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1 連分数

連分数とは,

a0 +
b1

a1 +
b2

a2 +
b3

. . .

+
bn−1

an−1 +
bn

an

(1)

という形の式である. 記述を簡単にするため, 式 (1)を次のような省略形で表す：

a0 +
b1

a1 +
b2

a2 + · · · +
bn

an
. (2)

［定理 1.1］a0が整数であり, a1, . . ., an, b1, b2, . . ., bn が 0でない整数であるとき, 連分数 (1)は

有理数である.

［証明］nに関する数学的帰納法によって証明する. まず,

a0 +
b1

a1
=

a0a1 + b1

a1

は有理数である.

n = k − 1のとき, 式 (1)の形の連分数がすべて有理数であると仮定する.

bk−1

ak−1 +
bk

ak

=
akbk−1

ak−1ak + bk

なので,

a0 +
b1

a1 +
b2

a2 + · · · +
bk−2

ak−2 +
bk−1

ak−1 +
bk

ak

= a0 +
b1

a1 +
b2

a2 + · · · +
bk−2

ak−2 +
akbk−1

ak−1ak + bk
.

すなわち, n = kとしたときの式 (1)は n = k − 1のときの形に変形できる. ゆえに n = kのとき

も連分数 (1)は有理数である.

以上より, すべての番号 nに対して, 連分数 (1)が有理数であることが示された.
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以後, 分子がすべて 1の連分数

a0 +
1

a1 +
1

a2 +
1

. . .

+
1

an−1 +
1

an

(3)

を扱う. これを省略形で表すと

a0 +
1
a1 +

1
a2 + · · · +

1
an

となるが, これ以外にも

[a0, a1, a2, . . . , an]

という記号で表すこともある1).

各々の a0, a1, a2, . . ., an を連分数 (3)の部分商という.

記号の意味を考えれば,

[a0, a1, a2, . . . , an] = [a0, [a1, a2, . . . , an]]

= [a0, a1, [a2, . . . , an]]

= · · · · · ·

= [a0, a1, a2, . . . , an−2, [an−1, an]]

が成り立つことがわかる.

連分数 [a0, a1, a2, . . ., an]が定義されるためには, 分母が 0にならないことが必要である. すな

わち, 条件

[a1, a2, . . . , an] 6= 0, [a2, . . . , an] 6= 0, . . . , [an−1, an] 6= 0, an 6= 0 (4)

を満たすことが必要である. 逆に, この条件を満たしていれば, 連分数 [a0, a1, a2, . . ., an]を定義

することができる.

少なくとも, a1, a2, . . ., anがすべて正の実数であるとき, (4)は満たされるから, 連分数 [a0, a1,

a2, . . ., an]が定義できる.

a0 が整数で, a1, a2, . . ., an が正の整数であるとき, 連分数 [a0, a1, a2, . . ., an]を単純連分数と

いう.

1)高木 [1] 第 2 章で用いられている記号 [k0, k1, . . ., kn] が表しているものと, この文書で用いる記号 [a0, a1, . . ., an]

が表しているものとは, 一般には一致しないので注意せよ.
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a1, a2, . . ., an−1 のうちのいくつかが 0のとき, 連分数はより簡単な形になる. 例えば n = 3,

a1 = 0のとき,

a0 +
1

a1 +
1

a2 +
1

a3

= a0 +
1

1

a2 +
1

a3

= a0 + a2 +
1
a3

となる.

［例 1.2］

[1, 2, 3] = 1 +
1

2 +
1

3

= 1 +
1

7

3

= 1 +
3
7

=
10
7

.

［例 1.3］

[−4, 3, 2] = −4 +
1

3 +
1

2

= −4 +
1

7

2

= −4 +
2
7

= −26
7

.

［定理 1.4］n ≥ 0を整数とする. a0 は整数, a1, a2, . . ., an は正の整数であるとする. このとき,

連分数 [a0, a1, a2, . . ., an]が整数ならば, 「n = 0」または「n = 1, a1 = 1」である.

［証明］n ≥ 2と仮定する.

s = a1 +
1
a2 + · · · +

1
an

とおくと,

[a0, a1, . . . , an] = a0 +
1
s

(5)

である. ところが, n ≥ 2のとき, s > 1となるので, 式 (5)の右辺は整数ではない. これは矛盾であ

る. したがって, n ≤ 1でなければならない.

よって, もし n 6= 0であれば, n = 1であり,

[a0, a1] = a0 +
1
a1

かつ左辺は整数である. もし a1 > 1ならば, 右辺は整数ではない. これは矛盾である. したがって,

n 6= 0ならば, n = 1かつ a1 = 1でなければならない.

［補題 1.5］a, bを整数, α, βを実数とし, 0 < α < 1, 0 < β < 1とする. このとき, a + α = b + β

ならば, a = bかつ α = β が成り立つ.
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［証明］0 < α < 1, 0 < β < 1より,

−1 < β − 1 < β − α < 1 − α < 1.

a + α = b + β より, a − b = β − αだから,

−1 < a − b < 1.

a − bは整数だから, a − b = 0でなければならない. 同時に, β − α = 0も得られる.

［定理 1.6］m, nを負でない整数とし, n ≤ mであるとする. a0, b0 は整数, a1, a2, . . ., an, b1,

b2, . . ., bm は正の整数であるとする. このとき,

[a0, a1, . . . , an] = [b0, b1, . . . , bm]

ならば, 次のどちらか一方が成り立つ.

(i) m = n, a0 = b0, a1 = b1, . . ., an = bn

(ii) m = n + 1, a0 = b0, a1 = b1, . . ., an = bn + 1, bn+1 = 1

［証明］0 ≤ i ≤ n − 1なる正の整数 iに対して,

si = ai+1 +
1

ai+2 + · · · +
1
an

ti = bi+1 +
1

ai+2 + · · · +
1

bm

とおく.

1 ≤ i ≤ n − 2のときは, si > 1, ti > 1なので, 補題 1.5より

ai +
1
si

= bi +
1
ti

=⇒ ai = bi

となる. よって,

a0 = b0, a1 = b1, a2 = b2, . . . , an−2 = bn−2

が次々といえる. また,

an−1 +
1
an

= bn−1 +
1

tn−1
(6)

が成り立つ.

an > 1のとき, 式 (6)の左辺は整数ではないので, tn−1 > 1でなければならない. よって補題 1.5

より

an−1 = bn−1, an = tn−1

となる. an は整数なので, 定理 1.4より, 「m = n, an = bn」または「m = n + 1, an = bn + 1,

bn+1 = 1」でなければならない.

an = 1のとき, 式 (6)の左辺は整数なので, tn−1 = 1でなければならない. もしm ≥ n + 1なら

ば tn−1 > 1となってしまうので, m = n, bn = 1でなければならない.
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［定理 1.7］m, nを負でない整数とし, n ≤ mであるとする. a0, b0 は整数, a1, a2, . . ., an, b1,

b2, . . ., bm は正の整数であるとする. また, s, tを 1より大きい実数とする. このとき,

[a0, a1, . . . , an, s] = [b0, b1, . . . , bm, t]

ならば,

a0 = b0, a1 = b1, . . . , an = bn

かつ

s = [bn+1, bn+2, . . . , bm, t]

である. 特に, m = nならば s = tである.

［証明］0 ≤ i ≤ n − 1なる正の整数 iに対して,

si = ai+1 +
1

ai+2 + · · · +
1
an +

1
s

ti = bi+1 +
1

ai+2 + · · · +
1

bm +
1
t

とおくと, si > 1, ti > 1なので, 補題 1.5より

ai +
1
si

= bi +
1
ti

=⇒ ai = bi, si = ti

となる. よって,

a0 = b0, a1 = b1, a2 = b2, . . . , an−1 = bn−1

が次々といえる. また,

an +
1
s

= bn +
1

bn+1 + · · · +
1

bm +
1
t

が成り立つ. s > 1, t > 1だから, 再び補題 1.5が適用できて, an = bn かつ

s = bn+1 +
1

bn+2 + · · · +
1

bm +
1
t

となる. 特に, m = nならば s = tである.

2 数列 (pn), (qn)

実数列 (an)に対して, 実数列 (pn), (qn)を, 漸化式

pn = anpn−1 + pn−2, p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2, q−1 = 0, q−2 = 1
(7)

によって定義する.

n ≥ 1を整数とする. a1, a2, . . ., anが整数であれば, p1, p2, . . ., pnおよび q1, q2, . . ., qnもまた

整数であることが, pn, qn の定め方からわかる.
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［定理 2.1］すべての番号 n ≥ 1に対して an ≥ 1であるとする. このとき, すべての番号 n ≥ 1

に対して

(i) n ≤ qn

(ii) qn < qn+1

が成り立つ.

［証明］(i) nに関する数学的帰納法により証明する. まず, q−2 = 1, q−1 = 0より,

q0 = a0q−1 + q−2 = 1.

これと a1 ≥ 1, a2 ≥ 1より,

q1 = a1q0 + q−1 = a1 ≥ 1,

q2 = a2q1 + q0 = a1a2 + 1 ≥ 2.

n ≥ 3のとき, 1 ≤ k < nなるすべての番号 kについて k ≤ qk であると仮定すると, an ≥ 1より

qn = anqn−1 + qn−2 ≥ qn−1 + qn−2

≥ (n − 1) + (n − 2) = 2n − 3

≥ n. (8)

以上より, すべての番号 n ≥ 1に対して n ≤ qn が成り立つことが示された.

(ii) まず,

q1 = a1q0 + q−1 = a1,

q2 = a2q1 + q0 = a1a2 + 1.

a1 ≥ 1, a2 ≥ 1より, q1 < q2 が成り立つ.

n ≥ 3のとき, an ≥ 1であり, (i)より n − 2 ≤ qn−2 であるから,

qn = anqn−1 + qn−2 ≥ qn−1 + (n − 2) > qn−1.

［注意 2.2］1 = q0 ≤ q1なので, すべての番号 n ≥ 0に対して qn ≤ qn+1が成り立つ. また, n ≥ 4

のとき (8)において 2n − 3 > nだから, すべての番号 n ≥ 4に対して n < qn が成り立つ.

［定理 2.3］a0 ≥ 1とし, すべての番号 n ≥ 1に対して an ≥ 1であるとする. このとき, すべての

番号 n ≥ 0に対して
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(i) n < pn

(ii) pn < pn+1

が成り立つ.

［証明］(i) nに関する数学的帰納法により証明する. まず, p−2 = 0, p−1 = 1より,

p0 = a0p−1 + p−2 = a0 ≥ 1.

これと a1 ≥ 1, a2 ≥ 1より,

p1 = a1p0 + p−1 = a1a0 + 1 ≥ 2.

n ≥ 2のとき, 1 ≤ k < nなるすべての番号 kについて k < pk であると仮定すると, an ≥ 1より

pn = anpn−1 + pn−2 ≥ pn−1 + pn−2

> (n − 1) + (n − 2) = 2n − 3

≥ n.

以上より, すべての整数 n ≥ 0に対して n < pn が成り立つことが示された.

(ii) まず, p0 = a0, p1 = a1a0 + 1であり, a1 ≥ 1だから, p0 < p1 が成り立つ.

n ≥ 2のとき, an ≥ 1であり, (ii)より n − 2 < pn−2 であるから,

pn = anpn−1 + pn−2 > pn−1 + (n − 2) > pn−1.

［定理 2.4］すべての番号 n ≥ 1に対して an ≥ 1であるとする. このとき,

lim
n→∞

qn = ∞.

さらに a0 ≥ 1という仮定を追加すれば,

lim
n→∞

pn = ∞.

［証明］定理 2.1より, すべての番号 n ≥ 1に対して qn ≥ nが成り立つ. ゆえに n → ∞のとき

qn → ∞である.

さらに a0 ≥ 1であれば, 定理 2.3より, すべての番号 n ≥ 1に対して pn ≥ nが成り立つ. ゆえ

に n → ∞のとき pn → ∞である.

［定理 2.5］すべての番号 n ≥ −2に対して,

(i) pnqn+1 − pn+1qn = (−1)n
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(ii) pn, qn が整数ならば gcd(pn, qn) = 1

が成り立つ.

［証明］(i) nに関する数学的帰納法によって証明する. まず,

p−1q−2 − p−2q−1 = 1

なので, n = −2のとき (i)は正しい.

n = k − 1のとき (i)が正しいと仮定すると,

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= −(pkqk−1 − pk−1qk) = −(−1)k−1 = (−1)k.

よって n = kのときも (i)が成り立つ.

以上より, すべての番号 nに対して (i)は正しい.

(ii) もし仮に g = gcd(pn, qn) > 1であれば, (i)の左辺は gの倍数なので, 右辺も gの倍数でな

ければならない. ところが, 右辺は gの倍数ではないので, 矛盾である. したがって g = 1でなけれ

ばならない.

［定理 2.6］すべての番号 n ≥ 1に対して an > 0であるとする. このとき,

p0

q0
<

p2

q2
< · · · <

p2k

q2k
<

p2k+2

q2k+2
< · · · <

p2k+3

q2k+3
<

p2k+1

q2k+1
< · · · <

p3

q3
<

p1

q1

が成り立つ. ただし, kは負でない整数である.

［証明］
pn+2

qn+2
− pn

qn
=

pn+2qn − pnqn+2

qnqn+2
.

定理 2.5より

pn+1qn − pnqn+1 = (−1)n (9)

であるから,

pn+2qn − pnqn+2 = (an+2pn+1 + pn)qn − pn(an+2qn+1 + qn)

= (pn+1qn − pnqn+1)an+2

= (−1)nan+2.

ゆえに
pn+2

qn+2
− pn

qn
=

(−1)nan+2

qnqn+2
.
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qn > 0, qn+2 > 0, an+2 > 0なので,

nが偶数 =⇒ pn+2

qn+2
− pn

qn
> 0 =⇒ pn+2

qn+2
>

pn

qn
, (10)

nが奇数 =⇒ pn+2

qn+2
− pn

qn
< 0 =⇒ pn+2

qn+2
<

pn

qn
(11)

である. つまり, 番号 nが偶数の場合は大きい番号ほど pn/qn は大きくなり, 番号 nが奇数の場合

は大きい番号ほど pn/qn は小さくなる.

また, 式 (9)より
pn+1

qn+1
− pn

qn
=

pn+1qn − pnqn+1

qnqn+1
=

(−1)n

qnqn+1
.

qn > 0, qn+1 > 0なので,

nが偶数 =⇒ pn+1

qn+1
− pn

qn
> 0 =⇒ pn+1

qn+1
>

pn

qn
, (12)

nが奇数 =⇒ pn+1

qn+1
− pn

qn
< 0 =⇒ pn+1

qn+1
<

pn

qn
(13)

である.

したがって, 任意の偶数 u ≥ 0と任意の奇数 v ≥ 1に対して, u < vのときは, u < v + 1なので,

式 (10)と式 (13)より
pu

qu
<

pv+1

qv+1
<

pv

qv

であり, v < uのときは, v < u + 1なので, 式 (11)と式 (12)より

pu

qu
<

pu+1

qu+1
<

pv

qv

が成り立つ. つまり, 奇数番号のものはすべての偶数番号のものより大きく, 逆に偶数番号のもの

はすべての奇数番号のものより小さい.

以上で定理が証明された.

3 近似分数

(an)を整数列とし, 数列 (pn), (qn)は (an)に対して §2の漸化式 (7)によって定まるものとする.

［定理 3.1］任意の整数 n ≥ 0と, 0でも負の有理数でもない任意の実数 tに対して,

[a0, a1, . . . , an−1, t] =
tpn−1 + pn−2

tqn−1 + qn−2
(14)

が成り立つ. ただし, n ≥ 2のとき, a1, a2, . . ., an−1 はすべて正であるとする.

［証明］nに関する数学的帰納法によって証明する.

p−1 = 1, p−2 = 0, q−1 = 0, q−2 = 1だから,

[t] =
tp−1 + p−2

tq−1 + q−2
.
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また,

p0 = a0p−1 + p−2 = a0,

q0 = a0q−1 + q−2 = 1

なので,

[a0, t] = a0 +
1
t

=
ta0 + 1

t
=

tp0 + p−1

tq0 + q−1
.

