
1 中国剰余定理

定理 1.1. 正の整数m, nの最大公約数を d，最小公倍数を lとすれば，整数 a, bについて

(1) x ≡ a (mod m) , x ≡ b (mod n)

が解を持つための必要十分条件は

a ≡ b (mod d)

である．解は lを法としてただ一つである．

証明. (1)が解 xを持つとき，d = (m, n)であるから，特に x ≡ a (mod d), x ≡ b (mod d)，よっ
て a ≡ b (mod d)である．
次に，a ≡ b (mod d)が成り立っているとき，(1)が解を持つことを示す．一番目の合同式を満た

す xは，ある整数 tによって

(2) x = a + mt

と書ける．このような xが二番目の合同式の解になるのは

a + mt ≡ b (mod n)

すなわち

(3) mt ≡ b − a (mod n)

のときである．仮定によって (m, n) = d, a ≡ b (mod d)であるから

m

d
t ≡ b − a

d

(
mod

n

d

)
よって (3)の解 tは，ある整数 t0, sによって

t = t0 +
n

d
s

と表すことができる．これを (2)に代入すれば

x = a + mt0 + ls

ここで dl = mnを用いた．この xは (1)の解である．また明らかに xと lを法として合同な整数

はすべて (1)の解である．したがって

x ≡ a + mt0 (mod l)

を満たす整数 xはすべて (1)の解である．
最後に一意性を示す．x, x′を (1)の解とすると，x− x′はm, nで割れるから，それらの最小公

倍数 lでも割り切れる．すなわち x ≡ x′ (mod l)である．

補題 1.2. 整数 a, bの最小公倍数を {, }によって表すことにする．整数 a, b, cについて

({a, b}, c) = {(a, c), (b, c)}

が成り立つ．
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証明. a = pa1
1 · · · par

r , b = pb1
1 · · · pbr

r , c = pc1
1 · · · pcr

r と素因数分解する．上の等式を証明すること

は，各 iについて

(4) min{max{ai, bi}, ci} = max{min{ai, ci}, min{bi, ci}}

を示すことに帰着される．

iを一つ固定する．ci ≥ ai, ci ≥ bi ならば，左辺も右辺も max{ai, bi}になる．よって (4)が成
り立つ．ai > ciならば

ci < ai ≤ max{ai, bi}
より左辺は ciである．一方

min{ai, ci} = ci, min{bi, ci} ≤ ci

であるから右辺も ci である．よって (4)が成り立つ．bi > ci のときも同様である．

定理 1.3. m1, . . ., mr を正の整数とする．このとき整数 a1, . . ., ar について

(5) x ≡ ak (mod mk) , k = 1, 2, . . . , r

に解があるための必要十分条件は

ai ≡ aj (mod (mi, mj)) , i, j = 1, 2, . . . , r

である．解はm1, . . ., mr の最小公倍数を法としてただ一つである．

証明. 条件の必要性は明らかだから，条件が成り立っていると仮定して (5)が解を持つことを示
す．定理 1.1により，二つの合同式

x ≡ a1 (mod m1) , x ≡ a2 (mod m2)

の解を

x ≡ b (mod {m1, m2})
のような形の合同式で表すことができる．これと第三の合同式とを組み合わせたとき

(6) x ≡ b (mod {m1, m2}) , x ≡ a3 (mod m3)

が {m1, m2, m3}を法としてただ一つの解を持つことを示す．
仮定によって b ≡ a1 (mod m1)．ゆえに b − a3 ≡ a1 − a3 (mod m1)．したがって

b − a3 ≡ a1 − a3 ≡ 0 (mod (m1, m3))

すなわち b − a3 は (m1, m3)で割り切れる．同様にして (m2, m3)でも割り切れることもわかる．
したがって {(m1, m3), (m2, m3)}で割り切れる．ところが補題 1.2により

({m1, m2}, m3) = {(m1, m3), (m2, m3)}

だから b − a3は ({m1, m2}, m3)で割り切れる．したがって定理 1.1により (6)は {m1, m2, m3}
を法としてただ一つの解を持つ．

同様にして，rについての帰納法によって定理を証明することができる．
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系 1.4 (中国剰余定理). m1, . . ., mr を 2つずつ互いに素な正の整数とする．このとき，任意の整
数 a1, . . ., ar について

(7) x ≡ ak (mod mk) , k = 1, 2, . . . , r

を満たす xはM = m1 · · ·mr を法としてただ一つ存在する．

証明. 定理 1.3において，各 i, jについて (mi, mj) = 1となる場合である．ここではGaussによ
る別証明を与える．

(8) M = m1M1 = m2M2 = · · · = mrMr

とおくと，k = 1, 2, . . . , rに対して

(9) Mktk ≡ 1 (mod mk)

