
1 有限Abel群の指標

有限 Abel群 Gから複素数の乗法群 C× への準同型写像をGの指標という．

Gの指標全体からなる集合を Ĝで表すことにする．Ĝの 2つの元 χ, χ′ に対して，次のように
して積を定義する：

(χχ′)(x) = χ(x)χ′(x) (x ∈ G)

この積について Ĝは群をなす．単位元は，Gのすべての元 xを 1へと写す写像である．これをま
た 1と表すことにする．Ĝの元 χの逆元は，Gの元 xに対して χによる xの像の複素共役に対応

させる写像である．実際，これは準同型写像である．Ĝを一般に指標群と呼ぶ．

Gを位数 nの Abel群，χをGの指標とする．Gの任意の元 xに対して，χ(x)は 1の n乗根に

なる．実際

χ(x)n = χ(xn) = χ(1) = 1

である．とくに |χ(x)| = 1が成り立つ．

例 1.1. mを正の整数とする．環 Z/mZの単元全体のなす乗法群 (Z/mZ)×の指標を，mを法と
する指標という．

命題 1.2. H を Gの部分群とし，χをH の指標とする．このとき Gの指標 χ̃が存在して

χ̃(h) = χ(h) (∀h ∈ H)

が成り立つ．すなわち χの拡張が存在する．

証明. H の Gに関する指標 (G : H)についての数学的帰納法によって証明する．(G : H) = 1な
らば G = H だから証明すべきことはない．

(G : H) > 1とし，(G : H)より小さい指数については命題の主張が正しいと仮定する．xをH

には含まれない Gの元とし，xn ∈ H を満たす正の整数 nの中で最小のものを n0とする．

χをH の指標とし，t = χ(xn0)とおく．Cは代数的閉体だから t = wn0 を満たす C×の元 wが

存在する．H ′をH と xとによって生成される Gの部分群とする．H ′の任意の元 h′は

h′ = hxa (h ∈ H, 0 ≤ a < n0)

と一意的に表される (注意 1.3)．このときH ′の指標 χ′を

χ′(h′) = χ(h)wa

によって定義する．χ′はH ′の指標である (注意 1.4)．h′がH の元のとき a = 0であるから

χ′(h) = χ(h) (∀h ∈ H)

が成り立つ．(G : H ′) < (G : H)だから帰納法の仮定により Gの指標 χ̃が存在して

χ̃(h′) = χ′(h′) (∀h′ ∈ H ′)

ゆえに

χ̃(h) = χ(h) (∀h ∈ H)

となる．
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注意 1.3. 実際

h′ = hxa = h1x
a1 (h, h1 ∈ H, 0 ≤ a < n0, 0 ≤ a1 < n0)

と二通りに表されていたとすると

xa−a1 = h−1h1 ∈ H

n0の最小性から

a ≡ a1 (mod n0)

でなければならない．したがって a = a1．これより h = h1も導かれる．

注意 1.4. 実際，H ′の元

h′1 = h1x
a1 (h1 ∈ H, 0 ≤ a1 < n0)

h′2 = h2x
a2 (h2 ∈ H, 0 ≤ a2 < n0)

に対して，a1 + a2 < n0のとき

h′1h
′
2 = h1h2x

a1+a2 , 0 ≤ a1 + a2 < n0

であるから

χ(h′1h
′
2) = χ(h1h2)wa1+a2 = χ(h1)wa1χ(h2)wa2 = χ(h′1)χ(h′2)

である．一方，n0 ≤ a1 + a2のとき

h′1h
′
2 = h1h2x

a1+a2 = h1h2x
n0xa1+a2−n0 , 0 ≤ a1 + a2 − n0 < n0

であるから

χ(h′1h
′
2) = χ(h1h2x

n0)wa1+a2−n0

= χ(h1)χ(h2)wa1+a2 · t · w−n0

= χ(h1)wa1χ(h2)wa2

= χ(h′1)χ(h′2)

命題 1.5. Gを有限 Abel群，H を Gの部分群とし

H1 = {χ ∈ Ĝ | χ(h) = 1 (∀h ∈ H)}

とおく．このときH1は Ĝの部分群であって

(i) Ĝ/H1
∼= Ĥ

(ii) Ĝ/H ∼= H1

が成り立つ．

証明.
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(i) Gの指標をH へ制限することで定まる準同型写像