よって, n = 0, 1のとき (14)は正しい. また

一般の整数 n ≥ 2について, n − 1のとき (14)が正しいと仮定すると, 定理 3.1より,

[a0, a1, . . . , an−2, an−1, t] =
[
a0, a1, . . . , an−2, an−1 +

1
t

]
=

(an−1 + 1/t)pn−2 + pn−3

(an−1 + 1/t)qn−2 + qn−3
.

さらに計算すると,

(an−1 + 1/t)pn−2 + pn−3

(an−1 + 1/t)qn−2 + qn−3
=

(tan−1 + 1)pn−2 + tpn−3

(tan−1 + 1)qn−2 + tqn−3

=
t(an−1pn−2 + pn−3) + pn−2

t(an−1qn−2 + qn−3) + qn−2

=
tpn−1 + pn−2

tqn−1 + qn−2
.

ゆえに, nのときも (14)が成り立つ.

最後に, tや a1, a2, . . ., anについての定理の仮定により, 計算の途中で現れた分数の分母は決し

て 0にならないことに注意せよ.

以上より, すべての番号 n ≥ 0に対して (14)が正しいことが示された.

［定理 3.2］任意の整数 n ≥ 0と, 0でも負の有理数でもない任意の実数 s, tに対して,

[a0, a1, . . . , an−1, s] − [a0, a1, . . . , an−1, t]

=
(−1)n(s − t)

(sqn−1 + qn−2)(tqn−1 + qn−2)
.

ただし, n ≥ 2のとき, a1, a2, . . ., an−1 はすべて正であるとする.

［証明］定理 2.5より,

pn−1qn−2 − pn−2qn−1 = (−1)n−2 = (−1)n.
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よって, 定理 3.1より,

[a0, a1, . . . , an−1, s] − [a0, a1, . . . , an−1, t]

=
spn−1 + pn−2

sqn−1 + qn−2
− tpn−1 + pn−2

tqn−1 + qn−2

=
(spn−1 + pn−2)(tqn−1 + qn−2) − (sqn−1 + qn−2)(tpn−1 + pn−2)

(sqn−1 + qn−2)(tqn−1 + qn−2)

=

stpn−1qn−1 + spn−1qn−2 + tpn−2qn−1 + pn−2qn−2

−(stpn−1qn−1 + tpn−1qn−2 + spn−2qn−1 + pn−2qn−2)

(sqn−1 + qn−2)(tqn−1 + qn−2)

=
(s − t)(pn−1qn−2 − pn−2qn−1)
(sqn−1 + qn−2)(tqn−1 + qn−2)

=
(−1)n(s − t)

(sqn−1 + qn−2)(tqn−1 + qn−2)
.

［定理 3.3］n ≥ 0を整数とする. n ≥ 2のとき, a1, a2, . . ., an−1はすべて正であるとする. また,

s, tを正の実数とする.

(a)

[a0, a1, . . . , an−1, s] = [a0, a1, . . . , an−1, t] ⇐⇒ s = t.

(b) nが偶数のとき,

[a0, a1, . . . , an−1, s] < [a0, a1, . . . , an−1, t] ⇐⇒ s < t.

(c) nが奇数のとき,

[a0, a1, . . . , an−1, s] < [a0, a1, . . . , an−1, t] ⇐⇒ s > t.

［証明］定理 3.2から直ちに導かれる.

［定理 3.4］n ≥ 0を整数とする. また, n ≥ 1のとき, a1, a2, . . ., anはすべて正であるとする. こ

のとき,

[a0, a1, . . . , an] =
pn

qn

が成り立つ.

［証明］n ≥ 1のとき, 定理 3.1において, t = an を代入すれば,

[a0, a1, . . . , an] =
anpn−1 + pn−2

anqn−1 + qn−2
=

pn

qn

13



が成り立つ.

また, p−1 = 1, p−2 = 0, q−1 = 0, q−2 = 1であり,

p0 = a0p−1 + p−2 = a0,

q0 = a0q−1 + q−2 = 1

なので,
p0

q0
= a0 = [a0]

である. よって n = 0のときも定理が成り立つ.

0 ≤ n ≤ mとするとき, 連分数 ω = [a0, a1, a2, . . . , am]に対して, 連分数

[a0, a1, a2, . . . , an] =
pn

qn

を ωの n次の近似分数という. gcd(pn, qn) = 1かつ qn > 0なので, pn/qn は既約分数である.

［定理 3.5］すべての番号 n ≥ 1に対して an ≥ 1であるとする.

cn = [a0, a1, a2, . . . , an], n = 0, 1, 2, . . .

とおくことによって連分数の列 (cn)を定めると, ある実数 ωが存在して

lim
n→∞

cn = ω

が成り立つ.

［証明］定理 3.4より, すべての番号 n ≥ 0に対して

cn = [a0, a1, a2, . . . , an] =
pn

qn

が成り立つ.

m, nを正の整数とし, n ≤ mとする. 定理 2.6より,∣∣∣∣pm

qm
− pn

qn

∣∣∣∣ ≤ ∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣.
また, 定理 2.5より

pn+1

qn+1
− pn

qn
=

pn+1qn − pnqn+1

qnqn+1
=

(−1)n

qnqn+1
.

ゆえに, ∣∣∣∣pm

qm
− pn

qn

∣∣∣∣ ≤ (−1)n

qnqn+1
.

定理 2.1より, qn ≥ n, qn+1 ≥ n + 1であるから,

(−1)n

qnqn+1
≤ 1

n(n + 1)
≤ 1

n2
.

14



ゆえに, ∣∣∣∣pm

qm
− pn

qn

∣∣∣∣ ≤ 1
n2

.

実数 ε > 0を任意にとる. δ = 1/
√

εとおくと, n > δを満たすすべての番号 nに対して

1
n2

<
1
δ2

= ε

となる. ゆえに

m ≥ n > δ =⇒
∣∣∣∣pm

qm
− pn

qn

∣∣∣∣ < ε

が成り立つ. よって数列 (cn) はコーシー列である. 実数の完備性から, ある実数 ω が存在して,

limn→∞ cn = ωとなる.

［補題 3.6］f(x)を区間 [a, ∞)で連続な実数値関数とし, limx→∞ f(x) = lであるとする.

(i) f(a) < lであるとし, cを f(a) < c < lなる任意の実数とするとき, f(ξ) = cかつ ξ > aとな

るよう実数 ξが存在する.

(ii) l < f(a)であるとし, cを l < c < f(a)なる任意の実数とするとき, f(ξ) = cかつ ξ > aとな

るよう実数 ξが存在する.

［証明］(i) ある実数 bが存在して a < bかつ l ≤ f(b)であるとき, 閉区間 [a, b]に対して中間値

の定理を適用すると, ある実数 ξが存在して f(ξ) = cかつ a < ξ < bが成り立つ.

x > aを満たす任意の実数 xに対して f(x) < lであるとき, 仮定より limx→∞ f(x) = lなので,

任意の実数 ε > 0に対して, ある実数 δが存在して, 任意の実数 xに対して

x > δ =⇒ |f(x) − l | < ε.

ε = (l − c)/2とおくと,

x > δ =⇒ l − f(x) <
l − c

2
=⇒ f(x) >

l + c

2
> c.

t = max{δ, a}とおけば, f(a) < c < f(t)となる. 閉区間 [a, t]に対して中間値の定理を適用する

と, ある実数 ξが存在して f(ξ) = cかつ a < ξ < tが成り立つ.

(ii) (i)と同様にして証明できる.

［定理 3.7］n ≥ 0を整数とする. n ≥ 1のとき, a1, a2, . . ., anはすべて正であるとする. また, ω

を実数とする.

(i)

[a0, a1, . . . , an, an+1] < ω < [a0, a1, . . . , an]

ならば, ある実数 sが存在して, s > an+1 かつ

ω = [a0, a1, . . . , an, s]

が成り立つ.
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(ii)

[a0, a1, . . . , an] < ω < [a0, a1, . . . , an, an+1]

ならば, ある実数 sが存在して, s > an+1 かつ

ω = [a0, a1, . . . , an, s]

が成り立つ.

［証明］f(x) = [a0, a1, . . ., an, x]とおく. f(x)は aj + x (j = 0, 1, . . ., n)と 1/xとの合成によっ

て構成されるから, 区間 (0, ∞)における実数値連続関数である. さて,

f(an+1) = [a0, a1, . . . , an, an+1].

また, f(x) = [a0, a1, . . ., an−1, an + 1/x]だから,

lim
x→∞

f(x) = [a0, a1, . . . , an].

したがって, ある実数 sが存在して s > an+1 かつ ω = [a0, a1, . . . , an, s]となることが, 求める定理

の (i), (ii)それぞれの場合に応じて, 補題 3.6 (i), (ii)よりいえる.

4 連分数展開

ωを実数とする. ωが整数でないとき, ωを超えない最大の整数を a0 とすると,

ω = a0 +
1
ω1

(15)

を満たす ω1 が定まる. ω1 は

ω1 =
1

ω − a0
> 1

であるような実数である.

同様に, ω1 が整数でないとき, ω1 を超えない最大の整数を a1 とすると,

ω1 = a1 +
1
ω2

(16)

を満たす ω2 が定まる. ω2 は

ω2 =
1

ω1 − a1
> 1

であるような実数である.

式 (16)を式 (15)に代入すれば,

ω = a0 +
1
a1 +

1
ω2

= [a0, a1, ω2]
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となる. 同じような計算を繰り返せば, 正の整数の列 a1, a2, . . ., an−1 と, 実数 ωn > 1と, 関係式

ω = a0 +
1
a1 +

1
a2 + · · · +

1
an−1 +

1
ωn

= [a0, a1, a2, . . . , an−1, ωn] (17)

が得られる.

各番号 n ≥ 0に対する式 (17)を, ωの連分数展開という. また, ωn を連分数展開 (17)の n次の

全商という.

ωが整数のとき, a0 = qとすれば,

q = a0 = [a0].

これが整数の場合の連分数展開である.

ωが有理数のとき, ある整数m, nが存在して, ω = m/n, n > 0と表すことができる. ωが整数

ではないとすると, ユークリッドの互除法によって,

m = a0n + r1, 0 < r1 < n,

n = a1r1 + r2, 0 < r2 < r1,

r1 = a2r2 + r3, 0 < r3 < r2,

· · · · · · ,

rn−1 = anrn + rn+1, 0 < rn+1 < rn,

rn = an+1rn+1

となるような整数 a0, a1, . . ., an, an+1, r1, r2, . . ., rn, rn+1が存在する. ここで, n, r1, r2, . . ., rn

はすべて正なので, a1, a2, . . ., an も正である. 上の式を書き直せば,

m

n
= a0 +

r1

n
= a0 +

1

n/r1
,

n

r1
= a1 +

r2

r1
= a1 +

1

r1/r2
,

r1

r2
= a2 +

r3

r2
= a2 +

1

r2/r3
,

· · · · · · ,

rn−1

rn
= an +

rn+1

rn
= an +

1

rn/rn+1
,

rn

rn+1
= an+1

となる. したがって, 下から上に式を次々に代入していけば,

ω =
m

n
= a0 +

1
a1 +

1
a2 + · · · +

1
an+1

= [a0, a1, . . . , an+1]

が得られる. よって, 次の定理が成り立つ.
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［定理 4.1］任意の有理数 qに対して, ある整数 a0 と正の整数 a1, a2, . . ., an, an+1 が存在して

q = [a0, a1, . . . , an, an+1]

が成り立つ.

今の場合, ω1 = n/r1, ω2 = r1/r2, ω3 = r2/r3, . . ., ωn = rn−1/rn, ωn+1 = rn/rn+1 である. し

たがって, ωが有理数の場合, 連分数展開は必ず有限で止まることがわかる.

［例 4.2］

10
7

= 1 +
3
7

= 1 +
1

7

3

= 1 +
1

2 +
1

3

= [1, 2, 3].

［例 4.3］

−26
7

= −4 +
2
7

= 1 +
1

7

2

= −4 +
1

3 +
1

2

= [−4, 3, 2].

［例 4.4］

3.14 = 3 +
14
100

= 3 +
7
50

= 3 +
1

50

7

= 3 +
1

7 +
1

7

= [3, 7, 7].

ωが無理数の場合, もし仮にある番号 nについて ωn+1 が整数になるとすると,

ω = a0 +
1
a1 +

1
a2 + · · · +

1
an +

1
ωn+1

が成り立つので, 定理 1.1に反する. ゆえに, 任意の番号 n ≥ 1に対して ωn は整数にはならない.

したがって, ωが無理数の場合, ωの連分数展開は無限に続く.

［例 4.5（
√

2の連分数展開）］

√
2 = 1 + (

√
2 − 1) = 1 +

1√
2 + 1

= 1 +
1

2 + (
√

2 − 1)
= 1 +

1

2 +
1

√
2 + 1

= · · · · · ·
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［例 4.6（
√

3の連分数展開）］

√
3 = 1 + (

√
3 − 1) = 1 +

2√
3 + 1

= 1 +
1

√
3 + 1

2

= 1 +
1

1 +

√
3 − 1

2

= 1 +
1

1 +
1

√
3 + 1

= 1 +
1

1 +
1

2 + (
√

3 − 1)

= · · · · · ·

［定理 4.7］ω を実数とする. ある整数列 (an)が存在して, すべての番号 n ≥ 1に対して an ≥ 1

であり, 数列 (cn)を

cn = [a0, a1, a2, . . . , an] (n = 0, 1, 2, . . .)

によって定めるとき,

lim
n→∞

cn = ω

が成り立つとする. このとき, ωは無理数である.

［証明］もし仮に ωが有理数ならば, 定理 4.1より, ある整数 b0 と正の整数 b1, b2, . . ., bm が存在

して

ω = [b0, b1, . . . , bm]

が成り立つ.

limn→∞ cn = ωのとき, 偶数番号のみの列 (c2k)と奇数番号のみの列 (c2k+1)は (cn)の部分列で

あり, これらもまた ωに収束する. 定理 2.6より, 任意の整数 k ≥ 0に対して

c2k < ω < c2k+1

でなければならない. 定理 3.7 より, n > m を満たす番号 n に対して, ある実数 s が存在して,

s > an+1 ≥ 1かつ

[b0, b1, . . . , bm] = [a0, a1, . . . , an, s]

となる. したがって定理 1.7より

bm = [am, am+1, . . . , an, s]

が得られる. ところが, bmは整数であると同時に [am, am+1, . . ., an, s]は整数ではない. これは矛

盾である. したがって ωは無理数でなければならない.
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5 無理数の連分数による近似

この節では, ωを無理数とし,

ω = [a0, a1, . . . , an−1, ωn] (n = 0, 1, 2, . . .)

を ωの連分数展開とする. ωの連分数展開によって整数列 (an)が定まる. このとき, すべての番号

n ≥ 1に対して an ≥ 1, ωn > 1である. 数列 (an)に対して, 数列 (pn), (qn)を, 漸化式

pn = anpn−1 + pn−2, p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2, q−1 = 0, q−2 = 1

によって定義する. 定理 3.4より,

[a0, a1, . . . , an] =
pn

qn

が成り立つ. pn/qn を ωの n次の近似分数という.

［定理 5.1］すべての番号 n ≥ 0に対して

ω − pn

qn
=

(−1)n

qn(qnωn+1 + qn−1)
(18)

が成り立つ.

［証明］定理 3.1より,

[a0, a1, . . . , an, ωn+1] =
ωn+1pn + pn−1

ωn+1qn + qn−1

である. よって

ω − pn

qn
= [a0, a1, . . . , an, ωn+1] −

pn

qn

=
ωn+1pn + pn−1

ωn+1qn + qn−1
− pn

qn

=
qn(ωn+1pn + pn−1) − pn(ωn+1qn + qn−1)

qn(ωn+1qn + qn−1)
.

さらに分子を計算すると, 定理 2.5より,

qn(ωn+1pn + pn−1) − pn(ωn+1qn + qn−1)

= −(pnqn−1 − qnpn−1) = −(−1)n−1 = (−1)n.

ゆえに式 (18)が成り立つ.

