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1 商集合を定義域とする写像

集合X から集合 Y への写像とは, X の各元 xに対して, Y の元 yをただ 1つだけ対応させる規
則のことである.
集合X に同値関係 ∼が与えられているとき, 写像 π : X → X/∼が, X の各元 xに対して,

π(x) = [x] ([x]は xを代表元とする同値類)

によって定義される. πは全射である. この写像 πを射影という.
集合X, Y と写像 f : X → Y が与えられ, かつX に同値関係∼が与えられているとする. いま,
この写像 f が代表元の取り方によらないという条件を満たしていると仮定する. すなわち, X の任

意の元 x, x′ に対して,
x ∼ x′ ⇒ f(x) = f(x′) (1)

が成り立つとする. このとき,
f([x]) = f(x)

と定義すると, 写像 f : X/∼→ Y が定まる. この写像 f を, f より誘導された写像あるいは引き起

こされた写像という.
条件 (1)が成り立つとき, 写像 f はwell-definedであるという1).

［命題 1.1］X, Y を集合, ∼をX における同値関係, f : X → Y を写像とする. このとき,

f = f ◦ π

が成り立つ.

［証明］X の任意の元 xに対して,

f ◦ π(x) = f([x]) = f(x)

が成り立つ.

［命題 1.2］X, Y を集合, ∼をX における同値関係, f : X → Y を写像とし, X の任意の元 x, x′

に対して,
f(x) = f(x′) ⇒ x ∼ x′

が成り立つとする. このとき, 写像 f : X/∼→ Y は単射である.

［証明］X の任意の元 x, x′ に対して,

f([x]) = f([x′]) ⇒ f(x) = f(x′) ⇒ x ∼ x′ ⇒ [x] = [x′].

よって, 写像 f は単射である.

1)商集合を定義域とする写像を考える際には, その写像が well-definedであることを必ず確認しなければならない. この
文書では, 定理の主張でいきなり「写像 f」というとき, well-defined であることを暗黙のうちに仮定している.
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［例 1.3］X, Y を集合, f : X → Y を写像とする. X における関係 ∼を, X の各元 x, x′ に対

して,
x ∼ x′ ⇔ f(x) = f(x′)

によって定義すると, ∼は同値関係になる. このとき, f から誘導された写像

f : X/∼→ Y, [x] 7→ f(x)

は well-definedかつ単射である.

［命題 1.4］X, Y を集合, ∼をX における同値関係, f : X → Y を写像とする. f が全射ならば,
f より誘導された写像 f : X/∼→ Y も全射である.

［証明］yを Y の元とする. f は全射だから, X のある元 xが存在して, f(x) = y. このとき,

f([x]) = f(x) = y.

よって, f は全射である.

［別証］π : X → X/ ∼を射影とすると, π は全射なので, π(X) = X/ ∼. また, 命題 1.1より,
f = f ◦ π. ゆえに,

f(X/∼) = f(π(X)) = f(X) = Y.

よって, f は全射である.

［定理 1.5］X, Y を集合, ∼をX における同値関係, f : X → Y を写像とする. f は全射である

とし, X の任意の元 x, x′ に対して,

x ∼ x′ ⇔ f(x) = f(x′)

が成り立つとする. このとき, f から誘導された写像

f : X/∼→ Y, [x] 7→ f(x)

は well-definedかつ全単射である. とくに, X/∼の濃度と Y の濃度は等しい.

［証明］well-definedの定義, 命題 1.2, 命題 1.4より導かれる.

4



2 多元環

Rを可換環2), Aを環とする. Rの Aへのスカラー倍

R × A → A, (r, x) 7→ rx

が定まり, そのスカラー倍とAにおける加法とに関してAはR加群になるとする. さらに, そのス
カラー倍と Aにおける乗法との間に可換性が成り立つとする. すなわち, 任意の x, y ∈ A, r ∈ R

に対して,
r(xy) = (rx)y = x(ry).

このとき, Aを R上の多元環という.
可換環 R 上の多元環 A の部分環 S が R 加群として A の部分加群でもあるとき, S は Aの部

分多元環であるという. 実際, 任意の x, y ∈ S, r ∈ R に対して, S ⊆ Aより x, y ∈ Aだから,
(rx)y = r(xy) = x(ry)となる. したがって, S は R上の多元環である.
多元環 Aのイデアルとは, 環としての Aのイデアルのことである.