となる整数 tk が存在する．このとき

(10) x = a1M1t1 + a2M2t2 + · · · + arMrtr

が (7)の解である．実際，(9)によって，(10)の右辺の第一項は

a1M1t1 ≡ a1 (mod m1)

である．第二項以下については，(8)によってM2, . . ., Mr がm1で割り切れるから

a2M2t2 ≡ · · · ≡ arMrtr ≡ 0 (mod m1)

よって

x ≡ a1 (mod m1)

m2, m3, . . ., mr に関しても同様に議論すれば

x ≡ a2 (mod m2) , . . . , x ≡ ar (mod mr)

がいえる．したがって (10)は (7)の解である．また明らかに (10)とM を法として合同な整数も

また (7)の解である．
x, x′ を (7)の解とすると

x ≡ x′ (mod mk) , k = 1, 2, . . . , r

であるから，x − x′ はm1, . . ., mr で割りきれる．したがって，それらの最小公倍数M でも割り

切れる．すなわち x ≡ x′ (mod M)である．

2 単位元を持つ可換環への一般化

以下，Rを単位元を持つ可換環とする．
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定理 2.1. a, bを Rのイデアル，a, bを Rの元とする．このとき，連立方程式

(11) x ≡ a (mod a) , x ≡ b (mod b)

が Rで解を持つための必要十分条件は

(12) a ≡ b (mod a + b)

が成り立つことである．もし (11)に解があれば，それは a ∩ bを法として一意的である．

証明. (11)の解 xが存在するとき，(12)が成り立つことは明らかである．
(12)が成り立っているとすると

a − b = c + c′ (∃c ∈ a, ∃c′ ∈ b)

そこで

x = a − c = b + c′

とおけば，xは (11)の解になる．
また，x, x′ が共に (11)の解ならば x − x′ ∈ a ∩ bである．

定理 2.2. n ≥ 3とし，a1, . . ., an を Rのイデアル，a1, . . ., an を Rの元とし

(13)

(
m−1⋂
i=1

ai

)
+ am =

m−1⋂
i=1

(ai + am), (3 ≤ m ≤ n)

が成り立っていると仮定する．このとき，連立方程式

(14) x ≡ ai (mod ai) (i = 1, . . . , n)

が解を持つための必要十分条件は

(15) ai ≡ aj (mod ai + aj) (1 ≤ i ≤ n, 1 ≤ j ≤ n)

が成り立つことである．

もし (14)に解があれば，それは a ∩ bを法として一意的である．

証明. (14)の解 xが存在するとき，(15)が成り立つことは明らかである．
(15)が成り立っているとする．定理 2.1により，二つの合同式

x ≡ a1 (mod a1) , x ≡ a2 (mod a2)

の解を

x ≡ b (mod a1 ∩ a2)

のような形の合同式で表すことができる．これと第三の合同式とを組み合わせたとき

(16) x ≡ b (mod a1 ∩ a2) , x ≡ a3 (mod a3)

が a1 ∩ a2 ∩ a3を法としてただ一つの解を持つことを示す．

仮定によって b ≡ a1 (mod a1)．ゆえに b − a3 ≡ a1 − a3 (mod a1)．したがって

b − a3 ≡ a1 − a3 ≡ 0 (mod a1 + a3)

4



すなわち b − a3 ∈ a1 + a3．同様にして b − a3 ∈ a2 + a3もわかる．したがって

b − a3 ∈ (a1 + a3) ∩ (a2 + a3)

仮定により，この条件は

b − a3 ∈ (a1 ∩ a2) + a3

と同値である．したがって定理 2.1により (16)は a1 ∩ a2 ∩ a3を法としてただ一つの解を持つ．

同様にして，nについての帰納法によって定理を証明することができる．

注意 2.3. 条件 (13)は R = Zのとき常に成り立つ (補題 1.2)．けれども一般には成り立たない．
例えば R = Q[X, Y ]とし，Rのイデアルとして

a = (X), b = (Y ), c = (X + Y )

をとると

a ∩ b = (XY ),

a + c = b + c = (X, Y ),

(a ∩ b) + c = (X + Y, XY ),

(a + c) ∩ (b + c) = (X, Y )

である．ところが

X ∈ (X, Y ), X /∈ (X + Y, XY )

より (X, Y ) �= (X + Y, XY )．よって今の場合 (11)は成り立たない．

補題 2.4. a1, . . ., an, bを Rのイデアルとする．このとき

ai + b = R (i = 1, . . . , n)

ならば

a1 · · · an + b = a1 ∩ · · · ∩ an + b = R

が成り立つ．

証明. 仮定から，各番号 iについて

1 = ai + bi (∃ai ∈ ai, ∃bi ∈ b)

このとき

a1 · · · an = (1 − b1) · · · (1 − bn) = 1 + b (∃b ∈ b)

