえに, (1)の 3番目の同型が得られる.

［定理 4.8］m, nが互いに素な整数であるとき, 写像

Z/mnZ → Z/mZ × Z/nZ

は群の同型写像である.

［証明］m, nが互いに素であるとする. 写像

f : Z/mnZ → Z/mZ × Z/nZ, x + mnZ 7→ (x + mZ, x + nZ)

を考える. 任意の x, y ∈ Zに対して

x ≡ y (mod mn) ⇒ x ≡ y (mod m)かつ x ≡ y (mod n)

だから, 写像 f は well-definedである. また, 準同型性を確かめることも容易であ

る. gcd(m,n) = 1より, xがmの倍数かつ nの倍数ならば, xはmnの倍数である.

これは f が単射であることを意味する. さらに, 位数を比較すれば, 全射性もいえ

る.

［注意 4.9］m, nが互いに素な整数でないときには, Z/mnZとZ/mZ×Z/nZと
は決して同型にはならない.

実際, dをm, nの最大公約数とし, d > 1と仮定する.

f : Z/mnZ → Z/mZ × Z/nZ

31



を準同型写像とすると, 加法群 Z/mnZは 1 + mnZを生成元とする巡回群なので,

f(Z/mnZ)は f(1 + mnZ)を生成元とする巡回群である. 一方, f(1 + mnZ)の位数

は l = mn/d以下である. なぜなら,

f(1 + mnZ) = (x + mZ, y + nZ)

とおくと

l · f(1 + mnZ) = (lx + mZ, ly + nZ)

=
(
m · nx

d
+ mZ, n · my

d
+ nZ

)
= 0

となるからである. d > 1と仮定したから l < mn. したがって

f(Z/mnZ) 6= Z/mZ × Z/nZ

となり, f は全射ではない.

［定理 4.10］加法群 Zの生成元は 1, −1のみである.

［証明］定理 2.11を適用すればよい.

［定理 4.11］加法群 Z/nZの元のうち，生成元になるのは

k + nZ, k ∈ Z, 0 ≤ k ≤ n − 1, gcd(k, n) = 1

なる形の元であり，それらは ϕ(n)個ある．

［証明］系 2.13を適用すればよい.

［定理 4.12］加法群Zの任意の自己準同型 fに対して, ある整数 aが存在して, 任

意の n ∈ Zに対して
f(n) = an

が成り立つ. さらに, a = 0ならば fは零写像であり, a 6= 0ならば f は単射である.
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［証明］a = f(1)とおく. n > 0のとき

f(n) = an ⇒ f(n + 1) = f(n) + f(1) = an + n = a(n + 1).

数学的帰納法により, すべての n > 0について f(n) = anがいえる.

n < 0のとき, −n > 0だから

f(n) = −f(−n) = −(a(−n)) = an.

n = 0のとき, f は準同型だから, f(0) = 0である.

以上より, すべての nに対して f(n) = anがいえた.

さらに, a = 0ならば, すべての整数 nに対して f(n) = 0. よって f は零写像で

ある. a 6= 0ならば

f(n) = 0 ⇒ an = 0 ⇒ n = 0

なので, ker f = {0}. ゆえに f は単射である.

［定理 4.13］nを正の整数とし, 加法群Z/nZの任意の自己準同型 f に対して, あ

る整数 aが存在して, 0 ≤ a ≤ n − 1かつ任意の k ∈ Zに対して

f(k + nZ) = ak + nZ

が成り立つ.

［証明］f(1 + nZ) ∈ Z/nZなので, ある整数 aが存在して,

f(1 + nZ) = a + nZ, 0 ≤ a ≤ n − 1.

このとき, 任意の k ∈ Zに対して,

f(k + nZ) = k · f(1 + nZ) = k · (a + nZ) = ak + nZ

となる.
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