［命題 2.1］Rを可換環, Aを R上の多元環, aを Aの左イデアルとする. このとき, aは Aの部

分 R加群である3).

［証明］aは Aの左イデアルなので, 加法群として Aの部分群である. さらに, 1を Aの単位元と

すると, 任意の r ∈ R, a ∈ aに対して,

ra = r(1 · a) = (r · 1) · a ∈ a.

よって, aは Aの部分 R加群である.

可換環 R上の多元環 Aの両側イデアル aは Aの部分 R加群であるから, 剰余環 A/aには R加

群の構造が入る. さらに, 任意の x, y ∈ A, r ∈ Rに対して,

r ·
(
(x + a)(y + a)

)
= r · (xy + a) = r(xy) + a,(

r · (x + a)
)
(y + a) = (rx + a)(y + a) = (rx)y + a,

(x + a)
(
r · (y + a)

)
= (x + a)(ry + a) = x(ry) + a.

Aにおいて r(xy) = (rx)y = x(ry)だから, 上の 3つは互いに等しい. よって, A/aは R上の多元

環になる. A/aを Aの aによる剰余多元環という.

［命題 2.2］Rを可換環, AをR上の多元環, Sを Aの部分多元環, aを Aの両側イデアルとする.
このとき, S ∩ aは S の両側イデアルである.

［証明］S も aも加法群として Aの部分群であるから, S ∩ aも加法群として Aの部分群である.
任意の x ∈ S, a ∈ S ∩ aに対して, S は Aの部分多元環だから, xa, ax ∈ S. また, x ∈ A, a ∈ a

であるから, xa, ax ∈ a. ゆえに, xa, ax ∈ S ∩ a.

2)この文書では, 環というときには, 乗法における単位元の存在を仮定する. また, 環 R の部分環の単位元は R の単位元
に一致するものとする.

3)環に乗法における単位元の存在を仮定する立場においては, イデアルは一般に環ではない.
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［命題 2.3］Rを可換環, AをR上の多元環, Sを Aの部分多元環, aを Aの両側イデアルとする.
このとき,

(i) S + a = {x + a | x ∈ S, a ∈ a}は Aの部分多元環である.

(ii) aは S + aの両側イデアルである.

［証明］(i) 任意の x, y ∈ S, a, b ∈ a, r ∈ Rに対して,

x − y, xy, rx ∈ S,

a − b, xb + ay + ab, ra ∈ a.

ここで, 1を Aの単位元とするとき, ra = r(1 · a) = (r · 1)a ∈ aとなることに注意せよ. よって,

(x + a) − (y + b) = (x − y) + (a − b) ∈ S + a,

(x + a)(y + b) = xy + (xb + ay + ab) ∈ S + a,

r(x + a) = rx + ra ∈ S + a.

ゆえに, S + aは Aの部分多元環である.
(ii) aは Aの両側イデアル, S は Aの部分環, a ⊆ S + a ⊆ Aである. このとき, aは加法群と

して S + aの部分群である. また, 任意の x ∈ S + a, a ∈ aに対して, xa, ax ∈ aが成り立つ. よっ
て, aは S + aの両側イデアルである.

［命題 2.4］Rを可換環, Aを R上の多元環, a, mを Aの両側イデアルとする. このとき,

a/m = {a + m | a ∈ a}

は剰余多元環 A/mの両側イデアルである.

［証明］0 ∈ aより, 0 + m ∈ a/mなので, a/mは空集合でない.
任意の a, b ∈ aに対して, aは加法群として Aの部分群なので, a − b ∈ a. よって,

(a + m) − (b + m) = (a − b) + m ∈ a/m.

ゆえに, a/mは加法群として A/mの部分群である.
さらに, 任意の x ∈ A, a ∈ aに対して, aは Aの両側イデアルなので, xa, ax ∈ a. よって,

(x + m)(a + m) = xa + m ∈ a/m,

(a + m)(x + m) = ax + m ∈ a/m.

ゆえに, a/mは A/mの両側イデアルである.

