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1 はじめに

この文書では, 以下の定理の初等的な証明を紹介する. その証明のアイデアは, P. Erdös によっ
て発見されたものである.

［定理 1.1（Bertrand-Chebyshev の定理）］任意の整数 n ≥ 1 に対して, ある素数 p が存在

して,
n < p ≤ 2n

を満たす.

［注意 1.2］n ≥ 2 ならば, 2n は合成数なので, 上の不等式は n < p < 2n となる.

定理 1.1 は, 次の形で述べることもできる.

［定理 1.3（Bertrand-Chebyshev の定理）］任意の実数 x ≥ 1 に対して, ある素数 p が存在

して,
x < p ≤ 2x

を満たす.

［証明］定理 1.3 から 定理 1.1 が導かれるのは明らかなので, 定理 1.1 から定理 1.3 が導かれる
ことのみ示す.

x を超えない最大の整数を n とする. x ≥ 1 より, n ≥ 1 である. n に対して最初の形を適用す

ると,
n < p ≤ 2n ≤ 2x.

n < p は整数どうしの比較なので, n + 1 ≤ p. 一方, n の最大性から, x < n + 1. ゆえに,

x < n + 1 ≤ p

となる.

［注意 1.4］x > 1 ならば, 上の不等式は x < p < 2x となる. 実際, x ≥ 2 の場合は, 注意 1.2 で
述べたことを用いて, 上の証明と同様にして示せる. 1 < x < 2 の場合は, p = 2 とすればよい.

以下, いくつかの補題を準備したのち, 定理 1.1 を証明する.

2 素数の個数の評価

実数 x に対し, π(x) を x 以下の素数の個数とする. また, x を超えない最大の整数を bxc で表す.

［補題 2.1］任意の実数 x に対して, π(x) ≤ x

3
+ 2.
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［証明］まず, 任意の整数 k ≥ 3 に対して, π(k) ≤ k/3 + 2 となることを示す. k ≥ 25 なる任意の
整数 k に対して, 1 は素数でなく, 2, 3 の倍数は (2, 3 自身を除き) 合成数であり, 25 = 52 もまた

合成数であるから, それらを差し引けば,

π(k) ≤ k − 1 −
(⌊

k

2

⌋
− 1

)
−

(⌊
k

3

⌋
− 1

)
+

⌊
k

2 · 3

⌋
− 1

≤ k − 1 −
(

k

2
− 2

)
−

(
k

3
− 2

)
+

k

6
− 1 =

k

3
+ 2.

3 ≤ k ≤ 24 なるすべての k に対して不等式が成り立つことは直接確かめられる. 実際, 整数 k に

対して,

π(k) = 2 ⇐⇒ k = 3, 4,

π(k) = 3 ⇐⇒ k = 5, 6,

π(k) = 4 ⇐⇒ k = 7, 8, 9, 10,

π(k) = 5 ⇐⇒ k = 11, 12,

π(k) = 6 ⇐⇒ k = 13, 14, 15, 16,

π(k) = 7 ⇐⇒ k = 17, 18,

π(k) = 8 ⇐⇒ k = 19, 20, 21, 22,

π(k) = 9 ⇐⇒ k = 23, 24, 25, 26, 27, 28.

さらに, 任意の実数 x ≥ 3 に対して,

π(x) = π(bxc) ≤ bxc
3

+ 2 ≤ x

3
+ 2.

x < 2 のとき π(x) = 0 であり, 2 < x < 3 のとき π(x) = 1 であるから, これらの場合にも不等式
は成り立つ. (証明終)

3 二項係数の評価

n = 1, 2, . . . に対して,

cn =
(

2n

n

)
=

(2n)!
(n!)2

とおく. すると, 各 n に対して,

cn+1 = cn
(2n + 1)(2n + 2)

(n + 1)2

= cn
2(2n + 1)(n + 1)

(n + 1)2

= cn
2(2n + 1)

n + 1

が成り立つ.

［補題 3.1］任意の整数 n ≥ 2 に対して, cn < 22n−1.

4



［証明］n に関する数学的帰納法により証明する.
まず, c2 = 6 < 22·2−1 より, n = 2 のときは正しい.
n のとき正しいとすると, 帰納法の仮定から,

cn+1 = cn
2(2n + 1)

n + 1

< 22n−1 2(2n + 1)
n + 1

< 22n−1 · 2 · 2 = 22(n+1)−1

となり, n + 1 のときも正しい.

［補題 3.2］任意の整数 n ≥ 4 に対して,
22n

n
< cn.