［定理 5.2］

p0

q0
<

p2

q2
< · · · <

p2k

q2k
<

p2k+2

q2k+2
< · · · < ω < · · · <

p2k+3

q2k+3
<

p2k+1

q2k+1
< · · · <

p3

q3
<

p1

q1
.
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［証明］n ≥ 0を整数とする. 定理 5.1より,

ω − pn

qn
=

(−1)n

qn(qnωn+1 + qn−1)
.

qn−1 > 0, qn > 0, ωn+1 > 1なので,

nが偶数 =⇒ ω − pn

qn
> 0 =⇒ ω >

pn

qn
,

nが奇数 =⇒ ω − pn

qn
< 0 =⇒ ω <

pn

qn

となる. つまり, nが偶数のとき pn/qn は常に ωより小さく, nが奇数のとき pn/qn は常に ωより

大きい. このことと定理 2.6と合わせれば, 求める定理が得られる.

［定理 5.3］任意の整数 n ≥ 1に対して∣∣∣∣ω − pn

qn

∣∣∣∣ <

∣∣∣∣ω − pn−1

qn−1

∣∣∣∣ (19)

が成り立つ.

［証明］定理 3.1より,

ω =
ωn+1pn + pn−1

ωn+1qn + qn−1
.

両辺に ωn+1qn + qn−1 を掛けると,

(ωn+1qn + qn−1)ω = ωn+1pn + pn−1.

よって,

ωn+1(ωqn − pn) = −(ωqn−1 − pn) = −qn−1

(
ω − pn−1

qn−1

)
.

ωn+1qn で割り, 絶対値をとると,∣∣∣∣ω − pn

qn

∣∣∣∣ =
∣∣∣∣ qn−1

ωn+1qn

∣∣∣∣ · ∣∣∣∣ω − pn−1

qn−1

∣∣∣∣.
0 < qn−1 < qn かつ 1 < ωn+1 より

0 <
qn−1

ωn+1qn
< 1.

したがって式 (19)が成り立つ.

［定理 5.4］　 任意の整数 n ≥ 0に対して∣∣∣∣ω − pn

qn

∣∣∣∣ >
1

2qnqn+1
(20)

が成り立つ.
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［証明］定理 5.3より ∣∣∣∣ω − pn+1

qn+1

∣∣∣∣ <

∣∣∣∣ω − pn

qn

∣∣∣∣
なので, ∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣ ≤ ∣∣∣∣ω − pn+1

qn+1

∣∣∣∣ +
∣∣∣∣ω − pn

qn

∣∣∣∣ < 2
∣∣∣∣ω − pn

qn

∣∣∣∣.
また, 定理 2.5より

pn+1qn − pnqn−1 = (−1)n

なので, ∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣ =
|pn+1qn − pnqn−1|

qnqn+1
=

1
qnqn+1

.

ゆえに, 式 (20)が得られる.

［定理 5.5］任意の番号 n ≥ 0に対して∣∣∣∣ω − pn

qn

∣∣∣∣ <
1

qnqn+1
≤ 1

q2
n

が成り立つ.

［証明］qn > 0, qn+1 > 0, ωn+1 > an+1 であるから,

qnωn+1 + qn−1 > qnan+1 + qn−1 = qn+1.

よって, 定理 5.1より, ∣∣∣∣ω − pn

qn

∣∣∣∣ =
∣∣∣∣ (−1)n

qn(qnωn+1 + qn−1)

∣∣∣∣
=

1
qn(qnωn+1 + qn−1)

<
1

qnqn+1
.

また, 定理 2.1 (および注意 2.2)より, すべての番号 n ≥ 0に対して 1 ≤ qn ≤ qn+1 だから, 後半

の不等式も成り立つ.

［定理 5.6］任意の番号 n ≥ 0に対して, ある δn が存在して,

pn = qnω +
δn

qn
, |δn| < 1

が成り立つ.

［証明］δn = qn(pn − qnω)とおく. この両辺を qn で割ったのち qnω を移項すると定理の前半の

等式が得られる.

さて, 定理 5.5より, ∣∣∣∣ω − pn

qn

∣∣∣∣ <
1
q2
n

.
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qn ≥ 1より, 両辺を qn で割ると,

|qnω − pn| <
1
qn

.

絶対値を外すと,

− 1
qn

< pn − qnω <
1
qn

.

各辺に qn を掛ければ,

−1 < qn(pn − qnω) < 1.

すなわち, −1 < δn < 1. したがって, 定理の後半の不等式が成り立つ.

［定理 5.7］

lim
n→∞

pn

qn
= ω.

［証明］定理 5.5より, 任意の番号 n ≥ 0に対して∣∣∣∣ω − pn

qn

∣∣∣∣ <
1
q2
n

が成り立つ. 一方, 定理 2.4より qn → ∞ (n → ∞)であるから, 1/q2
n → ∞ (n → ∞)である. した

がって, ω − pn/qn → 0 (n → ∞)となる.

［定理 5.8］ω を無理数, pn/qn (n ≥ 0)を ω の近似分数とする. p, q を整数とし, q > 0とする.

このとき,

|qω − p| < |qnω − pn| =⇒ qn+1 ≤ q

が成り立つ.

［証明］背理法により証明する. |qω − p| < |qnω − pn|かつ 1 ≤ q < qn+1 と仮定して矛盾を導く.

まず, 連立方程式

pnx + pn+1y = p,

qnx + qn+1y = q
(21)

を解く. 1番目の方程式に qn を掛け, 2番目の方程式に pn を掛けたのち, 後者から前者を引くと,

(pn+1qn − pnqn+1)y = pqn − qpn.

定理 2.5より pn+1qn − pnqn+1 = (−1)n だから,

y = (−1)n(pqn − qpn).

同様に, 1番目の方程式に qn+1 を掛け, 2番目の方程式に pn+1 を掛けたのち, 前者から後者を引

くと,

(pn+1qn − pnqn+1)x = qpn+1 − pqn+1.
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よって,

x = (−1)n(qpn+1 − pqn+1).

が得られる. しがたって, 連立方程式 (21)は解 (x, y)を持つ.

次に, x 6= 0, y 6= 0を示す. もし仮に x = 0とすると, qpn+1 = pqn+1. 定理 2.5より gcd(pn, qn) =

1であるから, qk+1 | q. これは q ≤ qn+1を意味するから背理法の仮定に反する. ゆえに, x 6= 0. ま

た, これより |x| ≥ 1だから,

|x||qnω − pn| ≥ |qnω − pn|.

もし y = 0ならば, pnx = p, qnx = qなので,

qω − p = x(qnω − pn).

ゆえに,

|qω − p| = |x||qnω − pn| ≥ |qnω − pn|.

これは仮定に反する. ゆえに y 6= 0.

xと yの符号は互いに異なる. 実際,

y < 0 =⇒ qnx = q − qn+1y > 0

=⇒ x > 0,

y > 0 =⇒ qn+1y ≥ qn+1 > q

=⇒ qnx = q − qn+1y < 0

=⇒ x < 0.

ωは無理数なので, 定理 5.2より pn/qn < ω < pn+1/qn+1または pn+1/qn+1 < ω < pn/qn. どち

らの場合からも, qnω − pn と qn+1ω − pn の符号が異なることがいえる.

x, yは連立方程式 (21)の解だったので,

|qω − p| = |(qnx + qn+1y)ω − (pnx + pn+1y)|

= |x(qnω − pn) + y(qn+1ω − pn+1)|.

先に述べたことから, x(qnω − pn)と y(qn+1ω − pn)の符号は同じである. このことと |x| ≥ 1より,

|qω − p| = |x||qnω − pn| + |y||qn+1ω − pn+1|

≥ |x||qnω − pn|

≥ |qnω − pn|.

これは仮定に反する. 背理法の仮定から矛盾が導かれたので, 定理の主張は示された.
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［定理 5.9］ωを無理数, pn/qn (n ≥ 1)を ωの近似分数とする. また, p/qを既約分数とする. す

なわち, p, q ∈ Z, q > 0, gcd(p, q) = 1とする. このとき,∣∣∣∣ω − p

q

∣∣∣∣ <

∣∣∣∣ω − pn

qn

∣∣∣∣ =⇒ qn < q

が成り立つ.

［証明］背理法により証明する.

n ≥ 1とし, |ω − p/q| < |ω − pn/qn|かつ 1 ≤ q ≤ qn と仮定すると,

|qω − p| = q

∣∣∣∣ω − p

q

∣∣∣∣ < qn

∣∣∣∣ω − pn

qn

∣∣∣∣ = |qnω − pn|.

よって, 定理 5.8より, qn+1 ≤ q. ゆえに, qn+1 ≤ qn. 仮定より n ≥ 1だから, これは定理 2.1に反

する.

［定理 5.10］ω を無理数, p/q を既約分数とする. すなわち, p, q ∈ Z, q > 0, gcd(p, q) = 1とす

る. このとき, ∣∣∣∣ω − p

q

∣∣∣∣ <
1

2q2

ならば, p/qは ωの近似分数である.

［証明］背理法により証明する. |ω − p/q| < 1/2q2 かつ p/qが ωの近似分数に一致しないと仮定

すると, 任意の番号 n ≥ 0に対して, p/q 6= pn/qn より |qpn − pqn| ≥ 1だから,

1
qqn

≤ |qpn − pqn|
qqn

=
∣∣∣∣qpn − pqn

qqn

∣∣∣∣ =
∣∣∣∣pn

qn
− p

q

∣∣∣∣
=

∣∣∣∣(pn

qn
− ω

)
+

(
ω − p

q

)∣∣∣∣
≤

∣∣∣∣ω − pn

qn

∣∣∣∣ +
∣∣∣∣ω − p

q

∣∣∣∣
<

∣∣∣∣ω − pn

qn

∣∣∣∣ +
1

2q2
.

q0 = 1であり, 定理 2.1より数列 (qn)は n ≥ 1で単調増加だから, ある番号 k ≥ 0が存在して,

qk ≤ q < qk+1. よって, 定理 5.8と仮定より,∣∣∣∣ω − pk

qk

∣∣∣∣ =
|qkω − pk|

qk

≤ |qω − p|
qk

=
q

qk

∣∣∣∣ω − p

q

∣∣∣∣
<

1
2qqk

.

ゆえに,
1

qqk
<

∣∣∣∣ω − pk

qk

∣∣∣∣ +
1

2q2
<

1
2qqk

+
1

2q2
.

したがって, q < qk が得られるが, これは qk ≤ qに反する.
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［定理 5.11］ωを無理数とする. ωの任意の 2つの連続した近似分数 pn/qn, pn+1/qn+1について,∣∣∣∣ω − pn

qn

∣∣∣∣ <
1

2q2
n

または
∣∣∣∣ω − pn+1

qn+1

∣∣∣∣ <
1

2q2
n+1

(22)

が成り立つ.

［証明］番号 n ≥ 0を 1つ固定する.

定理 5.2より, pn/qn < ω < pn+1/qn+1 または pn+1/qn+1 < ω < pn/qn. 前者の場合,

pn+1

qn+1
− pn

qn
=

(
pn+1

qn+1
− ω

)
+

(
ω − pn

qn

)
かつ

pn+1

qn+1
− pn

qn
> 0,

pn+1

qn+1
− ω > 0, ω − pn

qn
> 0

より, ∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣ =
∣∣∣∣ω − pn+1

qn+1

∣∣∣∣ +
∣∣∣∣ω − pn

qn

∣∣∣∣ .

後者の場合にも, これと同じ等式が得られる. 一方, 定理 2.5より pn+1qn −pnqn+1 = (−1)nだから,∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣ =
|pn+1qn − pnqn+1|

qnqn+1
=

1
qnqn+1

.

ゆえに, ∣∣∣∣ω − pn+1

qn+1

∣∣∣∣ +
∣∣∣∣ω − pn

qn

∣∣∣∣ =
1

qnqn+1
.

さて, (22)が成り立たないとすると,

1
2q2

n+1

+
1

2q2
n

≤ 1
qnqn+1

.

両辺に 2q2
nq2

n+1 を掛けて整理すると, (qn − qn+1)2 ≤ 0が得られる. すなわち, qn = qn+1.

もし n ≥ 1ならば, 定理 2.1より qn < qn+1 だから, これは不可能である. ゆえに, n = 0でなけ

ればならないが, このとき, q1 = q0 = 1. さらに, q1 = a1q0 + q−1 = a1 より a1 = 1. 定理 5.2より

p2

q2
< ω <

p1

q1

であり,

p1

q1
= a0 +

1
a1

= a0 + 1,

p2

q2
= a0 +

1

a1 +
1
a2

= a0 +
1

1 +
1
a2

= a0 +
a2

a2 + 1

であるから,

0 <
p1

q1
− ω <

p1

q1
− p2

q2
=

a2

a2 + 1
≤ 1

2
.

したがって, 不等式 (22)が成り立つことになって, 矛盾が生じる.
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［定理 5.12］ω > 0を無理数とし, x/y を既約分数とするとき, x/y が ω の近似分数ならば, y/x

は 1/ωの近似分数である.

［証明］まず, ω > 1のとき, ωの連分数展開を

ω = a0 +
1
a1 +

1
a2 + · · · +

1
an + · · ·

とすると, 1/ωの連分数展開は

1
ω

= 0 +
1
a0 +

1
a1 +

1
a2 + · · · +

1
an + · · ·

となる. ここで, ω > 1より a0 ≥ 1であることに注意せよ. x/yを ωの n番目の近似分数とすると,

x

y
= a0 +

1
a1 +

1
a2 + · · · +

1
an

である. このとき, y/xは
y

x
= 0 +

1
a0 +

1
a1 +

1
a2 + · · · +

1
an

となり, 1/ωの n + 1番目の近似分数である.

0 < ω < 1のときは, ω > 1の場合を 1/ωに適用すればよい. つまり, 1/ωの連分数展開を

1
ω

= a0 +
1
a1 +

1
a2 + · · · +

1
an + · · ·

とすれば, 1/(1/ω) = ωの連分数展開は

ω = 0 +
1
a0 +

1
a1 +

1
a2 + · · · +

1
an + · · ·

となる. x/yを ωの n番目の近似分数とすれば, y/xは 1/ωの n − 1番目の近似分数である.

6 GL2(Z)とSL2(Z)

整数成分の 2次正方行列でその行列式が ±1のもの全体を GL2(Z)とおく:

GL2(Z) =

P =

p q

r s

 ∣∣∣∣∣ p, q, r, s ∈ Z, det P = ps − qr = ±1

 .

［定理 6.1］GL2(Z)は群をなす.

［証明］任意の 2つの行列 P , Q ∈ GL2(Z)に対して,

detPQ = det P det Q = ±1

より, 積 PQも GL2(Z)に属する.
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GL2(Z)の単位元は単位行列 E =

1 0

0 1

である.

任意の P =

p q

r s

 ∈ GL2(Z)に対して, その逆行列 P−1 =
1

det P

 s −q

−r p

が GL2(Z)にお

ける P の逆元である.

整数成分の 2次正方行列でその行列式が 1のもの全体を SL2(Z)とおく:

SL2(Z) =

P =

p q

r s

 ∣∣∣∣∣ p, q, r, s ∈ Z, detP = ps − qr = 1


= {P ∈ GL2(Z) | detP = 1}.

［定理 6.2］SL2(Z)は GL2(Z)の指数 2の部分群である.

［証明］任意の P , Q ∈ GL2(Z)に対して det PQ = det P det Qが成り立つことから, 写像

GL2(Z) → {±1}, P 7→ det P

は群の準同型である. その核は SL2(Z)である. さらに, 準同型定理により,

GL2(Z)/SL2(Z) ∼= {±1}.

ゆえに, [GL2(Z) : SL2(Z)] = 2.

［定理 6.3］SL2(Z)は

1 1

0 1

,

0 −1

1 0

 によって生成される.

［証明］S =

1 1

0 1

, T =

0 −1

1 0

 とおく.

det S = det T = 1

より, S, T ∈ SL2(Z).