Rを可換環とし, A1, A2, . . ., An を R上の多元環とする. 環としての直積 A =
∏n

i=1 Ai につい

て, 各 xi ∈ Ai, r ∈ Rに対して,

r · (x1, x2, . . . , xn) = (rx1, rx2, . . . , rxn)
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によってスカラー倍を定義することにより, Aは R加群になる. さらに, 任意の xi, yi ∈ Ai, r ∈ R

に対して,

r ·
(
(x1, x2, . . . , xn)(y1, y2, . . . , yn)

)
= r · (x1y1, x2y2, . . . , xnyn)

=
(
r(x1y1), r(x2y2), . . . , r(xnyn)

)
,(

r · (x1, x2, . . . , xn)
)
(y1, y2, . . . , yn)

= (rx1, rx2, . . . , rxn)(y1, y2, . . . , yn)

=
(
(rx1)y1, (rx2)y2, . . . , (rxn)yn

)
,

(x1, x2, . . . , xn)
(
r · (y1, y2, . . . , yn)

)
= (x1, x2, . . . , xn)(ry1, ry2, . . . , ryn)

=
(
x1(ry1), x2(ry2), . . . , xn(ryn)

)
.

各 Ai において, r(xiyi) = (rxi)yi = r(xiyi)が成り立つから, 上の 3つは互いに等しい. ゆえに, A

は R上の多元環である.
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3 準同型写像

Rを可換環, A, A′ を R上の多元環とする. 写像 f : A → A′が R上の準同型写像であるとは, f

が環準同型かつ R線型であるときにいう. すなわち, 任意の x, y ∈ A, r ∈ Rに対して, 次の条件
が成り立つときにいう:

f(x + y) = f(x) + f(y),

f(xy) = f(x)f(y),

f(rx) = r · f(x).

R上の準同型写像のことを簡単に R準同型ということもある.

［例 3.1］Rを可換環, Aを R上の多元環, aを Aの両側イデアルとする. このとき, 写像

π : A → A/a, x 7→ x + a

は全射かつ R準同型である. πは標準的全射あるいは自然な全射と呼ばれている4).

［命題 3.2］A, A′を可換環上の多元環, 0, 0′をそれぞれ A, A′の零元とし, f : A → A′を R上の

準同型写像とする. このとき,

(i) f(0) = 0′

(ii) f(−x) = −f(x)

が成り立つ.

［証明］(i) 0が Aの単位元であることと, f が準同型写像であることから,

f(0) + f(0) = f(0 + 0) = f(0).

両辺に −f(0)を加えれば, f(0) = 0′ が得られる.
(ii) (i)の結果を用いれば,

f(x) + f(−x) = f(x − x) = f(0) = 0′.

同様にして, f(−x) + f(x) = 0′も得られる. 加法群における逆元の一意性から, −f(x) = f(−x)と
なる.

［命題 3.3］A, A′ を可換環上の多元環, 0′ を A′ の零元とし, f : A → A′ を R上の準同型写像と

する. このとき
ker f = f−1(0′) = {x ∈ A | f(x) = 0′}

は Aの両側イデアルである. ker f を f の核という.

4)標準的準同型, 自然な準同型などと呼ばれることもある.
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［証明］0を Aの零元とすると, f(0) = 0′ であるから, 0 ∈ ker f . よって, ker f は空集合でない.
任意の a, b ∈ ker f に対して,

f(a) = f(b) = 0′

であるから,
f(a − b) = f(a) − f(b) = 0′ − 0′ = 0′.

ゆえに, a − b ∈ ker f . よって, ker f は Aの加法群としての部分群である.
また, 任意の x ∈ A, a ∈ ker f に対して,

f(xa) = f(x)f(a) = f(x) · 0′ = 0′,

f(ax) = f(a)f(x) = 0′ · f(x) = 0′.

ゆえに, ax, xa ∈ ker f . したがって, ker f は Aの両側イデアルである

［例 3.4］Aを可換環上の多元環, aを Aの両側イデアルとする. 標準的全射

π : A → A/a, x 7→ x + a

について, kerπ = aが成り立つ.
実際, x ∈ kerπとすると, x + a = π(x) = 0 + aより, x = x − 0 ∈ a. ゆえに, kerπ ⊆ a. 逆の包
含関係も同様にして確かめられる.