［証明］n に関する数学的帰納法により証明する.
まず, c4 = 70 > 64 = 22·4/4 より, n = 4 のときは正しい.
n のとき正しいとすると, 帰納法の仮定から,

cn+1 = cn
2(2n + 1)

n + 1

>
22n

n
· 2(2n + 1)

n + 1

>
22n

n
· 2 · 2n

n + 1
=

22(n+1)

n + 1

となり, n + 1 のときも正しい.

4 二項係数の素因子の評価

実数 x に対し, x を超えない最大の整数を bxc で表す.

［補題 4.1］任意の x, y に対して,

0 ≤ bx + yc − bxc − byc ≤ 1

が成り立つ.

［証明］δ = x − bxc, δ′ = y − byc とおくと,

bx + yc =
⌊
bxc + δ + byc + δ′

⌋
= bxc + byc + bδ + δ′c.

移項すると,
bx + yc − bxc − byc = bδ + δ′c.

一方, 0 ≤ δ < 1, 0 ≤ δ′ < 1 であるから,

0 ≤ δ + δ′ < 2.
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ゆえに,
0 ≤ bδ + δ′c ≤ 1.

これより, 求める不等式が得られる.

p を素数, x を有理数とする. x 6= 0 のとき, 整数における素因子分解の一意性により,

x = pm a

b
, a, b ∈ Z, gcd(a, p) = gcd(b, p) = 1

となるような整数 m が (p と x に対して) 一意的に定まる. この m を ordp(x) で表す. また,
ordp(0) = ∞ と定める. ordp(x) を x の p 指数という.

［補題 4.2］p を素数, n を正の整数とする. このとき,

ordp(n!) =
blogp nc∑

i=0

⌊
n

pi

⌋
=

∞∑
i=0

⌊
n

pi

⌋
が成り立つ.

［証明］a = blogp nc とおく. i > a なる整数 i に対しては
⌊

n

pi

⌋
= 0 であるから,

∞∑
i=0

⌊
n

pi

⌋
=

a∑
i=0

⌊
n

pi

⌋
.

特に,
∞∑

i=0

⌊
n

pi

⌋
は有限和である.

n! の因数 1, 2, . . ., n の中で, p の倍数は

p, 2p, 3p, . . . ,

⌊
n

p

⌋
· p

の
⌊

n

p

⌋
個である. また, p2 の倍数は

p2, 2p2, 3p2, . . . ,

⌊
n

p2

⌋
· p2

の
⌊

n

p2

⌋
個である. 一般に, pi の倍数は

pi, 2pi, 3pi, . . . ,

⌊
n

pi

⌋
· pi

の
⌊

n

pi

⌋
個である.

すべての i (1 ≤ i ≤ a) について
⌊

n

pi

⌋
を加えると, n! の因数で p 指数が i なるものについては

ちょうど i 回重複して数えることになって,
a∑

i=0

⌊
n

pi

⌋
は n! の素因数として現れる p の個数に一致

する. これはまさに n! の p 指数である.
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［補題 4.3］p を素数, n を正の整数, k を 0 ≤ k ≤ n なる整数とする. 二項係数
(

n

k

)
の p 指数

について,

ordp

((
n

k

))
=

blogp nc∑
i=1

(⌊
n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋)

=
∞∑

i=1

(⌊
n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋)
.

ただし, a + 1 ≤ i を満たす全ての整数 i に対して,⌊
n

pi

⌋
=

⌊
k

pi

⌋
=

⌊
n − k

pi

⌋
= 0.

さらに, 各 i = 1, 2, . . . に対して,

0 ≤
⌊

n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋
≤ 1

が成り立つ.

［証明］a = blogp nc とおくと, a ≤ logp n < a + 1 であるから,

pa ≤ n < pa+1.

また, 0 ≤ k ≤ n かつ 0 ≤ n − k ≤ n であるから, a + 1 ≤ i を満たす全ての整数 i に対して,⌊
n

pi

⌋
=

⌊
k

pi

⌋
=

⌊
n − k

pi

⌋
= 0.

このとき, 補題 4.2 を用いて計算すると,

ordp

((
n

k

))
= ordp

(
n!

k!(n − k)!

)
= ordp(n!) − ordp(k!) − ordp((n − k)!)

=
∞∑

i=1

⌊
n

pi

⌋
−

∞∑
i=1

⌊
k

pi

⌋
−

∞∑
i=1

⌊
n − k

pi

⌋

=
a∑

i=1

⌊
n

pi

⌋
−

a∑
i=1

⌊
k

pi

⌋
−

a∑
i=1

⌊
n − k

pi

⌋

=
a∑

i=1

(⌊
n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋)

=
∞∑

i=1

(⌊
n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋)
.