S, T で生成される SL2(Z)の部分群を Γとおく. SL2(Z) 6= Γと仮定して矛盾を導く.p q

0 s

 ∈ SL2(Z)とすると, ps − q · 0 = 1より p = s = ±1. 一方,

1 q

0 1

 = Sq,

−1 q

0 −1

 = S−qT 2
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であるから,

p q

0 s

 ∈ Γとなる. よって,

r0 = min

|r|

∣∣∣∣∣
p q

r s

 ∈ SL2(Z) \ Γ


とおくと, r0 ≥ 1である. SL2(Z) \ Γの元で (2, 1)-成分が r0 のものをとり, P0 =

p0 q0

r0 s0

とお
く. 除法の原理により, ある n, n′ ∈ Zが存在して,

s0 = r0n + n′, 0 ≤ n′ < r0.

よって,

0 ≤ |s0 − r0n| < r0.

このとき, r0 の最小性から,

P0S
−1T =

q0 − p0n −p0

s0 − r0n −r0

 ∈ Γ.

一方, S−1T ∈ Γより, P0 ∈ Γ. これは矛盾である. ゆえに, SL2(Z) = Γ.

7 複素数の対等関係

GL2(Z)の C ∪ {∞}への作用を, 各々の P =

p q

r s

 ∈ GL2(Z), x ∈ C ∪ {∞}に対して, r 6= 0

のとき,

P · x =



px + q

rx + s
, x 6= ∞, x 6= −s/rのとき

p

r
, x = ∞のとき

∞, x = −s/rのとき

r = 0のとき,

P · x =


px + q

s
, x 6= ∞のとき

∞, x = ∞のとき

とおくことによって定める.

［例 7.1］

1 ±q

0 1

 · x = x ± q. ただし, ±は複号同順.
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P ∈ GL2(Z)ならば−P ∈ GL2(Z)である. また一般に, 作用の定め方から, 任意の x ∈ C∪ {∞}

に対して P · x = (−P ) · xであることはすぐにわかる.

［例 7.2］

0 −1

1 0

 · x =

 0 1

−1 0

 · x = −1/x.

［定理 7.3］GL2(Z)は実際に C ∪ {∞}に作用する.

［証明］x ∈ C ∪ {∞}とする. E · x = xは明らかである.

P =

p q

r s

, Q =

p′ q′

r′ s′

 ∈ GL2(Z)とする.

x 6= ∞, r′x + s′ 6= 0, (rp′ + sr′)x + (rq′ + ss′) 6= 0のとき,

PQ · x =

pp′ + qr′ pq′ + qs′

rp′ + sr′ rq′ + ss′

 · x

=
(pp′ + qr′)x + (pq′ + qs′)
(rp′ + sr′)x + (rq′ + ss′)

,

P · (Q · x) = P · p′x + q′

r′x + s′
=

p · p′x + q′

r′x + s′
+ q

r · p′x + q′

r′x + s′
+ s

=
p(p′x + q′) + q(r′x + s′)
r(p′x + q′) + s(r′x + s′)

=
(pp′ + qr′)x + (pq′ + qs′)
(rp′ + sr′)x + (rq′ + ss′)

.

x = ∞のとき,

PQ · ∞ =



pp′ + qr′

rp′ + sr′
, r′ 6= 0のとき

p

r
, r′ = 0かつ r 6= 0のとき

∞, r′ = r = 0のとき

一方,

Q · ∞ =


p′

r′
, r′ 6= 0のとき

∞, r′ = 0のとき

であり, さらに,

P · ∞ =


p

r
, r 6= 0のとき

∞, r = 0のとき

P · p′

r′
=

pp′ + qr′

rp′ + sr′
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である.

r′x + s′ = 0のとき, もし仮に r′ = 0とすると, 同時に s′ = 0となるが,

p′s′ − q′r′ = det Q 6= 0

より不可能である. よって, x = −s′/r′. このとき, P · (Q · x) = P · ∞ = p/r. 一方, 直接計算する

と PQ · x = p/rとなるこがわかる.

(rp′ + sr′)x + (rq′ + ss′) = 0のとき, もし仮に rp′ + sr′ = 0とすると, 同時に rq′ + ss′ = 0と

なるが,

(pp′ + qr′)(rq′ + ss′) − (pq′ + qs′)(rp′ + sr′) = det PQ 6= 0

より不可能である. よって, x = −(rq′ + ss′)/(rp′ + sr′). このとき, PQ · x = ∞. 一方, 直接計算

すると Q · x = −s/rとなることがわかり, P · (Q · x) = ∞となる.

以上より, いずれの場合においても PQ · x = P · (Q · x)が成り立つことが示された. したがって,

P · xによって GL2(Z)は実際に C ∪ {∞}に作用している.

x, y ∈ C ∪ {∞}とするとき, xが yに対等であるとは, ある行列 P ∈ GL2(Z)が存在して

x = P · y

が成り立つことをいう. x, y ∈ Cのとき, xが yに対等であることは, ある整数 p, q, r, sが存在して

x =
py + q

ry + s
, ps − qr = ±1

が成り立つことと言い換えられる.

特に, det P = 1のとき正に対等であるといい, det P = −1のとき負に対等であるという.

z, w ∈ C∪ {∞}が正に対等であることは, ある P ∈ SL2(Z)が存在して w = P · zとなることと

同値である.

［注意 7.4］2つの数が正に対等かつ負に対等になることもある. 例えば,
√

2 + 1は
√

2に正にも

負にも対等である. 実際,

√
2 + 1 =

√
2 + 1

0 ·
√

2 + 1
,

∣∣∣∣∣∣1 1

0 1

∣∣∣∣∣∣ = 1

かつ

√
2 + 1 =

1√
2 − 1

,

∣∣∣∣∣∣0 1

1 −1

∣∣∣∣∣∣ = −1.

［定理 7.5］対等および正に対等なる関係は C ∪ {∞}上の同値関係である.
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［証明］x, y, z ∈ C ∪ {∞}を任意にとる.

(反射) x = E · xより, xは x自身に対等である.

(対称) xが yに対等ならば, ある P ∈ GL2(Z)が存在して, x = P · y. このとき,

y = E · y = (P−1P ) · y = P−1 · (P · y) = P−1 · x.

ゆえに, yは xに対等である.

(推移) xが y に対等かつ y が z に対等ならば, ある P , Q ∈ GL2(Z)が存在して, x = P · y か

つ y = Q · z. このとき, x = P · (Q · z) = PQ · zとなり, xは zに対等である.

以上より, 対等関係は同値関係であることが示された.

GL2(Z)を SL2(Z)に置き換えれば, 正に対等な関係が C∪ {∞}上の同値関係であることも同様

にして証明できる.

［定理 7.6］ (i) 有理数か∞に対等なものは有理数か∞である.

(ii) 無理数に対等なものは無理数である.

(iii) 虚数に対等なものは虚数である.

［証明］対等関係の定め方から, 任意の P ∈ GL2(Z), x ∈ Q ∪ {∞}に対して, P · x ∈ Q ∪ {∞}.

すなわち, 有理数か∞に対等なものは有理数か∞である. 対偶を考えれば, 無理数か虚数に対等

なものは無理数か虚数である.

x, y ∈ Cが互いに対等であるとき, ある P ∈ GL2(Z)が存在して x = P · yとなる. もし仮に x

が虚数, yが無理数だとすれば, 右辺は実数であり, xが虚数であることに反する. また, もし仮に x

が無理数, yが虚数だとすれば, y = P−1 · xよりやはり矛盾が生じる.

［定理 7.7］Q ∪ {∞}に属する任意の 2つの元は互いに正に対等である.

［証明］有理数を任意にとり, 既約分数 p/rで表すと, gcd(p, r) = 1より, ps − qr = 1を満たすよ

うな q, s ∈ Zが存在する.

P =

p q

r s


とおくと, P ∈ SL2(Z)であり,

p

r
= P · ∞.

ゆえに, 任意の有理数と∞とは正に対等である.

有理数をもう 1つ任意にとり,既約分数 p′/r′で表すと, p/rのときと同様にして,あるQ ∈ SL2(Z)

が存在して
p′

r′
= Q · ∞.
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ゆえに,
p

r
= PQ−1 · p′

r′
, PQ−1 ∈ SL2(Z).

すなわち, p/rは p′/r′ に対等である. したがって, 任意の 2つの有理数は正に対等である.

［例 7.8］2次方程式 x2 + bx + c = 0の 2つの解

θ =
−b +

√
b2 − 4c

2
, θ =

−b −
√

b2 − 4c

2

は互いに対等である. 実際, P =

−1 −b

0 1

とおくと, det P = −1かつ θ = P · θが成り立つ.

［定理 7.9］x ∈ C ∪ {∞}とし,

GL2(Z)x = {P ∈ GL2(Z) | x = P · x},

SL2(Z)x = {P ∈ SL2(Z) | x = P · x}

とおく. このとき,

(i) GL2(Z)x は GL2(Z)の部分群である.

(ii) SL2(Z)x は SL2(Z)の部分群である.

［証明］(i) E を単位行列とすると, E ∈ GL2(Z)x. よって, GL2(Z)x は空集合でない.

任意の P , Q ∈ GL2(Z)x に対して,

PQ · x = P · (Q · x) = P · x = x,

P−1 · x = P−1 · (P · x) = (P−1P ) · x = E · x = x.

ゆえに, PQ, P−1 ∈ GL2(Z)x.

(ii) (i)と同様にして示せる.

［定理 7.10］S =

1 1

0 1

, T ′ =

−1 0

0 1

 とおく. また, E を単位行列とする. このとき,

(i) GL2(Z)∞ は S, T ′, −E で生成される GL2(Z)の部分群である.

(ii) SL2(Z)∞ は S, −E で生成される SL2(Z)の部分群である.

［証明］(i) まず, P = S, T ′, −E のとき, P ∈ GL2(Z)であり, P · ∞ = ∞は成り立つ.
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P =

p q

r s

 ∈ GL2(Z)とし, P ·∞ = ∞とする. 作用の定め方から, r = 0でなければならない.

また,

ps = ps − qr = det P = ±1

より,

p = ±1, d = ±1 (複号任意).

すなわち,

P =

±1 q

0 ±1

 (複号任意).

一方, 1 q

0 1

 = Sq,

−1 q

0 1

 = T ′S−q,

−1 q

0 −1

 = −S−q,

1 q

0 −1

 = −T ′Sq.

ゆえに, P は S, T ′, −E の積で表される.

(ii) detP = ±1を det P = 1として (i)と同様の議論を行えば, P ∈ SL2(Z)の中で P ·∞ = ∞

となるもの全体 SL2(Z)∞ が S, −E で生成されることがいえる.

［定理 7.11］x ∈ Cとし, xは2次以下の方程式の解ではないとする. このとき,任意のP ∈ GL2(Z)

に対して, x = P · xならば P = ±E が成り立つ. したがって,

GL2(Z)x = SL2(Z)x = {±E}.

ただし, E は単位行列である.

［証明］P =

p q

r s

 ∈ GL2(Z)とし,

x = P · x =
px + q

rx + s

であるとする. 分母を払って整理すると,

rx2 + (s − p)x − q = 0.

34



xは 2次以下の方程式の解ではないと仮定したので,

r = s − p = q = 0.

ps− qr = det P = ±1より, p = s = ±1. ゆえに, P = ±E. よって, 定理の前半の主張が示された.

また, このことから, GL2(Z)x, SL2(Z)x が {±E}に含まれることがいえる. 逆の包含関係は明ら

かなので, 定理の後半の主張も成り立つ.

8 SL2(Z)に関する基本領域

複素数 zに対して, その実部, 虚部を Re z, Im zで表す: z = Re z + Im z
√
−1.

［補題 8.1］任意の z ∈ C, P =

p q

r s

 ∈ GL2(Z)に対して,

Im (P · z) =
det P · Im z

|rz + s|2

が成り立つ.

［証明］ここでは, zは zの複素共役を表すものとする.

w = P · z =
pz + q

rz + s

とおく. 複素共役の性質から,

w =
pz + q

rz + s
.

よって,

w − w =
pz + q

rz + s
− pz + q

rz + s

=
(pz + q)(rz + s) − (pz + q)(rz + s)

(rz + s)(rz + s)

=
(psz + qrz) − (psz + qrz)

(rz + s)(rz + s)

=
(ps − qr)(z − z)

|rz + s|2
.

detP = ps − qr, z − z = 2 Im z, w − w = 2 Im wより,

Im w =
det P · Im z

|rz + s|2
.
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［補題 8.2］zを虚数とする. また, S を Z × Zの部分集合とし, (0, 0)以外の元を少なくとも 1つ

はもつとする. このとき Rの部分集合

{
|rz + s|

∣∣ (r, s) ∈ S \ {(0, 0)}
}

(23)

は正の最小元をもつ.

［証明］まず,

|rz + s| = 0 ⇐⇒ rz + s = 0

⇐⇒ r = s = 0

⇐⇒ (r, s) = (0, 0)

であるから, 0は (23)に属さない. よって, (23)のすべての元は正の値をとる.

x = Re z, y = Im zとおくと,

rz + s = (s + rx) + ry
√
−1

であるから,

|rz + s|2 = (s + rx)2 + r2y2.

S \ {(0, 0)} 6= ∅だから, Sの元 (r0, s0) 6= (0, 0)が存在する. R = |r0z + s0|とおく. Rは (23)に属

するから, (23)の最小元はもし存在すれば R以下の実数である. したがって, |rz + s| < Rを満た

す整数の組 (r, s)が高々有限個しかないことをいえば十分である.

もし |rz + s| < Rならば,

|s + rx| < R, |ry| < R. (24)

zは虚数だから, y 6= 0. よって, (24)の 2番目の式より,

|r| <
R

|y|
. (25)

さらに, (24)の 1番目の式と三角不等式から,

|s| − |rx| < |s + rx| < R.

ゆえに, (25)より

|s| < R + |rx| < R

(
1 +

|x|
|y|

)
. (26)

(25), (26)より, |rz + s| < Rを満たす整数の組 (r, s)は高々有限個しかない.

［注意 8.3］z が無理数のとき, |rz + s|はいくらでも小さい正の値をとる. したがって, 補題 8.2

の (23)は最小値をもたない.
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実際, 以下の定理が成り立つことが知られている:

任意の実数 zと自然数 nとが与えられたとき,

|rz − s| <
1
n

, 0 < r ≤ n

となる r, s ∈ Zが必ず存在する.

この定理は, Dirichletの部屋割り論法の応用例としてよく知られている.

虚部が正であるような複素数全体からなる Cの部分集合

H = {z ∈ C | Im z > 0}

を上半平面という. また, Cの部分集合

F = {z ∈ C | |z| > 1かつ −1/2 ≤ Re z < 1/2}

∪ {z ∈ C | |z| = 1かつ −1/2 ≤ Re z ≤ 0}

を SL2(Z)に関する基本領域という. z ∈ F ならば必ず Im z > 0であるため, F はHの部分集合

である.

［例 8.4］|
√
−1| = 1, Re

√
−1 = 0であるから, 虚数単位

√
−1は F に属する.

ρ = (−1 +
√
−3)/2を 1の原始 3乗根とする. このとき, |ρ| = 1, Re z = −1/2であるから, ρは

F に属する. また, ρ + 1 = (1 +
√
−3)/2は 1の原始 6乗根であり, |ρ + 1| = 1, Re z = 1/2である

から, ρ + 1は F に属さない.

［定理 8.5］任意の z ∈ Hに対して, ある w ∈ F が存在して, zと wとは正に対等である.

［証明］P =

p q

r s

 ∈ SL2(Z)を任意にとると, 補題 8.1と z ∈ Hから,

Im (P · z) =
Im z

|rz + s|2
> 0.

S = {(r, s) | P ∈ SL2(Z)}として補題 8.2を適用すれば, |rz + s|が正のもののうちで最小となる

ような P の存在がいえる. そのような P をとり, w0 = P · zとおく. すると, w0は zと正に対等な

Hの元のうちで虚部が最大のものである.

aを任意の整数とすると,

w0 + a =

1 a

0 1

 · w

より, w0 + aは w0 と正に対等である. そこで, −1/2 ≤ Re w0 + a < 1/2となるように aを選び,

w = w0 + aとおく. このとき, Re (w0 + a) = Re w0 + a, Im w = Im w0 である. さらに,

w1 = − 1
w

=

0 −1

1 0

 · w1
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より, w1 は wと正に対等である. 再び補題 8.1によって,

Im w1 =
Im w

|w|2
=

Im w0

|w|2
.