ゆえに

1 = a1 · · ·an − b ∈ a1 · · · an + b

このことは a1 · · · an + b = Rと同値である．

また，一般に

a1 · · · an ⊆ a1 ∩ · · · ∩ an

であるから，a1 ∩ · · · ∩ an + b = Rとなる．
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補題 2.5. a1, . . ., an を Rのイデアルとし

i �= j =⇒ ai + aj = R

が成り立っていると仮定する．このとき

a1 ∩ · · · ∩ an = a1 · · · an

が成り立つ．

証明. nに関する数学的帰納法で証明する．

n = 2のとき．a1 + a2 = Rより

a1 ∩ a2 = (a1 ∩ a2)(a1 + a2) ⊆ a1a2 ⊆ a1 ∩ a2

したがって a1 ∩ a2 = a1a2である．

a1 ∩ · · · ∩ an−1 = a1 · · · an−1と仮定する．補題 2.4より

a1 · · · an−1 + an = R

よって n = 2の場合により

a1 ∩ · · · ∩ an = a1 · · · an−1 ∩ an = a1 · · · an

となる．

注意 2.6. 補題 2.5は i �= j =⇒ ai + aj = Rなる条件を除くと必ずしも成り立たない．

例えば，R = Z, a = 2Z, b = 4Zとすると

ab = 8Z, a ∩ b = 4Z

ゆえに ab � a ∩ b．

定理 2.7 (中国剰余定理の一般化). a1, . . ., an を Rのイデアル，a1, . . ., an を Rの元とし

(17) i �= j =⇒ ai + aj = R

が成り立っていると仮定する．このとき，連立方程式

(18) x ≡ ai (mod ai) (i = 1, . . . , n)

は必ず解を持つ．

もし (18)に解があれば，それは a1 · · · an を法として一意的である．

証明. 条件 (17)が成り立つならば，定理 2.2における条件 (15)が成り立つ．また，補題 2.4によ
り，定理 2.2における条件 (13)が成り立つこともいえる．よって連立方程式 (18)は解を持ち，そ
れは a1 ∩ · · · ∩ an を法として一意的である．ところが補題 2.5より a1 · · · an = a1 ∩ · · · ∩ an であ

る．
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定理 2.8. a1, . . ., an を Rのイデアル，a = a1 · · · anとし

i �= j =⇒ ai + aj = R

が成り立っていると仮定する．このとき，写像

R/a −→ R/a1 × · · · × R/an, x + a �−→ (x + a1, . . . , x + an)

は環の同型写像である．

証明. 環の準同型写像

f : R −→ R/a1 × · · · × R/an, x �−→ (x + a1, . . . , x + an)

を考える．定理 2.7において，解が存在することは f が全射であることを意味し，解が aを法とし

て一意的であることは Ker f = aを意味する．ゆえに準同型定理により求める同型写像が得られ

る．

補題 2.9. aを Rのイデアルとし，(R/a)×を R/aの単元全体からなる乗法群とする．このとき

(R/a)× = {a + a ∈ R/a | (a, a) = R}

が成り立つ．

証明. Rの元 aについて

a + a ∈ (R/a)× ⇐⇒ ax + a = 1 + a (∃x ∈ R)

⇐⇒ ax − 1 ∈ a (∃x ∈ R)

⇐⇒ ax + y = 1 (∃x ∈ R, ∃y ∈ a)

⇐⇒ 1 ∈ (a) + a

⇐⇒ (a, a) = R

である．

定理 2.10. a1, . . ., an を Rのイデアル，a = a1 · · · an とし

i �= j =⇒ ai + aj = R

が成り立っていると仮定する．このとき，写像

(R/a)× −→ (R/a1)× × · · · × (R/an)×, x + a �−→ (x + a1, . . . , x + an)

は乗法群の同型写像である．

証明. Rの元 aについて

(a, a) = R =⇒ (a, a1) = · · · = (a, an) = R

であるから，写像 f は well-definedである (補題 2.9)．
f が群の準同型写像であることは明らかである．
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f の単射性は次のことから分かる：

f(a + a) = (1 + a1, . . . , 1 + an) =⇒ a ≡ 1 (mod ai) (i = 1, . . . , n)

=⇒ a ≡ 1 (mod a1 ∩ · · · ∩ an)

=⇒ a ≡ 1 (mod a) (∵補題 2.5)

(a1 + a1, . . . , an + an)を (R/a1)× × · · · × (R/an)× の元とする．定理 2.2より，Rの元 xで

x ≡ ai (mod ai) (i = 1, . . . , n)

を満たすものが存在する．(a, a1) = · · · = (a, an) = Rであるから，(x, a) = Rでなければならな

い．よって補題 2.9より x + a ∈ (R/a)×．しかも

f(x + a) = (a1 + a1, . . . , an + an)

が成り立つ．したがって f は全射である．
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