さらに, 各 i = 1, 2, . . . に対して,
n

pi
=

k

pi
+

n − k

pi

であるから, 補題 4.1 より,

0 ≤
⌊

n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋
≤ 1.
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［補題 4.4］p を素数, n を正の整数, k を 0 ≤ k ≤ n なる整数とする. 二項係数
(

n

k

)
の p 指数

e(p) = ordp

((
n

k

))
について, pe(p) ≤ n が成り立つ.

［証明］a = blogp nc とおくと, 補題 4.3 より,

e(p) =
a∑

i=1

(⌊
n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋)
,

かつ

0 ≤
⌊

n

pi

⌋
−

⌊
k

pi

⌋
−

⌊
n − k

pi

⌋
≤ 1 (i = 1, 2, . . .).

ゆえに,

e(p) ≤
a∑

i=1

1 = a ≤ logp n.

したがって, pe(p) ≤ n となる.

［補題 4.5］p を素数, n を正の整数, k を 0 ≤ k ≤ n なる整数とする. このとき,
√

n < p ならば,

二項係数
(

n

k

)
の p 指数について,

0 ≤ ordp

((
n

k

))
≤ 1

が成り立つ.

［証明］
√

n < p であると仮定すると, n/p2 < 1 であるから, i ≥ 2 なる任意の整数 i に対して,⌊
n

pi

⌋
=

⌊
k

pi

⌋
=

⌊
n − k

pi

⌋
= 0.

これと補題 4.3 より,

ordp

((
n

k

))
=

⌊
n

p

⌋
−

⌊
k

p

⌋
−

⌊
n − k

p

⌋
,

かつ

0 ≤
⌊

n

p

⌋
−

⌊
k

p

⌋
−

⌊
n − k

p

⌋
≤ 1.

ゆえに, 不等式は成り立つ.

［補題 4.6］n を正の整数, p を素数とする. また, k を 0 ≤ k ≤ n なる整数とする. このとき,

n ≥ 3 かつ
2n

3
< p ≤ n ならば, p は二項係数

(
2n

n

)
を割らない奇素数である.
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［証明］n ≥ 3 かつ 2n/3 < p より, 2 < p. すなわち, p は奇素数である. さらに, 2n/3 < p ≤ n

より

p ≤ n <
4n

3
< 2p ≤ 2n < 3p

であるから, p は (
2n

n

)
=

(2n)!
(n!)2

の分子, 分母にちょうど 2 回ずつ現れて約分される. したがって, p は二項係数
(

2n

n

)
の素因子と

して現れることはない.

5 素数の積の評価

［補題 5.1］任意の整数 n ≥ 2 に対して,∏
n+1≤p≤2n

p < 22(n−1)

が成り立つ. ただし, 左辺は素数 p の積である.

［証明］2n は合成数であるから, ∏
n+1≤p≤2n

p =
∏

n+1≤p≤2n−1

p.

また, 等式
1
2

(
2n

n

)
=

(2n − 1)(2n − 2) · · · (n + 1)
(n − 1)(n − 2) · · · 1

の右辺において, n+1以上 2n−1以下の素数は分子に 1回ずつ現れるだけで約分されない. よって,∏
n+1≤p≤2n−1

p ≤ 1
2

(
2n

n

)
.

さらに, 補題 3.1 より, n ≥ 2 ならば
(

2n

n

)
< 22n−1 であるから,

1
2

(
2n

n

)
<

22n−1

2
= 22(n−1).

したがって, 求める不等式が得られる.

［補題 5.2］任意の整数 n ≥ 2 に対して, ∏
p≤n

p < 22n−1

が成り立つ. ただし, 左辺は素数 p の積である.
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［証明］n に関する数学的帰納法により証明する.
まず,

∏
p≤2

p = 2 < 22·2−1 であるから, n = 2 のときは正しい.

n より小さいときは正しいと仮定して, n のときを示す.
n が偶数の場合. n は合成数であるから,

∏
p≤n

p =
∏

p≤n−1

p となり, n のときも正しい.

n が奇数の場合. n = 2m − 1 (m ≥ 2) とおくと, 帰納法の仮定から,∏
p≤m

p < 22m−1.

他方, 補題 5.1 より, ∏
m+1≤p≤2m

p < 22(m−1).

ゆえに, ∏
p≤n

p =
∏

p≤2m−1

p =
∏

p≤2m

p

=
∏

p≤m

p
∏

m+1≤p≤2m

p

< 22m−1 · 22(m−1)

= 22(2m−1)−1 = 22n−1.

したがって, n のときも正しい.

6 微分法に関する補題

［補題 6.1］n を正の整数とする. このとき, x > en において, 関数
log x

n
√

x
は減少する.

［証明］f(x) =
log x

n
√

x
とおくと,

f ′(x) =
n − log x

nx n
√

x
.

x > en のとき, nx n
√

x > 0 であり,

n − log x < n − log en = 0

であるから, f ′(x) < 0. ゆえに, f(x) は減少する.