［命題 3.5］Rを可換環, A, A′ を R上の多元環, f : A → A′ を R上の準同型写像とする. また,
Bを Aの部分多元環, fB : B → A′を f の Bへの制限とする. このとき, fB は R上の準同型写像

であり,
ker fB = B ∩ ker f.

［証明］fB は f の Bへの制限だから, 任意の x ∈ Bに対して, fB(x) = f(x). よって, fB は R上

の準同型写像である.
x ∈ ker fB とすると, ker fB ⊆ B なので x ∈ B であり, f(x) = fB(x) = 0′ より x ∈ ker f . ゆえ
に, x ∈ B ∩ ker f . よって, ker fB ⊆ B ∩ ker f .
逆に, x ∈ B ∩ ker f とすると, x ∈ Bより fB(x)が定まり, x ∈ ker f より fB(x) = f(x) = 0′. ゆ
えに, x ∈ ker fB . よって, 逆の包含関係も成り立ち, ker fB = B ∩ ker f がいえる.

［命題 3.6］A, A′を多元環, f : A → A′を R上の準同型写像とし, a = ker f とする. このとき A

の任意の部分多元環 B に対して,
f−1(f(B)) = B + a.

ただし, B + a = {y + a | y ∈ B, a ∈ a}とする.
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［証明］Aの元 xについて,

x ∈ f−1(f(B)) ⇔ f(x) ∈ f(B) ⇔ f(x) = f(y) (∃y ∈ B)

⇔ f(x − y) = 0′ (∃y ∈ B) ⇔ x − y ∈ a (∃y ∈ B)

⇔ x = y + a (∃y ∈ B, ∃a ∈ a)

⇔ x ∈ B + a.

ただし, 0′ は A′ の零元とする.

［命題 3.7］Rを可換環, A, A′ を R上の多元環, f : A → A′ を R上の準同型写像とする. また,
B を Aの部分多元環, B′ を A′ の部分多元環とする.

(i) f(B)は A′ の部分多元環である.

(ii) f−1(B′)は Aの部分多元環である.

［証明］(i) BはAの部分多元環なので, 任意の x, y ∈ B, r ∈ Rに対して, x− y, xy−1, rx ∈ B.
よって,

f(x) − f(y) = f(x − y) ∈ f(B),

f(x)f(y)−1 = f(xy−1) ∈ f(B),

r · f(x) = f(rx) ∈ f(B).

ゆえに, f(B)は A′ の部分多元環である.
(ii) 任意の x, y ∈ f−1(B′), r ∈ Rに対して, f(x), f(y) ∈ B′ であり, B′ は A′ の部分多元環な

ので,

f(x − y) = f(x) − f(y) ∈ B′,

f(xy) = f(x)f(y) ∈ B′,

f(rx) = r · f(x) ∈ B′.

ゆえに, x − y, xy, rx ∈ f−1(B′). よって, f−1(B′)は Aの部分多元環である.

［命題 3.8］Rを可換環, A, A′をR上の多元環, f : A → A′をR上の準同型写像とする. また, a

を Aの両側イデアル, bを A′ の両側イデアルとする.

(i) f(a)は f(A)の両側イデアルである.

(ii) f−1(b)は Aの両側イデアルである.

［証明］(i) aは Aの両側イデアルなので, 任意の x, y ∈ a, r ∈ Rに対して,

f(x) − f(y) = f(x − y) ∈ f(a).
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さらに, 任意の x ∈ A, a ∈ aに対して,

f(x)f(a) = f(xa) ∈ f(a),

f(a)f(x) = f(xa) ∈ f(a).

よって, f(a)は f(A)の両側イデアルである.
(ii) bはA′の両側イデアルなので, 任意の x, y ∈ f−1(b), r ∈ Rに対して, f(x), f(y) ∈ bより,

f(x − y) = f(x) − f(y) ∈ b.

ゆえに, x − y ∈ f−1(b).
さらに, 任意の x ∈ A, a ∈ f−1(b)に対して, 再び bは A′ の両側イデアルであるから,

f(xa) = f(x)f(a) ∈ b,

f(xa) = f(a)f(x) ∈ b.

ゆえに, ax, xa ∈ f−1(b). したがって, f−1(b)は Aの両側イデアルである.

