
1 微分

f(x)を Rの開集合Dで全微分可能な関数とすると，任意の a ∈ Dに対して，

f(a + h) − f(a) = f ′(a)h + o(h) (h → 0)

となります．ただし，o(ρ)は Landauの記号で， lim
h→0

o(h)
h

= 0です．このとき

df = f ′(x)h (1)

を f の微分といいます．

f(x)が定数関数ならば，df = 0になります．
xを独立変数とするとき，f(x) = xとすれば，

f ′ = 1

となるので f = xの微分は

dx = 1 · h = h

となります．これを式 (1)に代入すると f の微分は

df = f ′(x)dx (2)

と表されます．

xが従属変数の場合にも，微分 df を式 (2)の形で表すことができます．そのことを主張するのが
次の定理です．

定理 1.1. f(x)が xの関数として微分可能で，x = x(t)が tについて微分可能な関数であるとき，

微分 df は

df = f ′(t)dt = f ′(x)dx

となる．

証明. xは tの関数として微分可能であるから，

dx = x′(t)dt.

さらに，合成関数 f = f(x(t))は tの関数として微分可能であるから，

df = f ′(t)dt

となる．

f ′(t) = f ′(x)x′(t)

であるから，

df = f ′(x)x′(t)dt = f ′(x)dx

となる．

定理 1.2. Dで微分可能な実数値関数 f(x), g(x)に対して，

(i) d(f + g) = df + dg
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(ii) d(f − g) = df − dg

(iii) d(fg) = gdf + fdg

(iv) d

(
f

g

)
=

gdf − fdg

g2

が成り立つ．

証明.

(i) d(f + g) = (f + g)′dx

= (f ′(x) + g′(x))dx

= f ′(x)dx + g′(x)dx

= df + dg.

(ii) (i)と同様．
(iii) d(fg) = (fg)′dx

= (f ′(x)g(x) + f(x)g′(x))dx

= g(x)f ′(x)dx + f(x)g′(x)dx

= gdf + fdg.

(iv) d

(
f

g

)
=
(

f

g

)′
dx

=
(

f ′(x)g(x) − f(x)g′(x)
g(x)2

)
dx

=
g(x)f ′(x)dx + f(x)g′(x)dx

g(x)2

=
gdf + fdg

g2
.

Dにおいて導関数 f ′(x)が微分可能であるとき，微分 df の微分 d2f = d(df)を考えることがで
きます．実際，

d2f = d(f ′(x)dx)

= d(f ′(x))dx + f ′(x)d2x

= f ′′(x)dx2 + f ′(x)d2x

となります．

xが独立変数である場合，先に見たように dx = hとなります．hは独立変数なので，d2x = 0と
なります．したがって

d2f = f ′′(x)dx2

となります．また一般に，xが独立変数ならば，f が n回微分可能であるとき

dnf = f (n)(x)dxn

が成り立ちます．
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定理 1.3. f(x, y)が x, yの関数として全微分可能で，x = x(t), y = y(t)が tについて微分可能

な関数であるとき，微分 df は

df = fxdx + fydy

となる．

証明. xは tの関数として微分可能であるから，

dx = x′(t)dt.

同様に，yは tの関数として微分可能であるから，

dy = y′(t)dt.

さらに，合成関数 f = f(x(t), y(t))は tの関数として微分可能であるから，

df = f ′(t)dt

となる．

f ′(t) = fx(x, y)x′(t) + fy(x, y)y′(t)

であるから，

df = (fx(x, y)x′(t) + fy(x, y)y′(t))dt

= fx(x, y)x′(t)dt + fy(x, y)y′(t)dt

= fxdx + fydy

となる．

記号を上の定理の通りとし，さらに fx(x, y), fy(x, y)が全微分可能であって，x′(t), y′(t)が t

について微分可能であるとき，

d2f = d(df) = d(fxdx + fydy)

= d(fx)dx + fxd(dx) + d(fy)dy + fyd(dy)

= (fxxdx + fxydy)dx + fxd2x + (fyxdx + fyydy)dy + fyd2y

= fxxdx2 + 2fxydxdy + fyydy2 + fxd2x + fyd2y

となります．両辺を dt2で割ると，
d2f

dt2
の公式が得られます．

2 全微分

f(x, y)を R
2の開集合Dで全微分可能な関数とすると，任意の (a, b) ∈ Dに対して，

f(a + h, b + k) − f(a, b) = fx(a, b)h + fy(a, b)k + o(ρ) (ρ → 0)