正に対等な関係は推移律を満たすので, w2は zに正に対等である. よって, Im w0の最大性により,

Im w1 ≤ Im w0.

ゆえに,

|w|2 =
Im w0

Im w1
≥ 1.

したがって, |w| > 1のとき, wは基本領域 F に属する. |w| = 1のときは,∣∣∣∣− 1
w

∣∣∣∣ = |w| = 1, Re
(
− 1

w

)
= −Re w

となるので, wまたは w1 が基本領域 F に属する.

［定理 8.6］z, w ∈ F , P ∈ SL2(Z)とし, w = P · zとする. このとき, z = wが成り立つ. さらに,

P =


±E, z 6=

√
−1, ρのとき

±E, ±T, z =
√
−1のとき

±E, ±TS, ±(TS)2 z = ρのとき

が成り立つ. ここで, S =

1 1

0 1

, T =

0 −1

1 0

 とおくと
TS =

0 −1

1 1

 , (TS)2 =

−1 −1

1 0


である. また, ρ = (−1 +

√
−3)/2は 1の原始 3乗根である.

［証明］Im w < Im z のときは P の代わりに P−1 を考えればよいので, Im z ≤ Im wと仮定して

も一般性を失わない. P =

p q

r s

とおくと,

w = P · z =
pz + q

rz + s
. (27)

detP = 1であるから, 補題 8.1より,

Im w =
Im z

|rz + s|2
.

Im z ≤ Im wより,

|rz + s| =
Im z

Im w
≤ 1. (28)
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Im (rz + s) = r Im zであるから,

|r Im z| = |Im (rz + s)| ≤ |rz + s| ≤ 1.

F の元のうちで虚部が最小のものは ρであるから,
√

3
2

= Im ρ ≤ Im z.

ゆえに, √
3

2
|r| ≤ 1.

したがって,

|r| ≤ 2√
3
.

r ∈ Zだから, r = 0または ±1.

r = 0のとき, ps − qr = 1から, p = s = ±1. ゆえに (27)から

w = z ± q.

z, w ∈ F より, q = 0. したがって, z = w.

r = −1のとき, P の代わりに −P をとることで r = 1とすることができる. よって, r = 1のと

きに帰着する.

r = 1のとき, (28)から

|z + s| ≤ 1. (29)

z ∈ F かつ s ∈ Zだから, もし仮に |z| > 1とすると |z + s| > 1となって (29)と矛盾する. ゆえに,

|z| = 1. また, もし s 6= 0ならば, (29)が満たされるのは z = ρかつ s = 1のときのみである. した

がって, 「|z| = 1, s = 0」または「z = ρ, s = 1」である.

|z| = 1, s = 0の場合, ps − qr = 1, r = 1から q = −1. よって (27)から

w = p − 1
z
.

|z| = 1より, ∣∣∣∣−1
z

∣∣∣∣ = |z| = 1, Re
(
−1

z

)
= −Re z.

z, w ∈ F より, 「p = 0, −1/z =
√
−1」または「p = −1, −1/z = ρ + 1」である. 前者の場合,

z = w =
√
−1となり, 後者の場合, ρ + 1 = −ρ2 = −1/ρより, z = w = ρとなる.

z = ρ, s = 1の場合, ps − qr = 1, r = 1から p − q = 1. すなわち p = q + 1である. (27)から

w =
(q + 1)ρ + q

ρ + 1
= q +

ρ

ρ + 1
= q + (ρ + 1).

ここで, 最後の等式において

ρ

ρ + 1
=

ρ

−ρ2
= −1

ρ
= −ρ2 = ρ + 1

を用いた. w ∈ F より, q = −1. ゆえに, p = 0, z = w = ρ.
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［定理 8.7］z, w ∈ Hとする. このとき, z と wとが正に対等であるための必要十分条件は, z と

wがある共通の z0 ∈ F と正に対等であることである.

［証明］(必要性) 定理 8.5より, ある z0 ∈ F が存在して zは z0と正に対等である. 同様に, ある

w0 ∈ F が存在して wは w0 と正に対等である. z と wとは正に対等であるから, z0 と w0 とは正

に対等である. 定理 8.6より, z0 = w0 となる.

(十分性) zが z0 と正に対等で, z0 が wと正に対等であれば, zは wと正に対等である.

9 2次代数的数

複素数 θが 2次代数的数であるとは, ある整数係数の 2次方程式

ax2 + bx + c = 0, gcd(a, b, c) = 1, a > 0 (30)

の解であり, かつ θ 6∈ Qであるときにいう. このとき, θは無理数か虚数である. 無理数の 2次代数

的数を 2次無理数, 虚数の 2次代数的数を 2次虚数という.

2次代数的数 θを解とする (30) の形の 2次方程式が 2つあったとし, それらを

ax2 + bx + c = 0, gcd(a, b, c) = 1, a > 0,

a′x2 + b′x + c′ = 0, gcd(a′, b′, c′) = 1, a′ > 0

とする. a′ = au (u ∈ Q)とおくと,

0 = a′θ2 + b′θ + c′ − u(aθ2 + bθ + c)

= (b′ − bu)θ + (c′ − cu).

θ 6∈ Qなので,

b′ − bu = c′ − cu = 0.

すなわち, b′ = bu, c′ = cuとなる. uを, u = m/n, gcd(m,n) = 1, n > 0のように既約分数で表

せば,

a′n = am, b′n = bm, c′n = cm.

このとき, nは a, b, cの公約数である. gcd(a, b, c) = 1より, n = 1でなければならない. ゆえに, u

は整数である. またこのとき, mは a′, b′, c′ の公約数である. gcd(a′, b′, c′) = 1より, m = ±1. す

なわち, u = ±1. さらに, a > 0, a′ > 0より u = 1がいえる. したがって, a = a′, b = b′, c = c′ と

なり, θを解とする (30)の形の 2次方程式はただ 1つ定まる.

2次代数的数 θを解とする (30)の形の 2次方程式の判別式Dを θの判別式という. また, θを判

別式Dに属する 2次代数的数という.
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方程式 (30)の解は,
−b +

√
D

2a
,

−b −
√

D

2a
(31)

の 2つである. これらを互いに共役な 2次代数的数という. また, 2次代数的数 θに対して, それと

共役なもう 1つの 2次代数的数を θの共役といい, θで表す.

複素数 θが 2次代数的数であるためには, θがある整数係数の 2次方程式 (30)の解であり, かつ

その判別式

D = b2 − 4ac

が 0でも平方数でもないことが必要十分である.

2次無理数の共役は 2次無理数であり, 2次虚数の共役は 2次虚数である. また, θが 2次無理数

であるとき, その共役 θは複素共役とは異なる. 実際, θ 6= θであるのに対し, θの複素共役は θ自

身である. 一方, 2次虚数の共役は複素共役と一致する.

［定理 9.1］複素数 θについて, 次の 3つの条件は同値である:

(i) θは 2次代数的数である.

(ii) θはある整数係数 2次方程式 ax2 + bx+ c = 0, a 6= 0の解であって, その判別式D = b2 − 4ac

は 0でも平方数でもない.

(iii) θはある最高次係数が 1の有理数係数 2次方程式 x2 + b′x + c′ = 0の解であって, その判別

式D′ = b′2 − 4c′ は 0でも有理数の平方でもない.

また, 2つの複素数 θ, θ′ について, 次の 3つの条件は同値である:

(i) θ, θ′ は共役な 2次代数的数である.

(ii) θ, θ′はある整数係数 2次方程式 ax2 + bx + c = 0, a 6= 0の相異なる解であって, その判別式

D = b2 − 4acは 0でも平方数でもない.

(iii) θ, θ′はある最高次係数が 1の有理数係数 2次方程式 x2 + b′x + c′ = 0の相異なる解であって,

その判別式D′ = b′2 − 4c′ が 0でも有理数の平方でもない.

［証明］まず, 前半の同値を証明する.

(i)⇒(ii) 明らかである.

(ii)⇒(iii) ax2 + bx + c = 0の解を θとすると,

aθ2 + bθ + c = 0.

両辺を aで割ると,

θ2 + b′θ + c′ = 0, b′, c′ ∈ Q.

ただし, b′ = b/a, c′ = c/aと置いた. また,

D′ = b′ − 4a′c′ =
b2 − 4ac

a2
=

D

a2
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であるから, Dが 0でも平方数でもなければ, D′ は 0でも有理数の平方でもない.

(iii)⇒(i) x2 + b′x + c′ = 0の解を θをすると,

θ2 + b′θ + c′ = 0.

b′ = b1/b2, c′ = c1/c2 (b1, b2, c1, c2 ∈ Z, b2 > 0, c2 > 0)と表すとき, 上の方程式の両辺に b2c2 を

掛けると, 整数係数の 2次方程式

aθ2 + bθ + c = 0,

a = b2c2 > 0, b = b1c2, c = b2c1

が得られる. g = gcd(a, b, c)とおくと, g > 1のときは, aθ2 + bθ + c = 0の両辺を gで割って係数

の最大公約数を 1にできる. また,

b2 − 4ac

g2
=

b2
1c

2
2 − 4b2

2c1c2

g2

=
b2
2c

2
2

g2
·
(

b2
1

b2
2

− 4 · c1

c2

)
=

b2
2c

2
2

g2
· D′

であるから, D′ が 0でも有理数の平方でもなければ, (b2 − 4ac)/g2 は 0でも平方数でもない.

後半の同値については, 例えば (iii)⇒(i)の場合, 前半の同値の証明を見ればわかるように, θ, θ′

は (30)の形をした同じ 2次方程式の (相異なる)解になる. 他の場合についても同様である.

［定理 9.2］整数 Dがある 2次代数的数 θの判別式であるための必要十分条件は, Dは 0でも平

方数でもない整数であって, D ≡ 0または 1 (mod 4)であることである.

［証明］Dが 2次代数的数 θの判別式ならば, ある整数 a, b, cが存在して,

aθ2 + bθ + c = 0, gcd(a, b, c) = 1, a > 0,

θ =
−b ±

√
D

2a
, D = b2 − 4ac.

θは 2次代数的数なので, Dは 0でも平方数でもない. また,

D ≡ b2 ≡

0 (mod 4), bが偶数のとき

1 (mod 4), bが奇数のとき

となる.

逆に, D ≡ 0 (mod 4)のとき, bを任意の偶数とすれば, D − b2 は 4の倍数である.

a = 1, c =
b2 − D

4
, θ =

−b +
√

D

2
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とおけば, b2 − 4ac = Dであり, かつ

aθ2 + bθ + c = 0, gcd(a, b, c) = 1, a > 0.

Dは 0でも平方数でもないので, θは無理数か虚数である. よって, θは判別式 Dに属する 2次代

数的数である.

D ≡ 1 (mod 4)のとき, bを任意の奇数とすれば同様にして証明できる.

(30)の解であるような 2次代数的数 θに対して, −θは方程式 ax2 − bx+ c = 0の解である. また,

1/θは方程式 cx2 + bx + a = 0の解である. すなわち, −θおよび 1/θもまた 2次代数的数である.

より一般に, 次の定理が成り立つ.

［定理 9.3］θを 2次代数的数とし, ある P ∈ GL2(Z)が存在して ω = P · θであるとする. この

とき, ωもまた 2次代数的数であって, ω = P · θとなる.

［証明］P =

p q

r s

とおき, ω = P · θ =
pθ + q

rθ + s
, ω′ = P · θ =

pθ + q

rθ + s
とする. θは無理数か虚数

だから, ωも無理数か虚数である.

ω + ω′ =
pθ + q

rθ + s
+

pθ + q

rθ + s

=
(pθ + q)(rθ + s) + (pθ + q)(rθ + s)

(rθ + s)(rθ + s)

=
2prθθ + qr(θ + θ) + 2qs

r2θθ + rs(θ + θ) + s2
.

また,

ωω′ =
(pθ + q)(pθ + q)
(rθ + s)(rθ + s)

=
p2θθ + pq(θ + θ) + q2

r2θθ + rs(θ + θ) + s2
.

解と係数の関係より θ + θ, θθ ∈ Qだから, ω + ω′, ωω′ ∈ Q. ゆえに, ω, ω′ はともに同一の有理数

係数の 2次方程式

x2 + bx + c = 0, b = −(ω + ω′), c = ωω′

の解である. ωは無理数か虚数だから, 上の 2次方程式の判別式は 0でも平方数でもない. したがっ

て, 定理 9.1より, ω, ω′ は 2次代数的数である. もし仮に ω = ω′ とすると,

θ = P−1 · ω = P−1 · ω′ = θ

となる. 一方, θは 2次代数的数だから, θ 6= θ. これは矛盾であるから, ω 6= ω′ でなければならな

い. したがって, ω, ω′ は互いに共役である.
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［注意 9.4］θ, θ′をそれぞれある整数係数 2次方程式の解とするとき, それらの和 θ + θ′と積 θθ′

は, 一般には整数係数 2次方程式の解ではない. 例えば, 1 +
√

2,
√

3はそれぞれ x2 − 2x − 1 = 0,

x2 − 3 = 0の解であるが, それらの和 1 +
√

2 +
√

3と積
√

2 +
√

6を解に持つ整数係数 2次方程式

は存在しない.

［定理 9.5］Dを 0でも平方数でもない整数とし, D ≡ 0または 1 (mod 4)であるとする. θを, 判

別式Dを持つ 2次方程式

ax2 + bx + c = 0, D = b2 − 4ac

の解とし,

θ =
−b + e

√
D

2a
, e = ±1

であるとする. また, ωは θと対等な複素数であるとし, ある P =

p q

r s

 ∈ GL2(Z)が存在して

θ = P · ω =
pω + q

rω + s
(32)

とする. このとき,

a′ = ap2 + bpr + cr2,

b′ = 2apq + b(ps + qr) + 2crs,

c′ = aq2 + bqs + cs2

(33)

とおけば, ωは判別式Dを持つ 2次方程式

a′x2 + b′x + c′ = 0, D = b′2 − 4a′c′

の解であって,

ω =
−b′ + e′

√
D

2a′ , e′ = e · det P

が成り立つ. また, gcd(a, b, c) = 1ならば gcd(a′, b′, c′) = 1である.

［証明］最初のDに関する仮定は, Dがある代数的数の判別式であるための条件である (定理 9.2).

A =

 a b/2

b/2 c

とおくと,

[
θ 1

]
A

θ

1

 = aθ2 + bθ + c = 0.

また, (32)より,

P

ω

1

 =

pω + q

rω + s

 = (rω + s)

θ

1

 .
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さらに, A′ =

 a′ b′/2

b′/2 c′

とおくと, (33)より,

tPAP = A′. (34)

ゆえに,

a′ω2 + b′ω + c′ =
[
ω 1

]
A′

ω

1

 =
[
ω 1

]
tPAP

ω

1


= t

P

ω

1

 A

P

ω

1


= (rω + s)2

[
θ 1

]
A

θ

1


= 0.

すなわち, ωは 2次方程式

a′x2 + b′x + c′ = 0.

の解である. この 2次方程式の判別式を計算すると,

b′2 − 4a′c′ = −4 det A′ = −4 det tPAP

= −4(detP )2 det A

= −4 det A = b2 − 4ac

= D.

P−1 =
1

detP

 s −q

−r p

 = ±

 s −q

−r p

と (32)より,

ω = P−1 · θ =
sθ − q

−rθ + p
.

θ, ωをそれぞれ θ, ωと共役な 2次代数的数とすれば, 定理 9.3より,

ω − ω =
sθ − q

−rθ + p
− sθ − q

−rθ + p

=
(ps − qr)(θ − θ)
(p − rθ)(p − rθ)

=
det P · a(θ − θ)

a′ .
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ここで, 最後の等式において

(p − rθ)(p − rθ) = p2 − pr(θ + θ) + r2θθ

= p2 − pr ·
(
− b

a

)
+ r2 · c

a

=
ap2 + bpr + cr2

a

=
a′

a

を用いた. したがって, e′ = e · detP とおくと,

a′(ω − ω) = det P · a(θ − θ) = e′
√

D.