［定理 3.9］R を可換環, A, A′ を R 上の多元環, f : A → A′ を全射 R 準同型とする. また,
n = ker f とし, Ωを Aの両側イデアルで nを含むもの全体からなる集合, Ω′を A′の両側イデアル

全体からなる集合とする. このとき, 写像

Φ : Ω → Ω′, a 7→ f(a)

は全単射であり,
Ψ : Ω′ → Ω, b 7→ f−1(b)

が Φの逆写像である.

［証明］0′ を A′ の零元とする.
f は全射なので, A′ = f(A). このとき, a ∈ Ωならば f(a) ∈ Ω′ であることは命題 3.8からわか
る. また, b ∈ Ω′ ならば f−1(b) ∈ Ωであることは, 命題 3.8と f−1(b) ⊇ f−1({0′}) = nとからわ

かる. よって, 写像 Φ, Ψが定まる.
f−1(f(a)) ⊇ aは明らかである. f−1(f(a)) ⊆ aは,

x ∈ f−1(f(a)) ⇒ f(x) ∈ f(a)

⇒ f(x) = f(a) (∃a ∈ a)

⇒ f(x − a) = f(x) − f(a) = 0′ (∃a ∈ a)

⇒ x − a ∈ n ⊆ a (∃a ∈ a)

⇒ x ∈ a

よりわかる. ゆえに, f−1(f(a)) = a.
f(f−1(b)) ⊆ bは明らかである. y ∈ bとすると, fは全射だから,あるx ∈ Aが存在して, y = f(x).
よって, x ∈ f−1(b). ゆえに, y ∈ f(f−1(b)). こうして逆の包含関係もいえて, f(f−1(b)) = bと

なる.
以上より Φと Ψとは互いに逆写像であることが証明された.
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［例 3.10］Rを可換環, Aを R上の多元環, mを Aの両側イデアル, π : A → A/mを標準的全射

とする. また, Ωを Aの両側イデアルで mを含むもの全体からなる集合, Ω′ を A′ の両側イデアル

全体からなる集合とする. このとき,

Φ : Ω → Ω′, a 7→ π(a)

は全単射であり, 任意の a ∈ Ωに対して,

π(a) = {π(x) | x ∈ a} = {x + m | x ∈ a} = a/m.

これより, A/mの両側イデアルは a/m (a ∈ Ω)の形のものがすべてであることがわかる. また, Φ
の逆写像は

Ψ : Ω′ → Ω, A 7→ π−1(A)

であり, 任意の A ∈ Ω′ に対して,

π−1(A) = {x ∈ A | π(x) ∈ A} = {x ∈ A | x + m ∈ A}.
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4 準同型定理と3つの同型定理

Rを可換環, A, A′を R上の多元環とする. 写像 f : A → A′が R上の同型写像であるとは, f が

全単射かつ R準同型であるときにいう. R上の同型写像のことを単に R同型ともいう. Aから A′

への R上の同型写像が存在するとき, Aと A′ とは R同型であるといい, A ∼= A′ で表す.

［命題 4.1］Rを可換環, AをR上の多元環, nをAの両側イデアル, f : A → A′をR上の準同型

写像とする. このとき, R上の準同型写像

f : A/n → A′, x + n 7→ f(x) (2)

が存在するための必要十分条件は, n ⊆ ker f が成り立つことである.

［証明］まず, nは Aの両側イデアルなので, 剰余多元環 A/nが定義できる.
0′ を A′ の零元, π : A → A/n, x 7→ x + nを標準的全射とする. R上の準同型写像 (2)が存在す
ると仮定すると, f = f ◦ πなので,

f(n) = f(π(n)) = f(n) = 0′.

ゆえに, n ⊆ ker f .
逆に, n ⊆ ker f と仮定すると, 任意の x, y ∈ Aに対して,

x − y ∈ n ⇒ f(x) − f(y) = f(x − y) = 0′ ⇒ f(x) = f(y).

ゆえに, f は写像

f : A/n → A′, x + n 7→ f(x)

を誘導する (§1). さらに, 任意の x, y ∈ A, r ∈ Rに対して,

f((x + n) + (y + n))

= f((x + y) + n) = f(x + y) = f(x) + f(y)

= f(x + n) + f(y + n),

f((x + n)(y + n))

= f(xy + n) = f(xy) = f(x)f(y)

= f(x + n)f(y + n),

f(r · (x + n))

= f(rx + n) = f(rx) = r · f(x)

= r · f(x + n).