となります．ただし，ρ =
√

h2 + k2です．また，o(ρ)は Landauの記号で， lim
ρ→0

o(ρ)
ρ

= 0です．

このとき，

df = fxh + fyk (3)
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を f の全微分といいます．

f(x, y)が定数関数ならば，df = 0になります．
いま，x, yは独立変数であるとします．f(x, y) = xのとき，

fx = 1, fy = 0

となるので，f = xの全微分は

dx = 1 · h + 0 · k = h

となります．同様にして，f = yの全微分は dy = kとなります．

これら dx = h, dy = kを式 (3)に代入すると，f の全微分は

df = fxdx + fydy (4)

と表されます．

x, yが従属変数である場合にも，全微分 df を式 (4)の形で表すことができます．そのことを主
張するのが次の定理です．

定理 2.1. f(x, y)が x, yの関数として全微分可能で，x = x(u, v), y = y(u, v)が u, vの全微分

可能な関数であるとき，

df = fudu + fvdv = fxdx + fydy

が成り立つ．

証明. xは u, vの関数として全微分可能であるから，

dx = xudu + xvdv.

同様に，yは u, vの関数として全微分可能であるから，

dy = yudu + yvdv.

さらに，合成関数 f = f(x(u, v), y(u, v))は u, vの関数として全微分可能であるから，

df = fudu + fvdv

となる．

fu = fxxu + fyyu, fv = fxxv + fyyv

であるから，

df = (fxxu + fyyu)du + (fxxv + fyyv)dv

= fx(xudu + xvdv) + fy(yudu + yvdv)

= fxdx + fydy

となる．

定理 2.2. Dで全微分可能な実数値関数 f(x, y), g(x, y)に対して，

(i) d(f + g) = df + dg

(ii) d(f − g) = df − dg
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(iii) d(fg) = gdf + fdg

(iv) d

(
f

g

)
=

gdf − fdg

g2

が成り立つ．

証明.

(i) d(f + g) = (f + g)xdx + (f + g)ydy

= (fx + gx)dx + (fy + gy)dy

= (fxdx + fydy) + (gxdx + gydy)

= df + dg.

(ii) (i)と同様．
(iii) d(fg) = (fg)xdx + (fg)ydy

= (fxg + fgx)dx + (fyg + fgy)dy

= (fxgdx + fygdy) + (fgxdx + fgydy)

= g(fxdx + fydy) + f(gxdx + gydy)

= gdf + fdy.

(iv) d

(
f

g

)
=
(

f

g

)
x

dx +
(

f

g

)
y

dy

=
(

fxg − fgx

g2

)
dx +

(
fyg − fgy

g2

)
dy

=
(fxgdx + fygdy) + (fgxdx + fgydy)

g2

=
g(fxdx + fydy) + f(gxdx + gydy)

g2

=
gdf + fdg

g2
.

Dにおいて偏導関数 fx, fyが全微分可能であるとき，全微分 df の全微分 d2f = d(df)を考える
ことができます．実際，

d2f = d(df) = d(fxdx + fydy)

= d(fx)dx + fxd(dx) + d(fy)dy + fyd(dy)

= (fxxdx + fxydy)dx + fxd2x + (fyxdx + fyydy)dy + fyd2y

= fxxdx2 + 2fxydxdy + fyydy2 + fxd2x + fyd2y

となります．

xが独立変数の場合，先に見たように dx = hとなります．hは独立変数なので，d2x = 0とな
ります．同様に yが独立変数ならば d2y = 0となります．したがって，x, yが独立変数のとき，

d2f = fxxdx2 + 2fxydxdy + fyydy2
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となります．またこのとき一般に，f の n− 1階の偏導関数が存在して，それらがすべて全微分可
能であるとき，

dnf =
∂nf

∂xn
dxn + · · · +

(
n

k

)
∂nf

∂xkyn−k
dxkdyn−k + · · · + ∂nf

∂yn
dyn

が成り立ちます．これを

dnf =
(

dx
∂

∂x
+ dy

∂

∂y

)n
f

と略記します．
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