ρ : Ĝ −→ Ĥ, χ �−→ χ|H
を考える．命題 1.2より ρは全射である．また，Ker ρ = H1なので，準同型定理により

Ĝ/H1
∼= Ĥ

が得られる．とくにH1は Ĝの部分群である．

(ii) H1 の元 χに対して

χ′(xH) = χ(x) (x ∈ G)

によって G/H から C× への指標 χ′ を定義する．χ′は代表元 x元の取り方によらず定まる．

このとき準同型写像

H1 −→ Ĝ/H, χ �−→ χ′

が定まる．

χ′(xH) = 1 (∀x ∈ G) =⇒ χ(x) = 1 (∀x ∈ G) =⇒ x = 1

より上の準同型写像は単射である．また G/H の指標 ψに対して

χ(x) = ψ(xH) (x ∈ G)

によって Gの指標 χを定義すれば，χ′ = ψとなって上の準同型写像の全射性もいえる．

命題 1.6. 二つの有限 Abel群 G1, G2について

̂G1 ×G2
∼= Ĝ1 × Ĝ2

が成り立つ．

証明. G1 ×G2 の指標を χとし

χ1(x) = χ(x, 1) (x ∈ G)

χ2(x) = χ(1, y) (y ∈ G′)

によって Gの指標 χ1と G′の指標 χ2を定める．写像

ρ : ̂G1 ×G2 −→ Ĝ1 × Ĝ1, χ �−→ (χ1, χ2)

を考える．準同型性はすぐにわかる．

(χ1, χ2) = 1 =⇒ χ1 = 1, χ2 = 1

=⇒ χ(x, 1) = χ(1, y) = 1 (∀x ∈ G1, ∀y ∈ G2)

=⇒ χ(x, y) = χ(x, 1)χ(1, y) = 1 (∀(x, y) ∈ G1 ×G2)

より単射性がいえる．さらに G1の指標 χ1と G2の指標 χ2に対して

χ(x, y) = χ(x)χ′(y) (x ∈ G1, y ∈ G2)

によって G1 ×G2の指標 χを定めることができる．したがって ρは全射である．
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系 1.7. l個の有限 Abel群 G1, . . ., Gl について

̂G1 × · · · ×Gl
∼= Ĝ1 × · · · × Ĝl

が成り立つ．

証明. lについての数学的帰納法によって証明する．命題 1.6がまさに l = 2の場合である．
l ≥ 3について，l − 1のとき主張が正しいと仮定すると

̂G1 × · · · ×Gl
∼= ̂G1 × · · · ×Gl−1 × Ĝl

∼= Ĝ1 × · · · × Ĝl−1 × Ĝl

となり，lのときも正しい．

命題 1.8. Gを位数 nの巡回群とする．このとき

G ∼= Ĝ

が成り立つ．

証明. Gの生成元を gとする．Gは加法群 Z/nZと同型である．χを Gの指標とすると

χ(gk) = χ(g)k (∀g ∈ G, ∀k ∈ Z)

だから，χは値 χ(g)によって定まる．
ζ = e2π

√−1/n とおく．ζ は 1 の原始 n 乗根である．いま，整数 a に対して，G の指標 χa を

χa(g) = ζa によって定め，写像

ρ : Z −→ Ĝ, a �−→ χa

を考える．

χa+b = χaχb ⇐⇒ χa+b(g) = χa(g)χb(g) ⇐⇒ ζa+b = ζaζb

であるから，ρは準同型写像である．

また，χ(g)は 1の n乗根だから

χ(g) = ζa (∃a ∈ Z)

すなわち，Gの任意の指標 χは，ある a ∈ Zによって χ = χa となる．したがって ρは全射であ

る．さらに

χa = 1 ⇐⇒ χa(g) = ζa = 1 ⇐⇒ a ≡ 0 (mod n)