よって, f は R上の準同型写像である.

［定理 4.2（準同型定理）］Rを可換環, A, A′を R上の多元環, f : A → A′を全射R準同型とし,
n = ker f とする. このとき, R上の同型写像

f : A/n → A′, x + n 7→ f(x)

が存在する. したがって, A/nと A′ とは R同型である.
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［証明］まず, n = ker f だから, 命題 4.1より, 準同型写像

f : A/n → A′, x + n 7→ f(x)

が存在する.
0′ を A′ の零元とする. 任意の x1, x2 ∈ Aに対して, f は R上の準同型写像だから,

f(x1 − x2) = f(x1) − f(x2).

さらに, n = ker f より,

x1 − x2 ∈ n ⇔ f(x1 − x2) = 0′ ⇔ f(x1) − f(x2) = 0′ ⇔ f(x1) = f(x2).

このとき, f は全単射である (定理 1.5).
したがって, f は R上の同型写像である.

［命題 4.3］Rを可換環, A1, A2, . . ., AnをR上の多元環とする. また, 各 iについて, niをAiの

両側イデアルとする. さらに, n =
∏n

i=1 ni とおく. このとき, R上の同型写像

A/n →
n∏

i=1

(Ai/ni), (x1, . . . , xn) + n 7→ (x1 + n1, . . . , xn + nn)

が存在する.

［証明］n = 2の場合について証明する. n > 2についても同様に示すことができる.
i = 1, 2に対して標準的全射

πi : Ai → Ai/ni, xi 7→ xi + ni

を考えると, 写像

π : A1 × A2 → (A1/n1) × (A2/n2),

(x1, x2) 7→ (π1(x1), π2(x2)) = (x1 + n1, x2 + n2)

が全射であることはすぐにわかる. さらに, kerπi = ni より,

kerπ = kerπ1 × kerπ2 = n1 × n2.

したがって, 準同型定理 4.2により, 求める R上の同型写像が得られる.

［命題 4.4］Rを可換環, Aを R上の多元環, a1, a2, . . ., an を Aのイデアルとし, a =
∩n

i=1 ai と

おく. また, i 6= j ならば ai + aj = Aと仮定する. このとき, R上の同型写像

A/a →
n∏

i=1

A/ai, x + a 7→ (x + a1, x + a2, . . . , x + an)

が存在する.
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［証明］写像

φ : A →
n∏

i=1

A/ai, x 7→ (x + a1, x + a2, . . . , x + an)

を考える. 任意の x, y ∈ A, r ∈ Rに対して,

φ(x + y) =
(
(x + y) + a1, (x + y) + a2, . . . , (x + y) + an

)
=

(
(x + a1) + (y + a1), (x + a2) + (y + a2), . . . , (x + an) + (y + an)

)
= (x + a1, x + a2, . . . , x + an) + (y + a1, y + a2, . . . , y + an)

= φ(x) + φ(y),

φ(xy) = (xy + a1, xy + a2, . . . , xy + an)

=
(
(x + a1)(y + a1), (x + a2)(y + a2), . . . , (x + an)(y + an)

)
= (x + a1, x + a2, . . . , x + an)(y + a1, y + a2, . . . , y + an)

= φ(x)φ(y),

φ(rx) = (rx + a1, rx + a2, . . . , rx + an)

=
(
r(x + a1), r(x + a2), . . . , r(x + an)

)
= r · (x + a1, x + a2, . . . , x + an)

= r · φ(x).

ゆえに, φは R上の準同型写像である.
x1, x2, . . ., xn ∈ Aを任意にとる. i 6= j なる任意の番号 i, j (ただし, 1 ≤ i, j ≤ n)に対して, 仮
定より ai + aj = Rだから, ある aij ∈ ai, bij ∈ aj が存在して, aij + bij = 1. このとき, i = 1, 2,
. . ., nに対して,

1 =
∏

1≤j≤n
j 6=i

(aij + bij) = (ある aij を含む項) +
∏

1≤j≤n
j 6=i

bij ∈ ai +
∩

1≤j≤n
j 6=i

aj .