［注意 6.2］関数
log x

n
√

x
は x → ∞ のとき 0 に収束する. 実際, α = 1/n とおくと,

lim
x→∞

log x
n
√

x
= lim

x→∞

log x

xα
= lim

x→∞

log x

eα log x

=
1
α
· lim

x→∞

α log x

eα log x

=
1
α
· lim

y→∞

y

ey
= 0.
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7 定理 1.1 の証明

n = 1, 2, . . . に対して,

cn =
(

2n

n

)
=

(2n)!
(n!)2

とおく. cn | (2n)! であるから, cn の素因子はすべて 2n 以下である.
いま, n と 2n の間に素数がないと仮定し, n ≥ 5 であるとする. そのとき, cn の素因子はすべて

n 以下である. ところが, 補題 4.6 より, n ≥ 3 かつ素数 p が 2n/3 < p ≤ n を満たすならば p は

cn の素因子ではないので, cn の素因子はすべて 2n/3 以下である. 素数 p に対し, cn の p 指数を

e(p) とおく. すると,
cn =

∏
p≤2n/3

pe(p).

補題 4.5より,
√

2n < pならば e(p) ≤ 1. また, 補題 4.4より, すべての素数 pに対して pe(p) ≤ 2n.
よって, ∏

p≤2n/3

pe(p) =
∏

p≤
√

2n

pe(p)
∏

√
2n<p≤2n/3

p

≤
∏

p≤
√

2n

2n
∏

p≤2n/3

p.

ここで, n ≥ 5 ならば
√

2n < 2n/3 である. 補題 2.1 より
√

2n 以下の素数の個数は
√

2n/3 + 2 以
下であるから, ∏

p≤
√

2n

2n ≤ (2n)
√

2n/3+2.

また, 補題 5.2 を用いて素数の積を上から評価すると,∏
p≤2n/3

p =
∏

p≤b2n/3c

p < 22·b2n/3c−1 ≤ 22·2n/3−1.

したがって,
cn < (2n)

√
2n/3+2 · 22·2n/3−1.

さらに, 補題 3.2 より 22n/n < cn であるから,

22n

n
< (2n)

√
2n/3+2 · 22·2n/3−1.

これを整理すると,
2(2n−

√
2n−3)/3 < n(

√
2n+9)/3.

対数をとると,
(2n −

√
2n − 3) log 2 < (

√
2n + 9) log n.

移項すれば,
(
√

2n + 9) log n + (
√

2n + 3 − 2n) log 2 > 0.

さて, 上式の左辺において n を x に置き換えたものを g(x) とおく. すなわち,

g(x) = (
√

2x + 9) log x + (
√

2x + 3 − 2x) log 2.
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すると, ここまでの議論の結果は, n と 2n の間に素数がないという仮定のもとで,

n ≥ 5 =⇒ g(n) > 0

と書き表せる. さらに, f(x) = g(x)/x とおくと,

f(x) =
√

2 log x√
x

+
9 log x

x
+

√
2 log 2√

x
+

3 log 2
x

− 2 log 2.

補題 6.1 より, 関数 f(x) は x > e2 において減少する. 数値計算により f(e5) < 0 がわかるから,
x ≥ e5 において g(x)/x = f(x) < 0. よって, g(x) < 0.

n ≥ e5 のとき. もし仮に n と 2n の間に素数がなければ, g(n) > 0. これは矛盾である. した
がって, n ≥ e5 のとき, 定理 1.1 は成立しなければならない.

n < e5 のとき. n < p < 2n なる素数 p の存在は, 素数表を用いて確認すればよい.

8 簡単な応用例

Bertrand-Chebyshev の定理から, 以下の定理が直ちに証明される.

［定理 8.1］m, n を整数とし, m ≥ 2, n ≥ 2 を満たすとする. このとき, n の階乗は m 乗数で

ない.

［証明］背理法により証明する. n の階乗が m 乗数であると仮定する. そのとき, ある整数 s が

存在して, n! = sm となる. 一方, n/2 (≥ 1) に対して定理 1.3 を適用すると, ある素数 p が存在し

て, n/2 < p ≤ n を満たす. p は n! の素因子であり,

p | n! =⇒ p | sm =⇒ p | s =⇒ pm | sm

=⇒ pm−1

∣∣∣∣ sm

p
=⇒ pm−1

∣∣∣∣ n!
p

.

m ≥ 2 であることから, 2 から n までの整数の中に p の倍数になるものが p 自身のほかにも存在

しなければならない. それを a とおくと, ある整数 k ≥ 2 が存在して, a = kp. ゆえに,

2p ≤ kp = a ≤ n.

これは n/2 < p であることに反する. したがって, n の階乗は m 乗数でない.
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