だから，kerρ = nZ．したがって準同型定理より同型

Z/nZ ∼= Ĝ

を得る．

例 1.9. pを素数とする．このとき乗法群 G = (Z/pZ)× は巡回群なので，指標群 Ĝもまた巡回

群である．巡回群の性質より，Ĝの位数 2の部分群はただ一つしかない．したがって Ĝの位数 2
の元はただ一つである．これを Legendre指標という．
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定理 1.10. Gを有限 Abel群とする．このとき

G ∼= Ĝ

が成り立つ．

証明. 有限 Abel群の基本定理により，Gは巡回群 G1, . . ., Gl に分解することができる：

G ∼= G1 × · · · ×Gl

一方，各巡回群について，Gi
∼= Ĝi だった (命題 1.8)ので

G ∼= G1 × · · · ×Gl
∼= Ĝ1 × · · · × Ĝl

さらに命題 1.7より
Ĝ1 × · · · × Ĝl

∼= ̂G1 × · · · ×Gl

以上より主張が証明される．

系 1.11. Gを有限 Abel群とする．このとき

|Ĝ| = |G|

が成り立つ．

証明. 定理 1.10を認めれば明らかである．しかしながら有限 Abel群の基本定理を経由しなくて
も上の主張は証明できる．

Gの位数についての数学的帰納法で証明する．n = 1のときは明らかである．n ≥ 2とし，H を
Gの巡回部分群であって，その位数が 1より大きいものとする．命題 1.5より

|Ĝ| = |Ĥ | · |Ĝ/H |

ここでH は巡回群だから，命題 1.8より

|H | = |Ĥ|

また |G/H | < |G|だから帰納法の仮定によって

|G/H | = |Ĝ/H|

以上より |G| = |H |を得る．

定理 1.12. Gを有限 Abel群とする．このとき自然な同型

G ∼= ̂̂
G

が成り立つ．

証明. Gの元 xに対して，写像

ρx : Ĝ −→ C×, χ −→ χ(x)
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を考える．ρは Ĝの指標である．そこで写像

ρ : G −→ ̂̂
G, x �−→ ρx

を考える．Gの元 x, yと Ĝの元 χに対して

ρxy(χ) = χ(xy) = χ(x)χ(y) = ρx(χ)ρy(χ)

であるから ρxy = ρxρy．よって ρは準同型写像である．

Gが単位群であるとき ρは明らかに全単射である．以下，Gは単位群ではないと仮定する．系

1.11より |G| = |Ĝ| = | ̂̂G|である．よってあとは ρの単射性をいえばよい．

xをGの 1とは異なる元とする．H を xによって生成されるGの巡回部分群とする．H の指標

χで χ(x) �= 1なるものが存在する．実際，命題 1.8より H ∼= Ĥ であり，一方，H の位数は 1よ
り大きいからである．命題 1.2より χは Gの指標に拡張できる．よって ρは単射である．

注意 1.13. 定理 1.10によって G ∼= Ĝであるから，「自然な」という言葉を除けば命題 1.12は明
らかである．すなわち，Gの生成元の取り方によらないで定まる同型写像が存在することが重要で

ある．例えば，命題 1.8において構成される同型写像は巡回群 Gの生成元 g に依存して定まるも

のであった．

命題 1.14. Gを位数 nの有限 Abel群とし，χをGの指標とする．このとき∑
x∈G

χ(x) =

{
n, χ = 1
0, χ �= 1

が成り立つ．

証明. χ = 1のとき，Gの任意の元 xに対して χ(x) = 1であるから∑
x∈G

χ(x) = n

は明らかである．

χ = 1のとき，Gの元 yで χ(y) �= 1となるものが存在する．このとき

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(xy) =
∑

z∈yG

χ(z) =
∑
z∈G

χ(z)

ゆえに

(χ(y) − 1)
∑
x∈G

χ(x) = 0

χ(y) �= 1だから，両辺 χ(y) − 1で割ると ∑
x∈G

χ(x) = 0

を得る．

系 1.15. Gを位数 nの有限 Abel群とし，xを Gの元とする．このとき∑
x∈ �G

χ(x) =

{
n, x = 1
0, x �= 1

が成り立つ．

証明. G ∼= ̂̂
Gに注意して，命題 1.14において Gの代わりに Ĝを考えればよい．
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