ここで, ci =
∏

1≤j≤n
j 6=i

bij とおく.
k = 1, 2, . . ., nに対して, ck − 1 ∈ ak. また, i 6= kなるすべての番号 iに対して, ci ∈ ak となる.

x =
∑n

i=1 cixi とおくと,
x − xk = (ck − 1)xk +

∑
1≤i≤n

i 6=k

cixi ∈ ak.

したがって,

φ(x) = (x + a1, x + a2, . . . , x + an) = (x1 + a1, x2 + a2, . . . , xn + an).

ゆえに, φは全射である.
任意の x ∈ Aに対して,

x ∈ kerφ ⇔ x ∈ ai (i = 1, 2, . . ., n) ⇔ x ∈ a.

ゆえに, ker φ = a.
したがって, 準同型定理 4.2により, 求める R上の同型写像が得られる.
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［定理 4.5（第 1同型定理）］Rを可換環, A, A′ を R上の多元環, f : A → A′ を全射 R準同型と

する. また, n′ を A′ の両側イデアル, n = f−1(n′)とする. このとき, R上の同型写像

A/n → A′/n′, x + n 7→ f(x) + n′

が存在する.

［証明］標準的全射

π′ : A′ → A′/n′, x′ 7→ x′ + n′

を考える. 2つの全射 R準同型の合成

π′ ◦ f : A → A′/n, x 7→ f(x) + n′

は全射 R準同型である. また, 0′ を A′ の零元とすると, ker π′ = n′ より,

x ∈ ker(π′ ◦ f) ⇔ π′(f(x)) = 0′ ⇔ f(x) ∈ n′ ⇔ x ∈ f−1(n′).

n = f−1(n′)だったから, ker(π′ ◦ f) = n. 準同型定理 4.2により, 求める R上の同型写像が得られ

る.

［定理 4.6（第 2同型定理）］Rを可換環, Aを R上の多元環, S を Aの部分多元環, nを Aの両

側イデアルとする. このとき, R上の同型写像

S/(S ∩ n) → (S + n)/n, x + (S ∩ n) 7→ x + n

が存在する.

［証明］S + nは Aの部分多元環であり, nは S + nの両側イデアルである (命題 2.3). よって, 剰
余多元環 (S + n)/nが定義できる. 写像

f : S → (S + n)/n, x 7→ x + n

を考える. 任意の x, y ∈ S, r ∈ Rに対して,

f(x + y) = (x + y) + n = (x + n) + (y + n) = f(x) + f(y),

f(xy) = xy + n = (x + n)(y + n) = f(x)f(y),

f(rx) = rx + n = r · (x + n) = r · f(x).

よって, f は R上の準同型写像である.
任意の x ∈ S, n ∈ nに対して, (x + n) − x = n ∈ n. よって,

f(x) = x + n = (x + n) + n.

したがって, f は全射である.
任意の x ∈ S に対して,

x ∈ ker f ⇔ x ∈ S かつ f(x) = 0 + n

⇔ x ∈ S かつ x + n = 0 + n

⇔ x ∈ S かつ x ∈ n

⇔ x ∈ S ∩ n.

ゆえに, ker f = S ∩ n. 準同型定理 4.2により, 求める R上の同型写像が得られる.
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［定理 4.7（第 3同型定理）］R を可換環, A を R 上の多元環, m, n を A の両側イデアルとし,
n ⊆ mとする. このとき, R同型

A/m ∼=
A/n

m/n

が成り立つ. ただし, m/nは A/nの同値類で mの元を代表元とするものの全体を表す:

m/n = {x + n ∈ A/n | x ∈ m}.

［証明］標準的全射 π′ : A → A/m, x 7→ x + mを考える.

n ⊆ m = kerπ′

であるから, π′ は R上の準同型写像

π′ : A/n → A/m, x + n 7→ π′(x) = x + m

を誘導する (命題 4.1). π′ は全射なので, π′ もまた全射である (命題 1.4). すなわち,

π′(A/n) = A/m.

また,
kerπ′ = {x + n ∈ A/n | x + m = 0 + m} = m/n

だから, 準同型定理 4.2より,
A/n

m/n
∼= π′(A/n).

ゆえに, 求める R同型が得られる.
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