ゆえに,

ω =
−b′ + e′

√
D

2a′ , ω =
−b′ − e′

√
D

2a′ .

最後に, (34)より,

A = t(P−1)A′P−1, P−1 =
1

det P

 s −q

−r p

 .

成分ごとに比較すると, 関係式

a = a′s2 − b′rs + c′r2,

b = −2a′qs + b′(ps + qr) − 2c′pr,

c = a′q2 − b′pq + c′p2

が得られる. g = gcd(a′, b′, c′)とおくと, 上の関係式から gは a, b, cの公約数である. ゆえに, g > 1

ならば gcd(a, b, c) > 1である. よって, 対偶を考えると, gcd(a, b, c) = 1ならば g = 1である.

［定理 9.6］2次代数的数に対等なものは 2次代数的数である. もっと詳しく言うと, 2次無理数に

対等なものは 2次無理数であり, 2次虚数に対等なものは 2次虚数である. また, 対等な 2次代数的

数の判別式は一致する.

［証明］定理 9.5より直ちに導かれる.

10 簡約2次無理数

2次無理数 θが簡約 2次無理数であるとは, θ自身およびそれと共役な θについて, 不等式

−1 < θ < 0, 1 < θ

が成り立つときにいう.
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［定理 10.1］Dを平方数でない正の整数とし, D ≡ 0または 1 (mod 4)であるとする.

(i) D ≡ 0 (mod 4)のとき, rを
√

D/4より小さい最大の整数とすれば, θ = r +
√

D/4は判別式

Dに属する簡約 2次無理数である.

(ii) D ≡ 1 (mod 4)のとき, rを
√

D/4より小さい最大の奇数とすれば, θ = (r +
√

D)/2は判別

式Dに属する簡約 2次無理数である.

［証明］(i) θは 2次方程式 x2 − 2rx + r2 −D/4 = 0の解であり, (−2r)2 − 4(r2 −D/4) = Dと

なる. この 2次方程式のもう 1つの解は θ = r −
√

D/4であり, rの定め方から −1 < θ < 0かつ

1 < θが成り立つことは明らかである.

(ii) θは 2次方程式 x2 − rx + (r2 − D)/4 = 0の解であり, (−r)2 − 4(r2 − D)/4 = Dとなる.

この 2次方程式のもう 1つの解は θ = (r−
√

D)/2であり, rと ωの定め方から θ > 0は明らか. ま

た, 0 <
√

D − r < 2より, −1 < θ < 0もいえる.

［例 10.2］mを平方数でない正の整数とする.
√

mは 2次方程式 x2 − m = 0の解で, その判別式は 4mである. もう 1つの解は −
√

mであり,
√

mと −
√

mは互いに共役な 2次無理数である.

また, b
√

mc+
√

mは 2次方程式 (x− b
√

mc)2 −m = 0の解で, その判別式は同じく 4mである.

もう 1つの解は b
√

mc −
√

mであり, 2つの解は互いに共役な 2次無理数である.
√

mと b
√

mc +
√

mは同じ判別式に属する 2次無理数である.

さらに, b
√

mc +
√

mは

−1 < b
√

mc −
√

m < 0, 1 < b
√

mc +
√

m

を満たすので, 簡約 2次無理数である.

［定理 10.3］判別式D > 0が与えられたとき, ある整数係数の 2次方程式

ax2 + bx + c = 0, D = b2 − 4ac (35)

の解となるような簡約 2次無理数は有限個しかない.

［証明］θを簡約 2次無理数とし, 整数係数の 2次方程式 (35)の解であるとする. a < 0のとき, θ

は両辺に −1を掛けた方程式の解でもあり, (−b)2 − 4(−a)(−c) = b2 − 4ac = D である. よって,

a > 0と仮定してもよい.

θを θと共役な 2次無理数とすれば,

−1 < θ < 0, 1 < θ. (36)
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一方, a > 0だから, (−b −
√

D)/2a < (−b +
√

D)/2a. ゆえに,

θ =
−b +

√
D

2a
, θ =

−b −
√

D

2a
. (37)

(37)より,

− b

a
= θ + θ > 0,

c

a
= θθ < 0.

これと a > 0より, b < 0, c < 0. したがって, |c| = −cなので,

D = |b|2 + 4a|c| > |b|2.

ゆえに,

|b| <
√

D. (38)

また, |b| = −bなので, (37)から,

θ =
|b| +

√
D

2a
, θ =

|b| −
√

D

2a
.

さらに, (36)より,

−θ < 1 < θ

なので, a > 0より,

−aθ < a < aθ.

すなわち, √
D − |b|

2
< a <

√
D + |b|

2
.

(38)より,

0 < a <
√

D. (39)

判別式Dを 1つ固定したとき, (38), (39)より |b|および aの取り得る値は有限個に限られる. し

たがって, θ = (|b| +
√

D)/2aは有限個しかない.

11 実数の対等関係と連分数展開

［定理 11.1］A =

a b

c d

 ∈ GL2(Z)とし, 0 < d < cを満たすと仮定する. また, 有理数 a/cを

a

c
= [a0, a1, . . . , an]

と連分数で表し, nの偶奇は

det A = ad − bc = (−1)n−1
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を満たすようにする. さらに, a/cの近似分数を pk/qk (0 ≤ k ≤ n)とする. このとき,

A =

pn pn−1

qn qn−1


が成り立つ.

［証明］まず, 有理数を連分数で表すとき, nが偶数になる表し方と奇数になる表し方の両方が可

能である. 実際, an = 1のとき,

[a0, a1, . . . , an−1, an] = [a0, a1, . . . , an−1 + 1]

であり, an ≥ 2のとき,

[a0, a1, . . . , an] = [a0, a1, . . . , an − 1, 1]

である. よって,

ad − bc = (−1)n−1

となるように nをとることができる.

近似分数 pn/qn は既約分数であり, qn > 0. 一方, ad − bc = ±1より gcd(a, c) = 1であり, 仮定

より c > 0だから, a = pn, c = qn.

また,

pnd − bqn = ad − bc = (−1)n−1 = pnqn−1 − pn−1qn.

すなわち,

pn(d − qn−1) = qn(b − pn−1). (40)

gcd(pn, qn) = 1だから, qn | (d − qn−1). すなわち,

qn ≤ d − qn−1 または d − qn−1 = 0.

一方, 仮定より 0 < d < cであり, qn−1 > 0であるから,

d − qn−1 < d < c = qn.

ゆえに, d − qn−1 = 0でなければならない. ゆえに, d = qn−1. さらに, qn > 0だから, (40)より

b = pn−1.

［定理 11.2］θ > 1を実数, a, b, c, dを

0 < d < c, ad − bc = ±1

を満たす整数とし,

ω =
aθ + b

cθ + d

とする. このとき, θは ωの連分数展開における全商である.
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［証明］定理 11.1と定理 3.1より,

ω =

a b

c d

 · θ =

pn pn−1

qn qn−1

 · θ

=
pnθ + pn−1

qnθ + qn−1

= [a0, a1, . . . , an, θ].

仮定より θ > 1だから, θは ωの連分数展開における全商である.

［定理 11.3］2つの無理数 θ, ωが対等であるための必要十分条件は, θと ωとを連分数展開する

とき, 両方の展開が最後には一致すること, すなわち, ある実数 ζ > 1と整数 n ≥ 0, m ≥ 0が存在

して

θ = [a0, a1, . . . , an, ζ],

ω = [b0, b1, . . . , bm, ζ]
(41)

が成り立つことである.

［証明］(十分性) θが (41)によって与えられるとする. pn/qn を θの n次の近似分数とすれば,

θ = [a0, a1, . . . , an, ζ] =
pnζ + pn−1

qnζ + qn−1

および

pnqn−1 − pn−1qn = ±1

であるから, θは ζ と対等である. 同様に, ωも ζ と対等である. ゆえに, θは ωと対等である.

(必要性) θと ωとが互いに対等であるとすると, ある整数 a, b, c, dが存在して,

ω =
aθ + b

cθ + d
, ad − bc = ±1. (42)

a, b, c, dの符号をすべて変えたものについても上式は成り立つから, cθ + d > 0と仮定してもよい.

θを連分数展開すると,

θ = [a0, a1, . . . , an−1, θn] =
pn−1ζ + pn−2

qn−1ζ + qn−2
.

ただし, θn > 1であり, pn/qn は θの n次の近似分数である. これを (42)に代入すると,

ω =
a′θn + b′

c′θn + d′ .

ここで,

a′ = apn−1 + bqn−1, b′ = apn−2 + bqn−2,

c′ = cpn−1 + dqn−1, d′ = cpn−2 + dqn−2.
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a′, b′, c′, d′ は整数であり,

a′d′ − b′c′ = (ad − bc)(pn−1qn−2 − pn−2qn−1) = ±1

を満たす.

定理 5.6より, ある実数 δ, δ′ が存在して,

pn−1 = qn−1θ +
δ

qn−1
, |δ| < 1,

pn−2 = qn−2θ +
δ′

qn−2
, |δ′| < 1.

ゆえに,

c′ = (cθ + d)qn−1 +
cδ

qn−1
,

d′ = (cθ + d)qn−2 +
cδ′

qn−2
.

cθ + d > 0かつ 0 < qn−2 < qn−1 だから, 十分大きな nに対して

0 < c′ < d′

となる. そのような nに対して ζ = θnとおけば, ζ は, θの連分数展開の全商であると同時に, 定理

11.2より ωの連分数展開の全商である.

12 2次無理数と循環連分数

連分数展開が途中から循環するものを循環連分数という. 循環の最小の周期のことを, その連分

数の周期という. 特に, 最初から循環しているものを純循環連分数という.

これらの用語を厳密に定義しよう.

無理数 ωが

ω = [a0, a1, a2, . . . , an−1, ωn] (n = 0, 1, 2, . . .) (43)

と連分数展開され, ある整数 n0 ≥ 1とm ≥ 1が存在して,

ωn0 = ωn0+m = · · · = ωn0+jm = · · · (j = 0, 1, 2, . . .) (44)

が成り立つとき, ωを循環連分数という. あるいは, ωは循環連分数に展開されるという. (44)を満

たす最小のmを循環連分数 ωの周期という. 特に, n0 = 0のとき, ωを純循環連分数という. ある

いは, ωは純循環連分数に展開されるという.
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ωが (43), (44)を満たす (必ずしもmが周期とは限らない)循環連分数であるとき, ωn0 は純循環

連分数である. また,

ω = [a0, a1, a2, . . . , an0−1, ωn0 ]

= [a0, a1, a2, . . . , an0−1, an0 , . . . , an0+m−1, ωn0 ]

= [a0, a1, a2, . . . , an0−1, an0 , . . . , an0+m−1, an0 , . . . , an0+m−1, ωn0 ]

= · · · · · ·

という具合に, an0 , . . ., an0+m−1 が繰り返し現れる. そのことを

ω = [a0, a1, . . . , an0−1, ȧn0 , . . . , ȧn0+m−1]

と表す. 特に, ωが純循環連分数であるときには,

ω = [ȧ0, . . . , ȧm−1]

のように表される.

［例 12.1］
√

7の連分数展開は

√
7 = 2 +

1
1 +

1
1 +

1
1 +

1
4 + · · ·

= [2, 1̇, 1, 1, 4̇]

= [2, 1, 1, 1, 4̇, 1, 1, 1̇]

である.
√

7は循環連分数に展開され, 周期は 4である.

b
√

7c +
√

7の連分数展開は

b
√

7c +
√

7 = 4 +
1
1 +

1
1 +

1
1 +

1
4 + · · ·

= [4̇, 1, 1, 1̇]

である. これは周期 4の純循環連分数である.

［定理 12.2］純循環連分数は簡約 2次無理数である.

［証明］ωを純循環連分数として,

ω = [ȧ0, a1, . . . , ȧn−1], n ≥ 1

とする. a0 は連分数展開の途中に現れるから, a0 ≥ 1. ゆえに, ω > 1. また,

ω = [a0, a1, . . . , an−1, ω] =
pn−1ω + pn−2

qn−1ω + qn−2
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であるから,

qn−1ω
2 + (qn−2 − pn−1)ω − pn−2 = 0.

ゆえに, ωは 2次無理数である. さらに,

f(x) = qn−1x
2 + (qn−2 − pn−1)x − pn−2

とおくと, n > 1のときは, 定理 2.1, 定理 2.2により

0 < pn−2 < pn−1, 0 < qn−2 ≤ qn−1

であり, n = 1のときは, p−1 = 1, p0 = a0, q−1 = 0, q0 = 1であるから,

f(0) = −pn−2 < 0,

f(−1) = qn−1 − qn−2 + pn−1 − pn−2 > 0.

中間値の定理により, 方程式 f(x) = 0は−1 < x < 0の範囲に実数解を持つ. 一方, 方程式 f(x) = 0

の実数解は ωおよびそれと共役な ωの 2つである. ω > 1だったから, −1 < ω < 0でなければな

らない. ゆえに, ωは簡約 2次無理数である.

［定理 12.3］循環連分数は 2次無理数である.

［証明］ωを循環連分数として,

ω = [a0, a1, . . . , an−1, ȧn, an+1, . . . , ȧn+k]

とする. ωの連分数展開は無限だから, 定理 4.7より ωは無理数である. また,

ω′ = [ȧn, an+1, . . . , ȧn+k]

とすると, ω′ は純循環連分数なので, 定理 12.2より 2次無理数である. さらに, 定理 3.1により

ω = [a0, a1, . . . , an−1, ω
′] =

pn−1ω
′ + pn−2

qn−1ω′ + qn−2
.

すなわち, ωは ω′ に対等である. したがって, 定理 9.6により, ωもまた 2次無理数である.

無理数 ωの連分数展開

ω = [a0, a1, a2, . . . , an−1, ωn] (n = 0, 1, 2, . . .)

において, ある番号 n1, n2 が存在して

ωn1 = ωn2 , n1 < n2
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が成り立てば, ωは循環連分数である. 実際,

ωn1 = [an1 , an1+1, an1+2, . . . , an2−1, ωn2 ]

= [an1 , an1+1, an1+2, . . . , an2−1, ωn1 ]

= [ȧn1 , an1+1, an1+2, . . . , ȧn2−1]

であるから,

ω = [a0, a1, a2, . . . , an1−1, ωn1 ]

= [a0, a1, a2, . . . , an1−1, ȧn1 , an1+1, an1+2, . . . , ȧn2−1].

［定理 12.4］2次無理数は循環連分数である.

［証明］θを 2次無理数とし, 整数係数の 2次方程式

ax2 + bx + c = 0, gcd(a, b, c) = 1, D = b2 − 4ac > 0

の解であるとする. また, θの連分数展開を

θ = [a0, a1, a2, . . . , an−1, θn] (n = 0, 1, 2, . . .)

とし, pn/qn を θの近似分数とすると,

θ =
pn−1θn + pn−2

qn−1θn + qn−2
.

定理 9.5より,

An = ap2
n−1 + bpn−1qn−1 + cq2

n−1,

Bn = 2apn−1pn−2 + b(pn−1qn−2 + pn−2qn−1) + 2cqn−1qn−2,

Cn = ap2
n−2 + bpn−2qn−2 + cq2

n−2

とおくと, θn は 2次方程式

Anx2 + Bnx + Cn = 0, B2
n − 4AnCn = D

の解である.

各番号 nに対して, 定理 5.6より, ある定数 δn−1 が存在して,

pn−1 = qn−1θ +
δn−1

qn−1
, |δn−1| < 1.

ゆえに,

An = a

(
qn−1θ +

δn−1

qn−1

)2

+ bqn−1

(
qn−1θ +

δn−1

qn−1

)
+ cq2

n−1

= (aθ2 + bθ + c)q2
n−1 + 2aθδn−1 + a

δ2
n−1

q2
n−1

+ bδn−1

= 2aθδn−1 + a
δ2
n−1

q2
n−1

+ bδn−1.
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よって,

|An| < 2|aθ| + |a| + |b|.

また, Cn = An−1 だから,

|Cn| < 2|aθ| + |a| + |b|.

さらに, B2
n − 4AnCn = D > 0より,

B2
n ≤ 4|An||Cn| + D

< 4(2|aθ| + |a| + |b|)2 + D.

すなわち,

|Bn| <
√

4(2|aθ| + |a| + |b|)2 + D.

|An|, |Bn|, |Cn|が nに依存しない値で上から評価されたので, 相異なる組 (An, Bn, Cn)は有限個

しかない. よって, 番号 n1, n2, n3 が存在して, n1 < n2 < n3 かつ

(An1 , Bn1 , Cn1) = (An2 , Bn2 , Cn2) = (An3 , Bn3 , Cn3).

これを (A, B,C)とおく. すると, θn1 , θn2 , θn3 はすべて 2次方程式 Ax2 + Bx + C = 0の解であ

るから, 少なくとも 2つは等しくなければならない. したがって, θは循環連分数である.

［補題 12.5］θを簡約 2次無理数とし, その連分数展開を

θ = [a0, a1, a2, . . . , an−1, θn] (n = 0, 1, 2, . . .)

とすれば, 各々の全商 θn もまた簡約 2次無理数である.

［証明］θを解にもつ 2次方程式を

f(x) = ax2 + bx + c = 0

とし, もう 1つの解を θとする. θは簡約 2次無理数なので,

−1 < θ < 0, 1 < θ.

多項式列 (fn(x))を

f0(x) = f(x), fn(x) = x2fn−1

(
an−1 +

1
x

)
(n = 1, 2, . . .)

によって定めると, 各番号 n ≥ 0に対して, fn(x)は整数係数の 2次多項式であり,

fn(θn) = 0
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を満たす. さらに, 実数列 (θn)を

θ0 = θ, θn =
1

θn−1 − an−1

(n = 1, 2, . . .)

と定めると, 各番号 n ≥ 0に対して

fn(θn) = 0

が成り立つ.

さて, 補題の主張を nに関する数学的帰納法により証明しよう. すべての番号 n ≥ 0に対して,

θn > 1であることは θn が連分数展開の全商であることにより明らかであるから, −1 < θn < 0で

あることを示せば十分である.

n = 0のときは θ0 = θより明らかである.

θn−1 が簡約された無理数であると仮定すると, −1 < θn−1 < 0が成り立つ. an−1 ≥ 1より,

θn−1 − an−1 < −1.

ゆえに,

−1 <
1

θn−1 − an−1

< 0.

すなわち,

−1 < θn < 0.

したがって, θn は簡約 2次無理数である.

以上より, すべての番号 n ≥ 0に対して定理の主張が証明された.

［定理 12.6］簡約 2次無理数は純循環連分数である.

［証明］θを簡約 2次無理数とし, その連分数展開を

θ = [a0, a1, a2, . . . , an−1, θn] (n = 0, 1, 2, . . .)

とする. 定理 12.4より, 2次無理数は循環連分数だから, ある番号 n, mが存在して

θn = θm, n < m

が成り立つ. n ≥ 1ならば,

θn−1 = an−1 +
1
θn

=
an−1θn + 1

θn
,

θm−1 = am−1 +
1

θm
=

am−1θm + 1
θm

.

θn を θn と共役な 2次無理数とし, 他も同様とすると, 定理 9.3より

θn−1 = an−1 +
1
θn

,

θm−1 = am−1 +
1

θm

.
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θn = θm より θn = θm だから,

θn−1 − θm−1 = an−1 − am−1.

補題 12.5より, θn−1, θm−1は簡約 2次無理数だから, θn−1, θm−1はともに −1と 0との間にある.

ゆえに,

−1 < θn−1 < θn−1 − θm−1 < −θm−1 < 1.

よって,

−1 < an−1 − am−1 < 1.

an−1 − am−1 は整数なので, 0に一致する. すなわち, an−1 = am−1. したがって,

θn−1 = θm−1.

以上の操作を繰り返すと, 最後には

θ0 = θm−n

を得る. すなわち, θは純循環連分数である.

［定理 12.7］任意の 2次無理数は, ある簡約 2次無理数と正に対等である.

［証明］θを 2次無理数とし, その連分数展開を

θ = [a0, a1, a2, . . . , an−1, θn] (n = 0, 1, 2, . . .)

とする. 定理 12.4より, 2次無理数は循環連分数だから, ある番号 n, mが存在して

θn = θm, n < m

が成り立つ. このとき,

θ = [a0, a1, a2, . . . , an−1, θn]

= [a0, a1, a2, . . . , an−1, an, . . . , am−1, θm]

= [a0, a1, a2, . . . , an−1, an, . . . , am−1, θn]

であるから, 定理 1.7より,

θn = [an, . . . , am−1, θn].

ゆえに, θn は純循環連分数である. 定理 12.2より, θn は簡約 2次無理数である.

nが偶数のとき, 定理 3.1より,

θ =
pn−1θn + pn−2

qn−1θn + qn−2
.
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また, 定理 2.5より,

pn−1qn−2 − pn−2qn−1 = (−1)n−2 = 1.

ゆえに, θと θn とは正に対等である.

nが奇数のとき, 補題 12.5, 定理 12.2より, θn+1 も簡約 2次無理数である. したがって, θn+1 に

対して nが偶数のときと同様の議論を行えば, θと θn+1 とが正に対等であることがいえる.

13 整数係数2元2次形式

整数 a, b, cを係数し, x, yを変数とする同次多項式

f(x, y) = ax2 + bxy + cy2 (45)

を整数係数 2元 2次形式という. 以下, 特に断らない限り, 単に 2次形式と呼ぶことにする.

gcd(a, b, c) = 1のとき, f(x, y)は原始的であるという. 任意の 2次形式は, 係数の最大公約数を

くくり出すことにより, 原始的な 2次形式の整数倍として表せる.

式 (45)を, 行列を用いて

f(x, y) = x

(
ax +

b

2
y

)
+ y

(
b

2
x + cy

)

=
[
x y

] ax +
b

2
y

b

2
x + cy


=

[
x y

]  a b/2

b/2 c

x

y


と表すとき, 真ん中の 2次正方行列  a b/2

b/2 c

 (46)

を 2次形式 f の行列という.

D = b2 − 4acを 2次形式 f の判別式という. f の行列 (46)を Aとおくと,

D = −(4ac − b2) = −

∣∣∣∣∣∣2a b

b 2c

∣∣∣∣∣∣ = −4 det A (47)

が成り立つ.

［定理 13.1］f(x, y) = ax2 + bxy + cy2 を 2次形式とし, Dをその判別式とする. このとき,

4af(x, y) = (2ax + by)2 − Dy2

が成り立つ.
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［証明］D = b2 − 4acより,

4af(x, y) = 4a2x2 + 4abxy + 4acy2

= (4a2x2 + 4abxy + b2y2) − (b2y2 − 4acy2)

= (2ax + by2)2 − (b2 − 4ac)y2

= (2ax + by)2 − Dy2.

2次形式 f(x, y)に対して,

(i) f が不定符号 ⇐⇒ f(x, y)が正負両方の値をとる.

(ii) f が半正値 ⇐⇒ 任意の x, y ∈ Zに対して f(x, y) ≥ 0.

(iii) f が半負値 ⇐⇒ 任意の x, y ∈ Zに対して f(x, y) ≤ 0.

(iv) f が正値 ⇐⇒ f は半正値. かつ, 任意の x, y ∈ Zに対して, f(x, y) = 0ならば x = y = 0.

(v) f が負値 ⇐⇒ f は半負値. かつ, 任意の x, y ∈ Zに対して, f(x, y) = 0ならば x = y = 0.

と定義する. また, f が正値または負値のとき, 定値であるという.

［補題 13.2］f(x, y) = ax2 + bxy + cy2 を 2次形式, D = b2 − 4acを f の判別式とする.

a 6= 0のとき,

(i) D > 0 ⇐⇒ f は不定符号.

(ii) D = 0かつ a > 0 ⇐⇒ f は半正値だが正値ではない.

(iii) D = 0かつ a < 0 ⇐⇒ f は半負値だが負値ではない.

(iv) D < 0かつ a > 0 ⇐⇒ f は正値.

(v) D < 0かつ a < 0 ⇐⇒ f は負値.

a = 0のとき,

(i) D > 0 ⇐⇒ f は不定符号.

(ii) D = 0かつ c > 0 ⇐⇒ f は半正値だが正値でなく, 恒等的には 0にならない.

(iii) D = 0かつ c < 0 ⇐⇒ f は半負値だが負値でなく, 恒等的には 0にならない.

(iv) D = 0かつ c = 0 ⇐⇒ f は恒等的に 0.

［証明］a 6= 0のとき:

(i) (⇒) 定理 13.1より, f(x, y)は正負両方の値をとる.

(ii) (⇒) a > 0のとき, D = 0と定理 13.1より,

4af(x, y) = (2ax + by)2.

a > 0より, f(x, y)は半正値である. また, 2ax + by = 0ならば f(x, y) = 0なので, f は正値では

ない.
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(iii) (⇒) (ii)と同様の議論で示せる.

(iv) (⇒) 定理 13.1より, D < 0かつ a > 0のとき, f(x, y)は正値である. また, 任意の x, y ∈ Z

に対して,

f(x, y) = 0 =⇒ 2ax + by = y = 0 =⇒ x = y = 0.

したがって, f は正値である.

(v) (⇒) (iv)と同様の議論で示せる.

(i)～(v)の各々の条件は互いに両立せず, 左側の条件は全ての場合を網羅しているので, (⇐)も

一斉に成り立つ.

a = 0のとき:

(i) (⇒) D = b2 より, b 6= 0. よって, f(x, y) = bxy + cy2 は正負両方の値をとる.

(ii) (⇒) D = b2より, b = 0. よって, f(x, y) = cy2は常に負でない. また, y = 0ならば任意の

xに対して f(x, y) = 0なので, f は正値ではない. さらに, y 6= 0ならば f(x, y) 6= 0なので, f は

恒等的には 0にならない.

(iii) (⇒) (ii)と同様の議論で示せる.

(iv) (⇒) D = b2 より, b = 0. よって, a = b = c = 0. したがって, f は恒等的に 0である.

(i)～(iv)の各々の条件は互いに両立しない. また, a = 0ならば D = b2 ≥ 0である. よって, 左

側の条件は全ての場合を網羅している. したがって, (⇐)も一斉に成り立つ.

［定理 13.3］f(x, y) = ax2 + bxy + cy2 を 2次形式, D = b2 − 4acを f の判別式とする. このと

き, 次が成り立つ.

(i) f は不定符号 ⇐⇒ D > 0.

(ii) f は半正値だが正値ではなく, 恒等的には 0でない ⇐⇒ D = 0かつ「a > 0または c > 0」.

(iii) f は半負値だが負値ではなく, 恒等的には 0でない ⇐⇒ D = 0かつ「a < 0または c < 0」.

(iv) f は恒等的に 0 ⇐⇒ D = 0かつ a = c = 0.

(v) f は正値 ⇐⇒ D < 0かつ a > 0.

(vi) f は負値 ⇐⇒ D < 0かつ a < 0.

［証明］(ii)の (⇐)について, D = 0かつ c > 0のとき, 2次形式 f(x, y)が x, yについて対称であ

ることから, D = 0かつ a > 0のときと同様にして左側の条件が導かれる. (iii)の (⇐)についても

同様である.

残りは, 補題 13.2より直ちに得られる.

2次形式

f(x, y) = ax2 + bxy + cy2

に対して, y = 1を代入することにより, xに関する 2次多項式

g(x) = f(x, 1) = ax2 + bx + c (48)
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が得られる. 逆に, 多項式 g(x) = ax2 + bx + cが与えられたとき,

f(x, y) = y2 · g
(

x

y

)
= ax2 + bxy + cy2

となる. このように互いに対応しているので, g(x)を f(x, y)に対応する 2次多項式といい, f(x, y)

を g(x)に対応する 2次形式という. またこのとき, f(x, y)の判別式と g(x)の判別式とは等しい.

14 2次形式の対等関係

2次形式

f(x, y) = ax2 + bxy + cy2 =
[
x y

]
A

x

y

 , A =

 a b/2

b/2 c


に対して, P =

p q

r s

 ∈ GL2(Z)による変数変換

x

y

 = P

x′

y′

 , (49)

すなわち,

x = px′ + qy′,

y = rx′ + sy′

を施すと,

f(x, y) =
[
x′ y′

]
tPAP

x′

y′


= a′x′2 + b′x′y′ + c′y′2.

ただし,

a′ = ap2 + bpr + cr2 (= f(p, r)) ,

b′ = 2apq + b(ps + qr) + 2crs,

c′ = aq2 + bqs + cs2 (= f(q, s)) .

(50)

特に, a′, b′, c′は整数である. つまり, 変数変換 (49)によって, 整数係数 2元 2次形式は整数係数 2

元 2次形式に変換される. a′x′2 + b′x′y′ + cy′2 のことを, f(x, y)から P による変数変換によって

得られる 2次形式と呼ぶことにする.

2つの 2次形式

f(x, y) = ax2 + bxy + cy2 =
[
x y

]
A

x

y

 , A =

 a b/2

b/2 c

 , (51)

f(x′, y′) = a′x′2 + b′x′y′ + c′y′2 =
[
x′ y′

]
A′

x′

y′

 , A′ =

 a′ b′/2

b′/2 c′

 (52)
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が等しいことを f = f ′ で表し,

f = f ′ ⇐⇒ a = a′, b = b′, c = c′

と定義する. この定義によれば, f = f ′ であることは A = A′ と同値である.

また, f が f ′ に対等であるとは, ある P ∈ GL2(Z)が存在して

A′ = tPAP (53)

が成り立つことをいう. ただし, tP は P の転置行列を表す. f(x, y)が f ′(x′, y′)に対等であること

を記号 f ∼ f ′ で表す. またこのとき, 変数変換 (49)によって f(x, y)は f ′(x′, y′)に変換される.

P =

p q

r s

とおけば, 2次形式が対等であることの条件 (53)は関係式 (50)が成り立つことと

言い換えることができる.

特に, det P = 1のとき正に対等であるといい, det P = −1のとき負に対等であるという.

［定理 14.1］2 次形式 f(x, y) = ax2 + bxy + cy2, f ′(x′, y′) = a′x′2 + b′x′y′ + c′y′2 について,

f = f ′ であるための必要十分条件は, すべての n1, n2 ∈ Zに対して

f(n1, n2) = f ′(n1, n2)

が成り立つことである.

［証明］(必要性) f = f ′ とすると, a = a′, b = b′, c = c′ なので, すべての n1, n2 ∈ Zに対して

f(n1, n2) = an2
1 + bn1n2 + cn2

2

= a′n2
1 + b′n1n2 + c′n2

2

= f ′(n1, n2).

(十分性) まず,

a = f(1, 0) = f ′(1, 0) = a′,

c = f(0, 1) = f ′(0, 1) = c′.

さらに,

a + b + c = f(1, 1) = f ′(1, 1) = a′ + b′ + c′.

より, b = b′.

［定理 14.2］f , f ′ を 2次形式とする. f ∼ f ′ かつ f ′ が原始的ならば, f もまた原始的である.
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［証明］f , f ′およびそれらの行列A, A′を (51), (52)のように表すと, f ∼ f ′という仮定より, あ

る P =

p q

r s

 ∈ GL2(Z)が存在して, 関係式 (50)を満たす.

g = gcd(a, b, c)とおく. (50)から gは a′, b′, c′ の公約数である. もし仮に g > 1とすれば, f ′ が

原始的であることに反する. ゆえに, g = 1でなければならない.

［定理 14.3］対等な 2次形式の判別式は一致する.

［証明］f , f ′ を対等な 2次形式とし, D, D′ をそれぞれ f , f ′ の判別式とする. また, A, A′ をそ

れぞれ f , f ′ の行列とする. f ∼ f ′ より, ある P ∈ GL2(Z)が存在して A′ = tPAP . よって, (47)

より,

D′ = −4 det A′ = −4 det tPAP

= −4 det tP det Adet P

= −4(detP )2 det A = −4 detA

= D.

［定理 14.4］2次形式における対等関係は同値関係である.

［証明］f(x, y), f ′(x′, y′), f ′′(x′′, y′′)を 2次形式とし, それらの行列をそれぞれA, A′, A′′とおく.

(反射) 単位行列 E =

1 0

0 1

により, A = tEAE.

(対称) f ∼ f ′ とすると, ある P ∈ GL2(Z)が存在して, A′ = tPAP . このとき, A = tPA′P と

なるから, f ′ ∼ f .

(推移) f ∼ f ′ かつ f ′ ∼ f ′′ とする. 前者より, ある P ∈ GL2(Z)が存在して, A′ = tPAP . 同

様に, 後者より, ある P ′ ∈ GL2(Z)が存在して, A′′ = tPA′P . ゆえに, A′′ = t(PP ′)A(PP ′)とな

るから, f ∼ f ′′.

Dを 0でも平方数でもない整数とし, D ≡ 0または 1 (mod 4)であるとする. 判別式Dを持つ 2

次多項式

ax2 + bx + c, D = b2 − 4ac

の根, すなわち 2次方程式 ax2 + bx + c = 0の解

−b +
√

D

2a
,

−b −
√

D

2a

について, 最初のものを第 1根といい, 残りのもう 1つを第 2根という. 定理 9.1より, 第 1根と第

2根は互いに共役である.
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［定理 14.5］f(x, y) = ax2 + bxy + cy2, f ′(x′, y′) = a′x′2 + b′x′y′ + c′y′2を同じ判別式Dを持つ

2次形式とする. また, θを f に対応する 2次多項式 ax2 + bx + cの第 1根とし, θ′ を f ′ に対応す

る 2次多項式 a′x′2 + b′x′ + c′ の第 1根とする.

(i) f と f ′ とが等しい⇐⇒ θ = θ′.

(ii) f と f ′ とが正に対等⇐⇒ θと θ′ とが正に対等.

(iii) f と f ′ とが負に対等⇐⇒ θと θ′ とが負に対等.

［証明］まず, θ = (−b +
√

D)/2a, θ′ = (−b′ +
√

D)/2a′ である.

(i) (⇒) f と f ′ とが等しければ, それぞれに対応する 2次方程式の係数は等しいから, θ = θ′

である.

(⇐) θ = θ′ とすると,
−b +

√
D

2a
=

−b′ +
√

D

2a′ .

分母を払って整理すると,

(a′b − ab′) + (a − a′)
√

D = 0.

a, b, a′, b′ ∈ Zかつ
√

D 6∈ Qだから,

a′b − a′b′ = a − a′ = 0.

ゆえに, a = a′, b = b′ となる. また, f と f ′ の判別式は同じだから,

b2 − 4ac = b′2 − 4a′c′.

これより, c = c′ が得られる. したがって, f = f ′.

(ii) A, A′ をそれぞれ f , f ′ の行列とすると, A =

 a b/2

b/2 c

, A′ =

 a′ b′/2

b′/2 c′

 である.

(⇒) f と f ′ とが正に対等であるとする. このとき, ある P =

p q

r s

 ∈ SL2(Z)が存在して,

A′ = tPAP . これより関係式 (33)が得られる. ω = P−1 · θとおくと, 定理 9.5より ω = θ′ がいえ

る. ゆえに, θ = P · θ′.

(⇐) θと θ′とが正に対等である. このとき, ある P =

p q

r s

 ∈ SL2(Z)が存在して, θ = P ·θ′.

また,

a′′ = ap2 + bpr + cr2,

b′′ = 2apq + b(ps + qr) + 2crs,

c′′ = aq2 + bqs + cs2

(54)

とおくと, 定理 9.5より, θ′ = (−b′′ +
√

D)/2a′′. すなわち,

−b′ +
√

D

2a′ =
−b′′ +

√
D

2a′′ .
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分母を払って整理すると,

(a′′b′ − a′b′′) + (a′ − a′′)
√

D = 0.

a′, b′, a′′, b′′ ∈ Zかつ
√

D 6∈ Qだから,

a′′b′ − a′b′′ = a′ − a′′ = 0.

ゆえに, a′ = a′′, b′ = b′′となる. よって, (54)からA′ = tPAP が得られる. したがって, f と f ′と

は正に対等である.

(iii) (ii)と同様にして示せる.

15 負の判別式をもつ2次形式

定理 13.3より, f が正値 (負値)であることと, 判別式が負で a > 0 (判別式が負で a < 0)である

こととは同値であった. よって, 判別式が負の 2次形式は正値か負値かのどちらかである.

また, 対等な 2つの 2次形式について, 一方が正値 (負値)ならばもう一方も正値 (負値)である.

実際, §14の関係式 (50)より, 任意の P ∈ GL2(Z)に対して, 正値 (負値) 2次形式から P による変

数変換によって得られる 2次形式もまた正値 (負値)である.

さらに, f(x, y)が正値 2次形式のとき, −f(x, y)は負値 2次形式である. f(x, y)が P による変

数変換によって f ′(x′, y′)に対等であれば, 同じ P による変数変換によって−f(x, y)は−f ′(x′, y′)

に対等である. 実際, f , f ′ の行列をそれぞれ A, A′ とすると,

A′ = tPAP ⇐⇒ −A′ = tP (−A)P

が成り立つ.

したがって, 負値 2次形式の対等関係に関する議論は正値の場合に帰着する.

2 次形式 f(x, y) = ax2 + bxy + cy2 が正値のとき, a > 0 であり, もし仮に c ≤ 0 とすると

b2 − 4ac ≥ 0となって矛盾が生じるから, c > 0である.

正値 2次形式 f(x, y) = ax2 + bxy + cy2 が簡約 2次形式であるとは, 条件

−a < b ≤ a < c または 0 ≤ b ≤ a = c (55)

が成り立つときにいう.

［定理 15.1］正値 2次形式 f(x, y)に対応する 2次多項式 g(x)の第 1根を θとする. このとき, f

が簡約 2次形式であるための必要十分条件は,

|θ| > 1, −1
2
≤ Re θ <

1
2
または |θ| = 1, −1

2
≤ Re θ ≤ 0

が成り立つことである. すなわち, F を SL2(Z)に関する基本領域とすれば,

f は簡約 2次形式⇐⇒ θ ∈ F

である.
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［証明］θを θの共役, すなわち g(x)の第 2根とする. 解と係数の関係より,

2Re θ = θ + θ = − b

a
, |θ| = θθ =

c

a
. (56)

f が簡約ならば, (55)より

0 ≤ b

a
≤ 1 =

c

a
または − 1 <

b

a
≤ 1 <

c

a
. (57)

よって, (56)より θ ∈ F . 逆に, θ ∈ F ならば, (56)より (57)が成り立つ. よって, (55)が成り立ち,

f は簡約である.

［定理 15.2］与えられた判別式D < 0をもつ簡約 2次形式は有限個しかない.

［証明］f(x, y) = ax2 + bxy + cy2 を判別式がDの簡約 2次形式とすると, (55)より

|b| ≤ a ≤ c.

したがって,

|D| = 4ac − b2 ≥ 4b2 − b2 = 3b2.

ゆえに,

|b| ≤
√

|D|
3

.

が得られる. よって, bの取り得る整数値は有限個である. さらに, 各 bに対して, 4ac = b2 − Dを

満たす整数の組 (a, c)は有限個である. したがって, a, cの取り得る整数値もまた有限個である. ゆ

えに, Dが与えられたとき, Dを判別式にもつ簡約 2次形式の個数は有限である.

［定理 15.3］任意の正値 2次形式 f に対して, f と正に対等な簡約 2次形式が存在する.

［証明］f(x, y) = ax2 + bxy + cy2とおく. また, D = b2 − 4acを f の判別式, g(x) = ax2 + bx + c

を f に対応する 2次多項式, θ = (−b +
√

D)/2aを g(x)の第 1根とする.

D < 0かつ a > 0だから, θは上半平面 Hに属する. F を SL2(Z)に関する基本領域とすると,

θ はある θ0 ∈ F と正に対等である (定理 8.5). 定理 9.5より, θ0 もまたある整数係数 2次多項式

g0(x′)の第 1根である. g0(x′)に対応する 2次形式を f0(x′, y′)とすれば, 定理 15.1より, f0 は簡

約である. また, θと θ0とが正に対等であることから, 定理 14.5より, f と f0とは正に対等である.

［定理 15.4］2つの簡約 2次形式は, 正に対等ならば等しい.
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［証明］f(x, y) = ax2 + bxy + cy2と f ′(x′, y′) = a′x′2 + b′x′y′ + c′y′2を互いに正に対等な簡約 2

次形式とする. また, g(x), g′(x′)をそれぞれ f , f ′に対応する 2次多項式とし, θを g(x)の第 1根,

θ′ を g′(x′)の第 1根とする.

f と f ′ は正に対等だから, 定理 14.5より, θと θ′ とは正に対等である. また, F を SL2(Z)に関

する基本領域とすると, 定理 15.1より, θ, θ′ ∈ F . ゆえに, 定理 8.6より, θ = θ′. したがって, 定理

14.5より, f = f ′.

［定理 15.5］f , f ′を正値 2次形式とする. このとき, f と f ′とが正に対等であるための必要十分

条件は, f と f ′ がある共通の簡約 2次形式 f0 と正に対等であることである.

［証明］(必要性) 定理 15.3より, ある簡約 2次形式 f0が存在して f は f0と正に対等である. 同

様に, ある簡約 2次形式 f ′
0が存在して f ′は f ′

0と正に対等である. 定理 15.4より, f0 = f ′
0となる.

(十分性) f が f0 と正に対等で, f0 が f ′ と正に対等であれば, f は f ′ と正に対等である.

16 正の判別式をもつ2次形式

Dを正の整数で, 0も平方数でもないものとする. 判別式Dの 2次形式 f(x, y) = ax2 + bxy + cy2

が簡約 2次形式あるとは, f が条件

a > 0, a − b + c > 0, a + b + c < 0, c < 0 (58)

を満たすときにいう. f(x, y)に対応する 2次多項式を g(x) = ax2 + bx + cとすれば,

g(0) = c, g(1) = a + b + c, g(−1) = a − b + c

であるから, (58)は

a > 0, g(−1) > 0, g(0) < 0, g(1) < 0 (59)

と同値である. また, 2b = g(1) − g(−1)であるから, f が簡約ならば b < 0である.

f の判別式が正であり, かつ 0でも平方数でもないという条件は, gの根が無理数であることと同

値である.

［定理 16.1］f(x, y)を判別式が正でも平方数でもない 2次形式, g(x)を f に対応する 2次多項式,

θを g(x)の第 1根とする. このとき, f(x, y)が簡約 2次形式であるための必要十分条件は, θが簡

約 2次無理数であること, すなわち,

−1 < θ < 0, 1 < θ (60)

が成り立つことである. ただし, θは θの共役, すなわち g(x)の第 2根である.
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［証明］f(x, y) = ax2+bxy+cy2, D = b2−4acとおくと, g(x) = ax2+bx+c, θ = (−b+
√

D)/2a,

θ = (−b −
√

D)/2aと表せる. また, g(x)を実数の範囲で因数分解すれば,

g(x) = a(x − θ)(x − θ). (61)

f が簡約ならば, (59)が成り立つ. θ < θかつ a > 0だから, (61)より, 任意の実数 xに対して,

g(x) =


< 0, θ < x < θ,

= 0, x = θまたは x = θ,

> 0, x < θまたは θ < x

が成り立つ. これと g(−1) > 0, g(0) < 0, g(1) < 0より, −1 < θ < 0と 1 < θが得られる. すなわ

ち, (60)が成り立つ.

逆に, (60)が成り立てば, √
D

a
= θ − θ > 0

より a > 0が得られる. さらに, (61)より, g(−1) > 0, g(0) < 0, g(1) < 0が得られる. したがって,

(59)が成り立つ.

［定理 16.2］Dを 0でも平方数でもない正の整数とする. このとき, 判別式Dの簡約 2次形式は

有限個しかない.

［証明］f を判別式Dの簡約 2次形式とし, f(x, y) = ax2 + bxy + cy2 とおくと, 定理 16.1より

0 <
b +

√
D

2a
< 1 <

−b +
√

D

2a

であるから,

0 < b +
√

D < 2a < −b +
√

D.

これより,

|b| <
√

D

が得られる. よって, bの取り得る整数値は有限個である. さらに, 各 bに対して, 4ac = b2 − Dを

満たす整数の組 (a, c)は有限個である. したがって, a, cの取り得る整数値もまた有限個である. ゆ

えに, Dが与えられたとき, Dを判別式にもつ簡約 2次形式の個数は有限である.

［定理 16.3］0でも平方数でもない判別式 D > 0をもつ任意の 2次形式 f に対して, f と正に対

等な簡約 2次形式が存在する.
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［証明］f(x, y) = ax2 + bxy + cy2とおく. また, D = b2 − 4acを f の判別式, g(x) = ax2 + bx + c

を f に対応する 2次多項式, θ = (−b +
√

D)/2aを g(x)の第 1根とする.

Dは 0でも平方数でもない正の整数なので, θは 2次無理数である. 定理 12.7より, θと正に対

等なある簡約 2次無理数 θ0が存在する. 定理 9.5より, θ0もまたある整数係数 2次多項式 g0(x′)の

第 1根である. g0(x′)に対応する 2次形式を f0(x′, y′)とすれば, 定理 16.1より, f0 は簡約である.

また, θと θ0 とが正に対等であることから, 定理 14.5より, f と f0 とは正に対等である.

17 2次形式による整数の表現

nを整数, f(x, y) = ax2 + bxy + cy2 を 2次形式とする. x, yに関する不定方程式

ax2 + bxy + cy2 = n (62)

が整数解 (x, y)を持つとき, nは 2次形式 f によって表現されるという. また, gcd(x, y) = 1なる

解があるとき, それを原始解といい, nは f によって原始的に表現されるという.

方程式 (62)が g = gcd(x, y) > 1なる整数解 (x, y)を持つとき, g2 | nであるから, (62)の両辺を

g2 で割ることにより,

a

(
x

g

)2

+ b · x

g
· y

g
+ c

(
y

g

)2

=
n

g2

となって, n/g2 が f(x, y)によって原始的に表現される.

P =

p q

r s

 ∈ GL2(Z)とし, 変数変換

x

y

 = P

x′

y′


を考えると, (50)より f(x, y) = ax2 + bxy + cy2 は整数係数 2元 2次形式

f ′(x′, y′) = a′x′2 + b′x′y′ + c′y′2

に変換されるのであった. このとき, 逆の変換x′

y′

 = P−1

x

y

 , P−1 =
1

detP

 s −q

−r p

 , det P = ±1

によって, 方程式 f(x, y) = nの整数解 (x, y)は方程式 f ′(x′, y′) = nの整数解 (x′, y′)に移される.

したがって, 整数 nが 2次形式 f で表現されるならば, nは f から P による変数変換によって得

られる 2次形式 f ′ でも表現される.

特に, nを整数とし, f(x, y), f ′(x′, y′)を互いに対等な 2次形式とするとき, nが f で表現される

ことと, f ′ で表現されることとは同値である.
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［定理 17.1］正の整数 nが判別式 Dの 2次形式によって原始的に表現されるための必要十分条

件は, zに関する合同方程式

z2 ≡ D (mod 4n) (63)

が解を持つことである.

［証明］(x0, y0)を方程式 (62)の原始解とする. gcd(x0, y0) = 1より, ある z0, w0 ∈ Zが存在して

x0z0 + y0w0 = 1.

ここで, 変数変換 x

y

 = P

x′

y′

 , P =

x0 −w0

y0 z0


を考えると, P ∈ GL2(Z)であり, §14の関係式 (50)より f(x, y) = ax2 + bxy + cy2 は整数係数 2

元 2次形式

f ′(x′, y′) = nx′2 + b′x′y′ + c′y′2

に変換される. f ∼ f ′ だから, 定理 14.3より f , f ′ の判別式は一致する. すなわち,

b′2 − 4nc′ = D.

よって, z = b′ が合同方程式 (63)の解になる.

逆に, 合同方程式 (63)に解 z = bが存在すれば, ある c ∈ Zが存在して b2 − 4nc = Dが成り立

つ. このとき, f(x, y) = nx2 + bxy + cy2 とおけば, f の判別式は Dであり, 方程式 (62)は原始解

(x, y) = (1, 0)を持つ.
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